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Abstract

There is much current interest in the evolution of social networks, in particular, the Web
graph, through time. “Preferential attachment” and the “copying model” are well-known models
which explain the observed power-law degree distribution of the Web graph reasonably well.
However, existing evolution models do not include the significant influence of search engines on
how Web page authors find existing pages and create links to them. Recent applied work has
raised the concern that highly popular search engines limit the attention of authors to a small
set of “celebrity” URLs, for any query. Page authors frequently (with probability p) locate pages
using a search engine. Then they link to popular pages among those they visit. We initiate an
analysis of this more realistic process, and show that the celebrity nodes eventually accumulate
a constant fraction of all links created whp, and that the degrees of the other nodes still follow
a power-law distribution, but with a steeper power: Pr(degree = k) ∝ k−(1+2/(1−p)) whp. Our
analysis adds evidence to the recent concern that search engines offer new Web pages a steep,
self-sustaining barrier to entry to well-connected, entrenched Web communities.

1 Introduction

The evolution of the Web graph through time has been subject to intense modeling, measurements,
and analysis in recent years. Early measurements on the graph of Web pages (nodes) and hyperlinks
(edges) showed that degrees of nodes were distributed according to a power law. Barabási and
Albert [2] were among the first to propose a generative model of the Web, called preferential

attachment, which leads to a power-law distribution Pr(degree = k) ∝ k−3, i.e., a power of 3.
Introducing random links some fraction of the time allowed Pennock et al [14] to bring the power
closer to empirically observed data (2.1 for in-degree and 2.38 for out-degree).

Preferential attachment explains a power-law degree distribution but not the presence of a large
number of bipartite cliques in the Web graph. Kleinberg et al. [11] were the first to propose a
copying model in which the author of a newborn page u picks a random reference page v from
the Web, and with some probability, copies out-links from v to u. Kumar et al. [12] analyzed the
copying process to show that it, too, leads to a power law degree distribution with a power of
approximately 2, which is closer to empirical observation. The copying model naturally explains
the presence of bipartite cliques.

Both the preferential attachment and the copying model assume organic evolution of the Web
graph, without any powerful central entity influencing a large number of Web page authors with
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regard to how they link to existing pages. This is precisely the role that search engines like Google
or Yahoo! fulfill. Web page authors learn about a topic by launching queries to a search engine.
The search engine responds with a limited number (10–20) of hits per page, and users rarely foray
beyond the first 1–2 pages of hits [4].

With Web search proliferating to over five billion searches per month1 as of February 2006, many
Web page authors presumably create links to pages that they found by using a search engine. In
other words, with some probability every link in the Web graph owes its existence to a search engine,
and therefore, the evolution of the Web graph has been influenced permanently and pervasively by
the existence of search engines.

In their early days, search engines merely observed and exploited the Web graph (specifically, links
to a page) for ranking. Now, they are unquestionably influencing the evolution of Web graph as
well. Most search engines today pay attention to in-degree and Pagerank [3] while ranking results.
This can potentially set up a “virtuous circle of limelight”: a search engine ranks a page highly,
authors find the page more often, some of them link to it, raising its in-degree and Pagerank, which
leads to a further improvement or entrenchment of its rank.

The virtuous circle can be brutal to new pages and sites: Cho and Roy [4] estimate that the time
taken for a page to reach prominence can be delayed by a factor of over 60 if a search engine
diverts clicks to entrenched pages. In a theoretical setting, Drinea et al. [6] analyze a balls-and-
bins process with a related feedback mechanism, and show that positive feedback leads to a rapid
landslide victory for the winning bin. Pandey et al. [13] confirms that introducing some randomness
in the ranking function creates a better exploration-exploitation trade-off, avoiding the worst effects
of the virtuous circle.

Having some empirical understanding of the effect of search engines on the evolution of page
popularity for search applications, we are interested in directly modeling the evolution of the Web
graph under the influence of a search engine.

1.1 Our model

We wish to model how the Web graph evolves if authors use search engines to decide on links that
they insert in new pages. In particular, we are interested in the degree distribution, and whether
and how this distribution deviates from the power-law form derived in earlier work.

For simplicity, like Barabási et al., we model the Web graph as undirected. Following Cho and Roy,
we also make the simplifying assumption that the query to the search engine is fixed and the search
engine, like a bestseller list, returns some fixed number of response URLs (nodes in the Web graph),
ordered according to their degree at the end of the previous time-step. We can also interpret such
a list as a per-topic listing provided by a directory like Yahoo! or DMoz, and limit our analysis to
one topic at a time, without loss of generality.

