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ABSTRACT

This paper is principally concerned with analysing some
heuristics for the symmetric travelling salesman problem.
In particular we consider the ratio R of the length of a
tour generated by each algorithm to that of a minimum
tour.

The first algorithm generates a tour by adding the
shortest available edge. We demonstrate an upper bound
for R which is 0(log2n) where n is the number of cities.
We also give a sequefice of problems for which R grows as
0(1og2n/10g210g2n).

The next algorithm proceeds by altering a minimum spanning
l-tree until it is a tour. We prove that R<2 for this
method and give a sequence of problems for which R=2-3/n.

A modification leads to R<(2-k/n) in 0(n3+k) time for
l<k<n-1. Applying this idea to the maximum length tour
problem gives R>(2/3+(k-3)/3n) in 0(n4+kK) time for
symmetric problems and R>(1/2+(k-2)/2n) for non-symmetric
problems
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INTRODUCTION

The travelling salesman problem has been studied for a
long time. There are several versions of this problem
and in this paper we mainly consider the following: 1let
G=(N,E) be a complete undirected graph on n nodes.
Associated with an edge e=(i,j) we have a non-negative
length denoted by 1(e) or 1(i,Jj) which is assumed to
satisfy the triangular inequality

(1) 1(1,3)+1(J,k)>1(4,k)

for any nodes 1i,j,k.

A tour T is a cycle in G which goes through each node
exactly once. The length of T is the sum of the lengths
of the edges in T. The problem is to find the minimum
length tour.

Known algorithms for solving this problem can take time
exponential in n. The problem is in fact NP-hard in the
sense that if a polynomial time algorithm exists for its
solution then a polynomial time algorithm exists for a
wide class of difficult combinatorial problems - see
Cook [3] and Karp [12]. As a consequence it is generally
accepted that no such algorithm is likely to exist.

This has lead to an interest in approximate algorithms
which take time polynomial in n but which do not guarantee
an optimal solution but are likely to lead to good
solutions. Given such an algorithm it is of interest to
bound the ratio of the obtained tour length to optimal
tour length. This was done for several algorithms by
Rosenkrantz, Stearns and Lewis [15] where a best bound
of 2 was found for their nearest insertion algorithm.
Christofides [1] describes an algorithm for which this
bound is 3/2- see also Cornuéjols and Nemhauser [4].

The first part of this paper analyses a greedy algorithm
and shows it has a worst case performance which can become
arbitrarily bad as n increases. This is similar to that
found for the nearest neighbour algorithm in [15].
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We then provide a 'hard' problem for the Clarke and Wright
[2] savings algorithm.

We then analyse an algorithm which begins with a minimum
spanning l-tree and alters it until it is a tour. We show
that this tour is no more than twice the length of the
minimum tour.

We then describe a modification of this method which
produces in 0(n3+k) time a tour whose length is no more
than (2-k/n) times the minimum length of a tour for
1<k<n-2.

These ideas are then applied to the problem of finding

a maximum length tour. For the symmetric problem we
describe an algorithm which produces a tour of length at
least (2/3+(k-3)/3n) times the length of the longest tour.
The time complexity of the algorithm is 0(n4+k) for
1<k<n-2.

For unsymmetric problems the ratio is (1/2+(k-2)/2n)

with the same time complexity.
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A GREEDY ALGORITHM
We first introduce some notation:

For a finite set A we let |A| = the number of elements in
A. TFor a real number x|x]| is the largest integers<x and
[x] is the smallest integer>x.
The union of two disjoint sets A,B will be written A+B
and for s{A A+s denotes A+{s}.
For a set ACE we let 1(A)=}) 1(e)

ecA
A tour T can be viewed as a set of edges as well as a path,
We define a family F of subsets of E as follows: SeF if
and only if there is some tour T such that SCT. The pair
(E,F) forms what is called an independence system. Sets
in F are called independent sets and a maximal independent
set is called a basis.
The travelling salesman problem is then to find a minimum
length basis. A natural approach to this problém is the
greedy method.
(Initialise) S:=Q
(General Step) While S is not maximal S:=S+e* where
1(e*)=min(1l(e):e¢S and S+ecF).
On termination S is the tour output by the algorithm.
The term greedy was coined by Edmonds [6] .in relation to

matroids. Analyses of the greedy algorithm for general
independence systems are given in Korte and Hausmann [13]
and Jenkyns [11].