The growth process we seek to analyze generates a sequence of (multi)-graphs Gt, t = 1, 2, . . . . The
graph Gt = (Vt, Et) has t vertices and mt edges. The process has only two important parameters
p (a probability) and N (the maximum number of “celebrity” nodes listed by the search engine).

We introduce some notation:

1http://www.nielsen-netratings.com/pr/PR_033006_UK.pdf

2



degt(x) denotes the degree of vertex x in Gt

Dt(U) is
∑

x∈U degt(x)

St denotes the set of at most N vertices with the largest degrees in Gt. (If t < N we let St = Vt.)

zt is the smallest degree of vertices in St

Zt is the largest degree of vertices in Vt \ St

dk(t) denotes the number of vertices of degree k at time t in the set Vt − St.

dk(t) is defined as E [dk(t)], the expectation being over the random hyperlinking choices made by
nodes (described next)

We use process P to generate the graph sequence Gt = (Vt, Et), for t = 1, 2, . . . , n:

Formal Definition of Process P

Time step 1: The process is initialized with graph G1 which consists of an
isolated vertex x1 and m loops.
Time step t > 1: We add a vertex xt to Gt−1. We then add m random edges
(xt, yi), i = 1, 2, . . . , m incident with xt, where yi are nodes in Gt−1. For each
i:

⋄ With probability p we choose yi ∈ St−1.

⋄⋄ With probability q = 1 − p we choose yi ∈ Vt−1.

In both cases yi is selected by preferential attachment within the target subset of old nodes, i.e.
for x ∈ U

Pr(yi = x) =
degt−1(x)

Dt−1(U)
,

where U = St−1 or U = Vt−1 as the case may be.

As Figure 1 shows, the simulated behavior of our proposed process is quite different from standard
preferential attachment. With increasing p, the celebrities swing out far from the power-law straight
line in log-log plots. Also, as p increases, the power (negative slope) increases as well: at p = 0 it
is 2.8, at p = 0.3 it is 3.96, and at p = 0.6 it is 5.9.

Furthermore, as Figure 2(a) shows, the total degree (as a fraction of twice the total number of edges
added) over the celebrities goes to zero as n → ∞ for preferential attachment, but in a simulation of
our proposed model, the celebrities command a constant fraction of the total degree over all nodes,
and this fraction grows with p. In Figure 2(b) we plot the cumulative number of nodes leaving or
entering the celebrity list from each timestep to the next. We see that as p increases, the celebrity
list is determined more and more quickly.

1.2 Our results

We will prove the following, where all asymptotic notation is with respect to n, the number of steps
for which the process P is run (which is the same as the number of nodes).
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Figure 1: The presence of a search engine in our model makes the power in the degree power
law more negative, and, with increasing p, separates out the celebrities from the non-celebrities
(N = 100, |V | = 10000, and m = 5).

Theorem 1. Let m ≥ max{15, 2/q} and 0 < p < 1.

(a) Let Sn = {s1, . . . , sN} in decreasing order of degree. Then E [degn(si)] ∼ αin for every i ≤ N ,

for some constant αi > 0. I.e., each celebrity commands a constant fraction of all edges ever

generated in the graph.

(b) There is an absolute constant A1 such that for every k ≥ m,

dk(n) =
2n

2 + mq

k
∏

i=m+1

i − 1

i + 2/q
+ Õ(nq/2)

=
A1n

k1+2/q
+ Õ(n/k2+2/q + nq/2).

The theorem and its proof confirms all the features we see in the simulations: celebrities capture
a large fraction of links, the celebrity list gets fixed quickly, and non-celebrities follow a power-law
degree distribution with a power steeper than in preferential attachment.

The proof depends on showing that after time t0, the first time there is a considerable degree gap
between the celebrity list and the non-celebrities the probability of having a non-celebrity move to
the celebrity list is very small. So in practice the celebrity list becomes fixed. Once the celebrity
list is fixed, our process P looks very similar to an analogous process P∗ where in each step St is
replaced by S∗

t = S∗ = {x∗
1, . . . , x

∗
N} in decreasing order of degree (if t < N take S∗

t = Vt). In other
words, in process P∗ we take the N oldest vertices as S∗

t , instead of the N largest-degree vertices.

Let Gt be the sequence of graphs produced by process P and G∗
t be the sequence of graphs produced

by process P∗. In Section 2 we construct a coupling for t = 1, 2, . . . between the sequence of graphs
Gt and the sequence of graphs G∗

t .

In Section 3 we compute E [degn(s)] for s ∈ Sn and E [dk(n)], conditioning on t0 and Gt0 . In
Section 4 we get bounds for the probability of having a small gap between celebrities and non-
celebrities. Finally, in Section 5 we give the proof of Theorem 1.
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Figure 2: (a) The total degree of the celebrities as a fraction of (twice) the number of edges
added to the graph differs significantly in behavior between preferential attachment vs. our model.
(b) The celebrity list becomes effectively fixed very early on in the graph evolution process and the
cumulative number of celebrity shuffles levels out faster with large p.

2 Coupling Gt and G
∗
t

Let zt be the degree of the lowest degree vertex in St and Zt the degree of the highest degree vertex
in Vt \ St. We are going to prove that after a short time whp there is a significant gap between zt

and Zt and then from this time on St remains fixed. In this sense the graph Gt is very similar to the
graph G∗

t = (V ∗
t , E∗

t ), constructed by process P∗, where the top N is fixed from the beginning (the
top is fixed by age not by degree). We define z∗t and Z∗

t in G∗
t in an analogous way to zt and Zt.

Lemma 1. We can couple P and P∗ in such a way that for all t > 0,

D∗
t (St) ≤ D(St), z∗t ≤ zt and Z∗

t ≥ Zt.

Proof To couple processes P and P∗, we first define P ′, a small modification of process P. If
after time step t vertex v ∈ V ′

t \ S′
t has degree larger than the degree of u (the minimum-degree

vertex in S′
t), then, instead of moving v into S′

t and u out of S′
t, we change the endpoint of some

of the last edges inserted incident to v to make them incident to u (leaving the other end fixed),
in order to swap the degree of v and u. In this way the degree sequence in maintained, and S′

t

remains fixed as the N oldest vertices (i.e. S′
t = S∗

t ). The graph generated by P ′ has a different
edge structure to Gt, but it has the same degree sequence, thus

D′
t(S

′
t) = D(St), z′t = zt and Z ′

t = Zt. (1)

Now let P ′′ be the process where after each step we proceed almost the same way as in P ′, except
that in P ′ if some k endpoints are changed (from a vertex outside S′

t to a vertex in S′
t), in P ′′ we

don’t make these changes, but instead we move the endpoints of k random edges chosen uniformly
from the last inserted edges incident to Vt \ S′′

t , to k random positions chosen by preferential
attachment in S′′

t = S′
t = S∗

t .

We can think of every edge inserted as two directed edges, and then choosing by preferential
attachment is equivalent to choosing a random edge uniformly and then choosing its destination
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vertex. This permits us to couple process P ′ and P ′′ in such way that

D′′
t (S′′

t ) = D′(S′
t), z′′t ≤ z′t and Z ′′

t = Z ′
t. (2)

Notice that process P ′′ looks like process P∗ except that the probability of applying step ⋄∗ is
greater than p (and depends on Gt). So we can couple P∗ and P ′′ in such way that

D∗
t (St) ≤ D′′(S′′

t ), z∗t ≤ z′′t and Z∗
t ≥ Z ′′

t . (3)

Putting equations (1), (2) and (3) together we get that we can couple P and P∗ such that

D∗
t (St) ≤ D(St), z∗t ≤ zt and Z∗

t ≥ Zt. (4)

2

3 Analysis of the degree distribution of G
∗
t

Given a time t > 0, let Gt be the set of graphs with vertex set {x1, . . . , xt} and mt edges. Notice
that Gt, G

∗
t ∈ Gt. In this section we analyze the behavior of G∗

t when process P∗ is initialized at
time t with some graph G ∈ Gt, i.e., when conditioning on G∗

t = G. In Lemma 2 we prove that
d∗k(n) follows a power law, while in Lemma 3 we prove that the expected deg∗n(x∗

i ) grows linearly
with time for nodes x∗

i with i ≤ N .

Lemma 2. Fix a time t0 ≥ N and let G ∈ Gt0 . Then, at a later time n ≥ t0, for all k ≥ m

E
[

d∗k(n) | G∗
t0 = G

]

=
2n

2 + mq

k
∏

i=m+1

i − 1

i + 2/q
+ Õ(t0 + nq/2)

=
A1n

k1+2/q
+ Õ(t0 + nq/2 + n/k2+2/q).

Proof Our approach to proving a power law is to find a recurrence for E
[

d∗k(n) | G∗
t0 = G

]

.