If a set of edges A is in F then it can be considered to
make a set of node disjoint paths PATHS(A) and p=p(A) will
denote the number of paths. Some paths will consist of
single edges and will be called edge paths. Let the
number of such paths be g=q(A) and let the number of
non-edge paths be r=r(A) where r=p-q. We partition A into
A, ,A, where A, is the set of edges making up the non-edge
paths. Finally let I=I(A) be the set of nodes lying on a
non-edge path but not an end point of it's path.
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We now prove a lemma

Lemma 1

If A,BeF and |B|>2 |A| -p(A) then there exists eeB-A such
that A+ecF.

Proof

Suppose e=(i,j)eB-A and A+et{F then we can deduce that
either (i){i,jlnI#p or (ii)i,j are the end points of some
non-edge patﬁ in PATHS(A).

Since BeF case (i) can occur at most twice with the

same i.Further if ieI and (i,k)sB'\A1 for some k then
case(i) can occur at most once with this i. Case (ii) can
occur at most r times and so if no eeB-A satisfies A+ecF
then

(2) |B-A] < 2|1|+ r - |BnA1|

Now one can see that |A| = |I| + p and so (2) can be
expressed

(3) |B-A| < 2 |A] - q - p - |BrA|

Now |A,| = q and so anAzl < q and so

IB| = |B-A] + |BrAj| + |Bna,|
<2 |Al -q-p+q
=24l -p
and hence the result. s

In the theorem below we let GREEDY denote the length of
some tour found by the algorithm and let OPTIMAL denote
the minimum length of a tour.

Theorem 1

GREEDY < ((25/12)+(1+F10g2((n—8)/2)/log2(5/4f])/5)OPTIMAL
Proof

Suppose that the greedy algorithm selects edges T =
{el,...en} in this order and let Ak={el,...ek}. Next let
el*,...en* be the edges in some optimal tour where
1(e*)<1l(ey,¢*) and define A *={e ;*,...e *}.Define also
d(k)=1(e,) and d*(k)=1(e,*).
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It follows from lemma 1 with A=Ak and B=A*2k+1—p(Ak) and
the definition of the greedy algorithm that

(4) d*(2k+1-p(AL)) > d(k+1)

Since p(Ak) > 1 for k > 0 we can deduce from (4) that
d*(2k) > d(k+1) and as d*(2k+1) > d*(2k) we can combine

these latter inequalities into

(5) d*(3j) > d(|j/2)]+ 1) for j=1,...n.
Summing these inequalities gives
OPTIMAL > d(1) + 2(d(2) + ... + d([n/2])) + £

where £ = 0 if n is odd and f = d(Ln/%]+1) if n is even.
It follows in either case that

(6) OPTIMAL > 2(d(1) + ... +d(|n/2]))

We now have to construct similar inequalities for the
remaining edges of the greedy tour. To do this we define
for m>0 Gm to be the complete graph with nodes N—I(Am) and
edges Em' Edge lengths are defined by restricting 1 to Em.
Let Fm denote the family of subsets of tours of qn. It
follows from the triangular inequality

(1) that the minimum length of a tour in Gm is < OPTIMAL.
Next re-define el*,...es* to be the edges of an optimal
tour T * in G where s =|N—I(Am)|and where 1(e *) <
1(ek+1*3.

Define A&;Em to consist of the edge paths of PATHS(Am)
plus the edges joining the endpoints of its non-edge
paths and let 2 = Km + {e 1.

K m+1,...,ek

The edges e ceeey when added to Am give a tour in Gm

which start?;é from Km could have been produced by the
greedy algorithm.

We now demonstrate a lower bound on the total length of
those edges in Tm* which do not belong to Am.