Notice that E
[

d∗m−1(τ) | G∗
t0 = G

]

= 0 for all τ > 0. Then for τ ≥ t0, k ≥ m,

E
[

d∗k(τ + 1) | G∗
τ , G

∗
t0

]

= d∗k(τ) + qm

(

(k − 1)d∗k−1(τ)

2mτ
−

kd∗k(τ)

2mτ

)

+ 1k=m + O(Z∗
τ τ−1) (5)

= d∗k(τ) + q
(k − 1)d∗k−1(τ) − kd∗k(τ)

2τ
+ 1k=m + O(Z∗

τ τ−1).

Explanation of (5): qm is the expected number of edges involving non-celebrities. The expression
following qm is the probability that an additional edge convertes a vertex of degree k − 1 to one
of degree k less the probability that it converts a vertex of degree k into one of degree k + 1. The
O(Z∗

τ τ−1) term accounts for the addition of parallel edges.

Taking expectations w.r.t. G∗
τ , we get

E
[

d∗k(τ + 1) | G∗
t0 = G

]

= E
[

d∗k(τ) | G∗
t0 = G

]

+ q
(k − 1)E

[

d∗k−1(τ) | G∗
t0 = G

]

− kE
[

d∗k(τ) | G∗
t0 = G

]

2τ
+ 1k=m + O(E

[

Z∗
τ | G∗

t0 = G
]

τ−1). (6)
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We consider the exact recurrence, fm−1 = 0 and for k ≥ 0,

fk = 1k=m + q
(k − 1)fk−1 − kfk

2
(7)

yielding

fm =
2

2 + mq

and

fk =
2

2 + mq

k
∏

i=m+1

i − 1

i + 2/q

=
2

2 + mq
exp

(

k
∑

i=m+1

ln

(

i − 1

i + 2/q

)

)

=
2e−g(m,k)

2 + mq

(

m + 1 + 2/q

k + 2/q

)1+2/q

=
2e−g(m)(m + 1 + 2/q)1+2/q

2 + mq

eO(1/k)

k1+2/q

where

g(m, k) =

(

k
∑

i=m+1

1 + 2/q

i + 2/q
−

∫ k

x=m+1

1 + 2/q

x + 2/q
dx

)

+
k
∑

i=m+1

∞
∑

l=2

1

l

(

1 + 2/q

i + 2/q

)l

= gm + O(k−1)

where gm = limk→∞ g(m, k).

We finish the proof of the lemma by showing that there exists a constant M > 0 such that

|E
[

d∗k(τ) | G∗
t0 = G

]

− fkτ | ≤ M(t0 + τ q/2(ln τ)3) (8)

for all τ > 0.

Let
Θk(τ) = E

[

d∗k(τ) | G∗
t0 = G

]

− fkτ.

Lemma 8 (proved later) implies that E
[

Z∗
τ | G∗

t0 = G
]

≤ O
(

τ q/2(ln τ)3
)

. So after taking expecta-
tions over G∗

τ in (5) and substituting E
[

d∗k(τ) | G∗
t0 = G

]

= Θk(τ)+ fkτ we see that for k ≥ m and
τ ≥ t0,

fk(τ + 1) + Θk(τ + 1) =

fkτ + Θk(τ) + q
(k − 1)(Θk−1(τ) + fk−1τ) − k(Θk(τ) + fkτ)

2τ
+ 1k=m + O(τ q/2−1(ln τ)3).

Using (7) to eliminate the fk’s we obtain

Θk(τ + 1) =

(

1 −
qk

2τ

)

Θk(τ) +
q(k − 1)

2τ
Θk−1(τ) + O(τ q/2−1(ln τ)3). (9)
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Let L denote the hidden constant in O(τ q/2−1(ln τ)3) of (9). Our inductive hypothesis Hτ is that
|Θk(τ)| ≤ M(t0 +τ q/2(ln τ)3) for every k ≥ m. It is trivially true for τ ≤ t0. So assume that τ ≥ t0.
Then, from (9),

|Θk(τ + 1)| ≤ M(t0 + τ q/2(ln τ)3) + Lτ q/2−1(ln τ)3

≤ M(t0 + (τ + 1)q/2(ln τ)3)

provided M ≥ 2L. This verifies Hτ+1 and completes the proof by induction. 2

Lemma 3. Fix a time t0 ≥ N and G ∈ Gt0. Then, at a later time n ≥ t0, for all i ≤ N ,

E
[

deg∗n(x∗
i ) | G∗

t0 = G
]

= n
degG(x∗

i )

t0
+ Õ

(

(n/t0)
5/6
)

+ O
(

t
3/2
0

)

.