Let e*i be the t'th shortest edge of Tm* which is not
t

in A, and let d*(t) be re-defined to be 1l(e*; ). For a
t

given kxm define w=w(k)=2|A, |+1-q(A )-p(A, ). Then

with A = Xk and B = {ei *,...ei *} we dedice from (3) that
1 w
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there exists eeB-A such that A+esFm. (A lower bound for
k such that B exists is m+L(n—m—1)/5J as shown in (8)).
The definition of the greedy algorithm then implies

(7) ax(2 |A ] + 1 - adp) - p(A)) > d(k+1)

Putting t=k-m we see that since Am consists of node-
disjoint edges that

(1) pA) > [K ] -t
(11) q(Ap) 2 |§m| - 2t
and as (iii) lAkl = IAmI + t

we see that
2 |Ak| + 1 - q(Ap) - p(Ap) < 5t+1

and hence from (7) and the monotonicity of d* that
(8) d*(5t+1) > d(m+t+1)

and then that

(9) d*(t) > d(m+|(t-1)/5]+1) for 1<t<n-m
Now |Tm*—Am| > ITm*l - IAmI

=n - |I(Am)| - |PATHS(Am)[

=n -m

Thus we can deduce that for n-m>5
(10) OPTIMAL > d* (1) + ... + d*(n-m)
> 5(d(m+1) + ... +d(m+| (n-m)/5]))
and that for 4>n-m>2
(11) OPTIMAL > (n-m)(d(m+1))
and that finally
(12) OPTIMAL > 2d(n)
as no edge can be longer than half the length of any tour
from (1).
We complete the theorem by a partitioning of T and a use
of (6),(10),(11),(12).

We define the following sequence Uy,Ug, .- of positive
integers by u1=Ln/ﬂ and
Wq = U + (n - uk)/ﬂ for k>1
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Now one can show that for n > 9 there exists an integer
t such that u = n-5 (for n<8 we can take t=0 in (13))
n<8 we can take s=0 in (13)). If we partition T into

{eq,...e. 1},{e Y-S B {e yeeo€ 1,
1 uy +1 u, ut+1

Yy Up+1
{en_3,...en} then one can see that the total length of the
edges in the first set is < OPTIMAL/2 and in each of
the next t sets is < OPTIMAL/5 and in the last set is
< (1/4 + 1/3 + 1/2 + 1/2)O0PTIMAL =(19/12) OPTIMAL.
Hence we have
(13) GREEDY < (t/5 + (25/12))OPTIMAL
It remains to get an upper bound for t in terms of n.
If we define real numbers VisVgsees by vy and
(14) Vee1 = Ve Tt (n - vk)/5 - 4/5
then a straightforward induction shows that v,<u, for
k>1. The solution of recurrence relation (14) is
v = (n-4) - (4/5)5 1 (n-4-n/2)
Now v, < n-5>(4/5)*1(n/2 -4) > 1

> k < 1 + log,((n-8)/2)/logy(5/4)
It follows that we can take t=1+r10g2((n-8)/2)/1og2(5/4ﬂ
in (13) and hence the theorem. s
We now describe a sequence of graphs for which the greedy
algorithm could behave badly. We have not been able to
find graphs giving the bound in theorem 1. We have only
been able to make the ratio GREEDY/OPTIMAL grow as
log2n/log210g2n. Further research may close this gap.
Notation
For m>1 and p>3 let G=G(m,p) be the complete graph with
n=pm nodes. Let N denote the set of nodes of G and E
denote its edges.
Let Bk={jeN:J=apk where pfal k=0,1,...m
Assume that elements in Bk have been ordered so that for
k even Bk is ordered by ascending numerical value and for

k odd B, is ordered by descending numerical value.

k
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Next let H2=(il,...,in,il)=(Bo,...Bm,il=1). We will define
edge lengths for G so that Hz is a possible greedy tour
with 1(H2)>nlog2n/3log210g2n and H1=(1,2,...n,1) is a
minimum length tour of length n.

Next define Ek={(i , i ):i_ € B} for o<k<m and
Kk t?Tt+l ﬁ k I
Fk={(i,j)eE:i=ap and j=i+p"} for O<k<m. F,. is defined to

0
be Hl‘
We define next d:E+R the set of real numbers by
d(1,5)=(p-1)* if (i,3)eE UF,  Ock<m

= o otherwise
For a path P in G we define s(P)=min(q:Pn(Eunq)+¢). We
now prove
Lemma 2

Let ieB, ,jeB with k.<k,. If P is a shortest path from
k1 k2 1-72

i to j when d defines edge lengths then s(P)=k1.