Proof Notice that from Lemma 5 (below), if τ > t0,

∣

∣

∣

∣

E
[

D∗
τ (S

∗
τ )|G∗

t0 = G
]

−
2mp

1 + p
τ

∣

∣

∣

∣

> 2eq/2τ5/6 ⇒

∣

∣

∣

∣

D(S∗(G)) −
2mp

1 + p
t0

∣

∣

∣

∣

> 2τ (5−3q)/6t
q/2
0

⇒ 2mt0 > 2τ (5−3q)/6t
q/2
0

⇒ m3t
3/2
0 > τ, (10)

where we used D(S∗
G) ≤ 2mt0.

Now, let A∗
τ be the event

∣

∣

∣

∣

D∗
τ (S

∗
τ ) −

2mp

1 + p
τ

∣

∣

∣

∣

< 4eτ5/6.

Then

Pr
[

¬A∗
τ |G

∗
t0 = G

]

≤ Pr

[

|D∗
τ (S

∗
τ ) − E

[

D∗
τ (S

∗
τ )|G∗

t0 = G
]

| ≥ 2eτ5/6

∣

∣

∣

∣

G∗
t0 = G

]

+ 1˛

˛

˛
E

h

D∗
τ (S∗

τ )|G∗
t0

=G
i

− 2mp
1+p

τ
˛

˛

˛
>2eτ5/6

≤ 2e−p(ln τ)2/8m3
+ 1

m3t
3/2
0 >τ

(11)

where the last line follows from Lemma 6 (below) and (10).

If τ ≥ N , then

E
[

deg∗τ+1(x
∗
i )|G

∗
τ , G

∗
t0 = G

]

= deg∗τ (x
∗
i ) + mq

deg∗τ (x
∗
i )

2mτ
+ mp

deg∗τ (x
∗
i )

D∗
τ (S

∗
τ )

.

Taking expectations w.r.t. G∗
τ , in the conditional space G∗

t0 = G, we get for every τ ≥ t0

E
[

deg∗τ+1(x
∗
i ) | G∗

t0 = G
]

= E
[

deg∗τ (x∗
i ) | G∗

t0 = G
]

(

1 +
q

2τ

)

+ mpE

[

deg∗τ (x
∗
i )

D∗
τ (S

∗
τ )

∣

∣

∣

∣

G∗
t0 = G

]

.
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But,

E

[

deg∗τ (x
∗
i )

D∗
τ (S

∗
τ )

∣

∣

∣

∣

G∗
t0 = G

]

= E

[

deg∗τ (x
∗
i )

D∗
τ (S

∗
τ )

∣

∣

∣

∣

A∗
τ , G

∗
t0 = G

]

Pr(A∗
τ | G∗

t0 = G)

+ E

[

deg∗τ (x∗
i )

D∗
τ (S

∗
τ )

∣

∣

∣

∣

¬A∗
τ , G∗

t0 = G

]

Pr(¬A∗
τ | G∗

t0 = G)

= E
[

deg∗τ (x
∗
i ) | A

∗
τ , G

∗
t0 = G

]

(

1 + p

2mpτ
+ Õ

(

τ−7/6
)

)

Pr(A∗
τ | G∗

t0 = G)

+ O
(

Pr(¬A∗
τ | G∗

t0 = G)
)

= E
[

deg∗τ (x
∗
i ) | G∗

t0 = G
]

(

1 + p

2mpτ

)

+ Õ
(

τ−1/6
)

+ O
(

Pr(¬A∗
τ | G∗

t0 = G)
)

= E
[

deg∗τ (x
∗
i ) | G∗

t0 = G
]

(

1 + p

2mpτ

)

+ Õ
(

τ−1/6
)

+ O
(

1
m3t

3/2
0 >τ

)

,

where we used the fact deg∗τ (x
∗
i ) ≤ D∗

τ (S
∗
τ ) ≤ 2mτ and (11). Therefore

E
[

deg∗τ+1(x
∗
i ) | G∗

t0 = G
]

= E
[

deg∗τ (x
∗
i ) | G∗

t0 = G
]

(

1 +
1

τ

)

+ Õ
(

τ−1/6
)

+ O
(

1
m3t

3/2
0 >τ

)

,

and by induction, for every n > t0,

E
[

deg∗n(x∗
i ) | G∗

t0 = G
]

= n
degG(x∗

i )

t0
+ Õ

(

(n/t0)
5/6
)

+ O
(

t
3/2
0

)

2

Now we prove

Lemma 4. There exists D ≥ 0 such that the sequence

degt(si)

t
−

D

t1/6
, (12)

t ≥ N is a sub-martingale.

Proof Proceeding as in Lemma 3, let Aτ be the event

∣

∣

∣

∣

Dτ (Sτ ) −
2mp

1 + p
τ

∣

∣

∣

∣

< 4eτ5/6.

Then, if τ ≥ m3t
3/2
0 ,

E
[

degτ+1(si) | Gτ

]

≥ degτ (si) + mq
degτ (si)

2mτ
+ mp

degτ (si)

Dτ (Sτ )
.

Taking expectations w.r.t. Gτ we obtain

E
[

degτ+1(si)
]

≥ E [degτ (si)]
(

1 +
q

2τ

)

+ mpE

[

degτ (si)

Dτ (Sτ )

]

. (13)
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But,

E

[

degτ (si)

Dτ (Sτ )

]

≥ E

[

degτ (si)

Dτ (Sτ )

∣

∣

∣

∣

Aτ

]

Pr [Aτ ]

≥
1 + p

2mpτ

(

1 −
2e(1 + p)

mpτ1/6

)

E [degτ (si) | Aτ ]Pr(Aτ )

≥
1 + p

2mpτ

(

1 −
2e(1 + p)

mpτ1/6

)

(E [degτ (si)] − 2mτPr(¬Aτ ))

≥ E [degτ (si)]

(

1 + p

2mpτ

)

−
2e(1 + p)2

mp2τ1/6
−

2

p
e−

p(ln τ)2

8m3 ,

where we used degτ (si) ≤ Dτ (Sτ ) ≤ 2mτ and Lemma 6 together with Lemma 1.

Substituting into (13) we see that there is a constant D′ = D′(m, p) ≥ 0 such that for every τ ≥ 1,

E

[

degτ+1(si)

τ + 1

]

≥ E

[

degτ (si)

τ

]

−
D′

τ7/6
.

(We may have to adjust the value of D′ to account for small τ < m3t
3/2
0 ).

This implies that

E

[

degτ+1(si)

τ + 1

]

−
D′

12(τ + 1)1/6
≥ E

[

degτ (si)

τ

]

−
D′

12τ1/6
.

2

4 The celebrity list gets fixed

We first show that the total degree of celebrities, D∗
t (S

∗), is concentrated whp, and is, in expec-
tation, a constant fraction of all edges ever added to the graph, as evident from simulation results
shown in Figure 2. Then we show that z∗t and Z∗

t are also concentrated whp. These results lead
us to bounds on the probability of having a small gap between celebrities and non-celebrities.

Lemma 5. Fix t0 ≥ N and G ∈ Gt0 . Let t ≥ t0, then

∣

∣

∣

∣

E [D∗
t (S

∗)|Gt0 = G] −
2mp

1 + p
t

∣

∣

∣

∣

≤

∣

∣

∣

∣

D(S∗(G)) −
2mp

1 + p
t0

∣

∣

∣

∣

(

te

t0

)q/2

.

Proof Let τ ≥ N then

E
[

D∗
τ+1(S

∗)|D∗
τ (S

∗)
]

= D∗
τ (S

∗) + mp + qm
D∗

τ (S
∗)

2mτ
= mp + D∗

τ (S
∗)
(

1 +
q

2τ

)

.

Thus,
∣

∣

∣

∣

E
[

D∗
τ+1(S

∗)|D∗
τ (S

∗)
]

−
2mp

1 + p
(τ + 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

D∗
τ (S

∗) −
2mp

1 + p
τ

∣

∣

∣

∣

(

1 +
q

2τ

)

It follows that
∣

∣

∣

∣

E [D∗
t (S

∗)|Gt0 = G] −
2mp

1 + p
t

∣

∣

∣

∣

≤

∣

∣

∣

∣

D(S∗(G)) −
2mp

1 + p
t0

∣

∣

∣

∣

exp

{

t−1
∑

τ=t0

q

2τ

}

and we observe that
∑t−1

τ=t0
1/τ ≤ 1 + ln(t/t0). 2
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Lemma 6. Fix t0 ≥ N and G ∈ Gt0 . Let B denote the event G∗
t0 = G. For t ≥ t0 and λ > 0,

Pr
[

|D∗
t (S

∗) − E [D∗
t (S

∗) | B] | ≥ λt1/2 ln t | B
]

≤ 2e−λ2p(ln t)2/8m3
.