Proof

By considering the edge containing i we see that
r=s(P)ik1. If r<k1 let P1 be a sub-path of P whose edges
belong to EruFr and which is not contained in any other

such sub-path. Let xt=atht€Bj for t=1,2 be the endpoints
t

of P1 and assume j1ijz and note that r<jq. It follows that
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a2p32=a1p‘]1+bpr for some integer b and further that

b=cpj1—rfor some integer c.
We next deduce that 1(P1)>|b(1-1/p)(p-1)r|. This is
because it needs at least p-1 edges in ErUFr to go from
a node x to x+pr+lin G and we can use p-1 edges only if
xeB,. Thus 1(P1)>|cpj1—r_1§p—1)r+1|

2le(p-1)71]
But this means we can shorten P by replacing P1 by lcl

edges in F.
Jq | ]
The edge lengths 1(i,j) for our travelling salesman

problem are defined by 1(i,j)=the length of a shortest
path from i to j when edge lengths are defined by d.
An immediate corollary of lemma 2 is that if

(i,3) € EVF, for some k then 1(i,j)=d(i,j).

With this definition of 1 we have 1(H1)=n and

m-1
1(H)=1+ ] "% - p"F ) (p-1)f
k=0

“1e o (1e1/p)KH
k=0

=1+p™ 1 (1-(1-1/p)™) (1-1/p)
We show next that the edges of H2 can be chosen by the
greedy algorithm in the order Em’EO”“Em—l‘
The greedy algorithm can certainly select edges in Em,EO
as they are of length 1. Suppose then that the edges in
E.»Eg» .- .Eg_, have been selected for k>1. One then notes
that if (i,j)tl:Ek and (i,j) can be added to those edges so
far selected without creating subtours or nodes of degree

3 then 1€Bk1,3€Bk2 where kikl,

1(i,j)_>_(p--1)k and so the greedy algorithm could select all

kz.Lemma 2 implies that

the edges in Ek next.

We thus have

Theorem 2

There exists a sequence of graphs Gmwith n=m" nodes such
that for m>3 the ratio GREEDY/OPTIMAL can be worse than

10
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logzn/3log210g2n.

Proof

Let Gm=G(m,m). We have 1(H1)=n and

(15) 1(H,) > nm(1-(1-1/m)™)(1-1/m)

Now (1—1/m)m<1/2 for m>2 and so for m>3 we deduce from
(15) that 1(H2)>nm/3

Now log2n=m10g2m and log210g2n=log2m+10g210g2m>logzm.
Thus logzn/log210g2n<m and hence
1(H2)>(logzn/Blogzlogzn)l(Hl) s
One might expect some improvement if we consider k-greedy
algorithms -see Frieze [7] and Hausmann and Korte [10]
-where one chooses the k best edges to add at each stage.
However we see that for large enough m,H2 in Gm of theorem
2 can be selected by a k-greedy algorithm and so no
improvement can be expected in the worst case.

11
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SAVINGS ALGORITHM
The savings algorithm (for the vehicle scheduling problem)
was described by Clarke and Wright [2]. We will use an
idea of Golden [8] to produce a sequence of graphs for
which the savings algorithm can produce a tour of length
SAVINGS which satisfies
(16) SAVINGS/OPTIMAL > logzn/slogzlogzn
for large enough n where n is the number of nodes.
In the savings algorithm we pick one node,node 0 and for
each edge (i,j)}0 we define the savings s(i,j) by

s(i,j) = 1(0,i) + 1(0,3) - 1(i,3)
The savings algorithm chooses edges not containing O in
decreasing order of savings until a path is produced
which goes exactly once through each node other than
node 0. (The version where the edges chosen have always
to form a path was analysed by Golden [8]). The tour is
completed by joining node 0 to each endpoint.
From Gm of Theorem 2 we produce @m by adding an extra

node 0 and defining 1(0,3’)=(m-1)m_1 for each node j of G .
One can see that for any edge (i,j) of Gm we have
s(i,;j)=2(m-1)m"1 - 1(i,j) and that the triangular
inequality still holds.
One can see that in this graph

OPTIMAL = 2(m-1)""1 + m™ - 1
and that the sav1ngs algorithm could produce the tour
(O,H ,0) where H, is H, minus the edge ((m-l)m— ,m™). In
this case

SAVINGS = (m-1)™"1 + 1(H,)
Inequality (16) then follows as in Theorem 2.