Proof We condition on B and omit this explicit conditioning in our expressions. Enumerate
the edges e1, e2, . . . , emt in the order they appear. For i > t0m let Yi be the 0, 1 random variable
taking value 1 if and only if ei is incident to S∗. Then

D∗
t (S

∗) = D(S∗) +
mt
∑

i=mt0+1

Yi.

Pr
[

Yi = 0 | D∗
⌊i/m⌋

(S∗)
]

= q



1 −
D∗
⌊i/m⌋

(S∗)

2m⌊i/m⌋



 .

We apply Azuma’s inequality (see Alon and Spencer [1]) to show the concentration of D∗
t (S

∗).
Given t0m < i ≤ tm, fix y1, . . . , yi−1 ∈ {0, 1} and let

∆τ (i) = E [D∗
τ (S

∗)|Y1 = y1, . . . , Yi−1 = yi−1, Yi = 0] − E [D∗
τ (S

∗)|Y1 = y1, . . . , Yi−1 = yi−1, Yi = 1] ,

for τ = ⌈i/m⌉, . . . , t.

Notice that

∆τ+1(i) = ∆τ (i) + q
m∆τ (i)

2mτ
and ∆⌈i/m⌉(i) ≤ m,

So

∆τ (i) ≤ m

τ−1
∏

j=⌈i/m⌉

(

1 +
q

2j

)

≤ 2m
(mτ

i

)q/2
.

Clearly ∆τ (I) ≥ 0 and therefore,

mt
∑

i=t0m+1

∆t(i)
2 ≤ 4m2

mt
∑

i=t0m+1

(

mt

i

)q

≤ 4m2(mt)q

∫ mt

mt0

x−qdx ≤ 4m3t/p,

and the Lemma follows. 2

Lemma 7. If i ≤ N and 0 < A ≪ t then

Pr [deg∗t (x
∗
i ) < A] ≤ C

(

A

t

)m

,

where C := C(p, m, N) is a constant.

Proof We couple our graph process with an urn process: We start the process at time t = N
with r = deg∗N (x∗

i ) red balls and b = 2Nm − r blue balls. Each time we add an edge to the graph

11



that is incident to S∗ we add a ball to the urn. If the edge is incident to x∗
i , the ball is red otherwise

it is blue. Then Rt the number of red balls in the urn by time t is equal to deg∗t (x
∗
i ), while the

total number of balls in the urns is D∗
t (S

∗).

Note that preferential attachment is equivalent to choosing an edge e at random and then choosing
a random end point from e, therefore this urn process follows a Polya urn process: In time t given
that we add a ball, the probability of adding a red ball is Rt/Tt, where Tt is the total number of
balls in the urns. We imagine our urn process isolated from the graph process and call adding a
ball “a step” of the process. We use s = 1, 2, . . . , D∗

t (S
∗) − 2Nm to index the steps of the urn

process.

Now, for any 0 ≤ k ≤ s

Pr [Rs = r + k] =

(

s

k

)

r(r + 1) · · · (r + k − 1)b(b + 1) · · · (b + s − k − 1)

(r + b)(r + b + 1) · · · (r + b + s − 1)

=
(r + b − 1)!

(s + r)(r − 1)!(b − 1)!

r−1
∏

i=1

k + i

s + i

r+k
∏

i=1

(

1 −
b − 1

b + s − k + i − 1

)

≤
(r + b − 1)!

(s + r)(r − 1)!(b − 1)!

(

k + r − 1

s + r − 1

)r−1(

1 −
b − 1

b + s + r − 1

)r+k

And therefore if A > 0

Pr [Rs ≤ A] ≤
(r + b − 1)!

(s + r)(r − 1)!(b − 1)!

A−r
∑

k=0

(

k + r − 1

s + r − 1

)r−1

≤
(r + b − 1)!

(r − 1)!(b − 1)!

∫ A/s

0
xr−1dx

≤
2r+bAr

rsr

Recalling that r ≥ m and r + b = 2Nm and deg∗t (x
∗
i ) = RD∗

t (S∗)−2Nm we get, using Lemma 6 with
t0 = N ,

Pr [deg∗t (x
∗
i ) ≤ A] ≤ Pr

[

deg∗t (x
∗
i ) ≤ A

∣

∣

∣

∣

D∗
t (S

∗) ≥
2pm

1 + p
t − t1/2 ln t

]

+ Pr

[

D∗
t (S

∗) <
2pm

1 + p
t − t1/2 ln t

]

≤ Pr

[

Rs ≤ A

∣

∣

∣

∣

s ≥
2pm

1 + p
t − t1/2 ln t − 2Nm

]

+ e−p(ln t)2/8m3

≤
22NmAr

r
(

2pm
1+p t − t1/2 ln t − 2Nm

)r + e−p(ln t)2/8m3

≤ C

(

A

t

)r

≤ C

(

A

t

)m

.