12
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TREE ALTERATION ALGORITHM

The concept of a l-tree was introduced by Held and Karp
[9] and assuming the nodes of G are {1,2,...n} it consists
of a spanning tree on the nodes 2,...n plus two edges
containing node 1.

We now describe a simple method for altering a minimum
length 1-tree which results in a tour of length ALTER
where ALTER<2*OPTIMAL.

So let G be a given complete graph on n nodes with non-
negative edge lengths satisfying (1). A 1-tree T can be
viewed as a spanning tree of G plus one extra edge.
Define a treecycle to be a spanning tree of G plus one
extra edge. Thus a treecycle T contains a unique cycle
C(T). Next let u=(i,j) be an edge such that i is in C(T)
and j is not. Let v=(i,k) where k is a neighbour of i in
C(T) and let w=(j,k). Note that wf{T and T*=T+w-v is a
treecycle and that ueC(T*),

Note also that C(T*) contains one more node than C(T)
and that 1(T*)=1(T)+1(w)-1(v)
<1(T)+1(u) from (1)

13
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Consider then the following tree alteration algorithm:
(a) Find a minimum length 1l-tree Tl'

p:=1.
(b) If Tp is a travelling salesman tour stop, else choose
up=(ip,jp) € Tp where ip is in C(Tp) and jp is not. Let
kp be a neighbour of i_ in Tp and let vp=(ip,kp) and

p
(J kp)

Theorem 3

If ALTER=1(Tp) where Tp is the tour produced by the
algorithm then ALTER<2xOPTIMAL.

Proof

From the discussion preceding the algorithm we have

1(T,)<1(Ty)+ qzll(uq)

Now it is straightforward to show that ul,...up are
distinct edges of T1'C(T1)°
It follows therefore that
(17) ALTERgle(Tl) - l(C(Tl))

<2xOPTIMAL
Now finding a minimum spanning l-tree in a complete graph
has complexity O(nz) if Dijkstra's method [5] is used to
find the tree on 2,...n. The procedure for altering the
treecycle to produce a tour can also be done in O(n )
time and so the complexity of the algorithm is O(n ).
We now describe a graph with n nodes and edge lengths such
that it is possible to have ALTER=(2-3/n) x OPTIMAL.
Let N={1,2,...n} and define edge sets
Sl={(i,n):lsi<n}
S,=1(i,i+2):2¢i<n-3}
S3={(1,2),(3,n—a)} where a=1 if n is odd

=2 if n is even

14
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Then define 1 by
1(i,j)=1 if (i,j)esl+sz+
=2 otherwise

S3

Theorem 4 ‘

Let G=(N,E) be a complete graph on n nodes and let edge
lengths 1 be as defined above. Then using the tree
alteration algorithm we could obtain ALTER=(2-3/n)OPTIMAL.
Proof

The tour lehere

H1=(n,1,2,4,6,...n-a,3,5,7,...n+a—3,n)

is of length n and so is optimal.

Next let T1=Sl+(1,2). Now Tlis a l-tree and 1(T1)=n and
so it is a minimum length l-tree.

We next note that 1(i,i+1)=2 for 2<i<n-2 and so if
H2=(1,2,...n,1) then 1(H2)=2n—3. It remains to show that
H2 could be chosen by the algorithm.

If T ={(i,i+1):1<i<k}+{(n,i):i=1 or k+1<i<n-1} for
1<k<n-2 then Tk is a treecycle with C(Tk)=(1,...k+1,n,1)
and Tk=Tk_1+(k,k+1)-(k,n). Consider (k+1,n)eTk_1. Now
node n is in C(Tk-l) and node k+1 is not. Node k is
adjacent to n in C(Tk-l)’ Thus the algorithm could
produce T1’T2""Tn—2 in this sequence. Now Tn_2=H2 and

the result follows. -

15
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A MODIFICATION OF THE TREE ALTERATION ALGORITHM
We describe in this section a modification of the tree

alteration algorithm which for each k l<k¢n-2 produces a
tour T of length ALTERk which satisfies
(18) ALTERk < (2 - k/n) OPTIMAL

The time complexity of the algorithm is 0(n 3+k

). For
fixed k define

Fk={SgF:p(S)=1 and |S|=k}

The notation used is that for lemma 1. Thus SEFk if the
edges in S form an open path with k edges. We will also
refer to path S.

For SeF, we let I(S)=the set of internal nodes of the
path S.

Next let T* = (ul,...un) be an optimal tour where the

k

edges ul,...un are in 'tour order'. For lftfn define
Se={uy,upeq ”"utG(k-l)} where

tej=t+j if t+j<k

=t+j-k otherwise

Thus S;eF) for 1<tsn.
The proposed algorithm is as follows:
For each SeFk do (a),(b) below:
(2) Find a minimum length spanning tree TREE(S) in the
graph G(S) which is the complete graph with node set
N-I(S) minus the edge e(8)=(i(8),j(S)) where i(8),j(8)
are the endpoints of S.
(b) The graph TREE(S)+S is a treecycle TC(S). Using the
technique described in the previous section transform
TC(S) into a tour T(S).
Next define Tk by

1(Tk)—m1n(1(T(S)) SeFk)
The time complexity of the algorithm is < O(n ) because
le|=(n!/(n-k—1)!)/2 for k<n-1.
Theorem 5
If ALTERk=1(Tk) then (18) holds.

16
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Proof

We note first that

ALTERk < min(l(T(Sj)):lijfn)

Now 1(TC(Sj)) = l(TREE(Sj) + 1(S
< OPTIMAL

as T*—Sj is a spanning tree of G(Sj).

3)

Thus from (17) we have

l(T(SJ)) < 21(TC(Sj)) - l(C(TC(Sj)))

< 2 OPTIMAL - 1(Sj)

as Sj C C(TC(SJ)).
Now as 1(Sl)+...+1(Sn)=k X OPTIMAL there exists t such
that
l(St) > (k/n)OPTIMAL. Thus

ALTERk < 1(T(St))

< 2 OPTIMAL - (k/n)OPTIMAL

MAXIMUM LENGTH TOURS

We finally consider the problem of finding a maximum
length tour. We assume 1(e)>0 as before but the triang-
ular inequality (1) is no longer needed.

Let T* be a maximum length tour and for 1<k<n-2 let Fk
and Sl"'°sn be as defined in the previous section.

We consider first the symmetric case:

Algorithm k

For each SeFk do (a),(b),(c):

(a) Find a maximum length degree constrained subgraph D(S)
of G(S). The degree constraints are: degree i(S),j(S)=1,
and the degree of any other node=2.

(b) D(S) consists of a set of node disjoint cycles plus a
path from i(S) to j(S).

Create the set of edges Dl(S) by removing the shortest
edge from each cycle of D(S).

(c) Let f be the shortest edge of S.Let DZ(S)=D1(S)+(S—f).
Now D2(S)9F and can be extended to a tour T(S) in any
reasonable manner

17
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Let DEGREEk=1(Tk)=max(1(T(S)):SeFk)

This algorithm is a modification of an algorithm described
in Fisher, Nemhauser and Wolsey [13].

Note that D(S) can be found in 0(n3) time using the
matching algorithm described in Lawler [14].

Theorem 6
(19) DEGREE, > (2/3 + k/3n - 1/n)OPTIMAL
Proof
DEGREEKZmax(l(T(Sj)):j=1,...n).
Fix j and note that
(20) 1(T(Sj)) 2 1(D1(Sj) + (1—1/k)1(Sj)
Each cycle in D(Sj) has at least 3 edges and so
(21 1(D4(84)) 2 (2/3)1(D(84))
We also have
(22) 1(D(Sj)) > OPTIMAL - l(Sj)
as T*-Sj satisfies the degree constraints in (a).
From (20),(21),(22) we get
1(T(Sj)) > (2/3)OPTIMAL +(1/3 - 1/k)1(Sj)

Choosing j so that 1(Sj)2(k/n)OPTIMAL gives (19). -

The unsymmetric case is similar except that G is now a
digraph. The matching problem in (1) is replaced by an
assignment problem with variables x(i,j) for i,jeN-I(S).
Assuming S is directed from i(S) to j(S) we impose
x(1(8),j(S))=1. Cycles can now have 2 edges and so if
ASSIGNk is the length of the tour produced

ASSIGN, > (1/2 + k/2n - 1/n)OPTIMAL

18
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