2
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Lemma 8. Let s > N and let t ≥ s.

Pr
[

deg∗t (x
∗
s) ≥ (t/s)q/2(ln t)3

]

≤ exp

(

m −
(ln t)2

4

)

Proof Fix s > N and let Xτ = deg∗τ (x
∗
s) for τ = s, s + 1, . . . , t.

Then conditional on Xτ = x, we have

Xτ+1 = x + Binomial
(

m,
qx

2mτ

)

(14)

and so

E
[

eλXτ+1 | Xτ = x
]

= eλx
(

1 −
qx

2mτ
+

qx

2mτ
eλ
)m

≤ eλx exp
(qx

2τ
(eλ − 1)

)

≤ exp

(

λx

(

1 + q
(1 + λ)

2τ

))

,

for any λ ≤ 1.

Thus

E
[

eλXτ+1

]

≤ E

[

exp

(

Xτλ

(

1 +
q(1 + λ)

2τ

))]

. (15)

If we put λτ−1 = λτ

(

1 + q(1+λτ )
2τ

)

and take λt = λ small enough such that

λτ ≤ Λ = min

{

1,
1

ln(t/s)

}

for τ = s, . . . , t, (16)

then (15) implies

E
[

eλτ+1Xτ+1

]

≤ E
[

eλτXτ

]

for τ = s + 1, . . . , t − 1.

Hence,

E
[

eλXt

]

= E
[

eλtXt

]

≤ E
[

eλsXs

]

= emλs .

We can write

λτ−1 ≤ λτ

(

1 +
(1 + Λ)q

2τ

)

,

then

λs ≤ λ
t
∏

τ=s

(

1 +
(1 + Λ)q

2τ

)

≤ 2λ(t/s)(1+Λ)q/2,

the 2 bounds eγ+1/2t where γ is Euler’s constant,

≤ 2eq/2λ(t/s)q/2
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and therefore we can take λ = Λ
2eq/2 (s/t)q/2 and get (16).

Putting u = (t/s)q/2(ln t)3 we get

Pr(Xt ≥ u) ≤ emλs−λu

≤ exp

(

Λm −
Λ(ln t)3

4

)

≤ exp

(

m −
(ln t)2

4

)

.

2

Lemma 9. If 0 < A ≪ t then,

Pr [zt − Zt ≤ A] ≤ C

(

A

t

)m

,

where C := C(p, m, N) is a constant.

Proof Let C ′ be the constant from Lemma 7. Then

Pr [z∗t < 2A] ≤ C ′

(

2A

t

)m

(17)

Also, from Lemma 8,

Pr
[

Z∗
t ≥ tq/2(ln t)3

]

≤ t exp

(

m −
(ln t)2

4

)

. (18)

Using Lemma 1, and putting (17) and (18) together we get that if A ≥ t1/2 and t is sufficiently
large

Pr [zt − Zt ≤ A] ≤ Pr [z∗t − Z∗
t ≤ A]

≤ Pr [z∗t < 2A] + Pr [Z∗
t ≥ A]

≤ C ′

(

2A

t

)m

+ t exp

(

m −
(ln t)2

4

)

≤ 4mC ′

(

A

t

)m

.

2

5 Proof of Theorem 1

Fix i ≤ N . It follows from the (sub)-martingale convergence theorem (see [7]) and Lemma 4, that

L = lim
t→∞

E [degt(si)]

t
exists.

We have to show that L is strictly positive and bounded away from zero. But L ≥ m/N follows
immediately from Lemmas 1 and 3. This proves the first part of Theorem 1.
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Our proof of the second part of Theorem 1 is a little more complicated, due to the fact that we
want to estimate d̄k(n)/n reasonably accurately (as opposed to using martinagale convergence as
we did in Part (a)). Let γt = Zt − zt and let t0 be the first time that γt ≥ nq/2. Let t1 > t0 be the
first time after t0 such that γt ≤ m.

Notice that in the time interval [t0, t1], St is fixed and therefore, conditional on Gt0 = G∗
t0 , processes

P and P∗ coincide for every t such that t0 ≤ t ≤ t1.

Thus,

E [dk(Gn)] = E [dk(Gn)|t0 > n]Pr [t0 > n] + E [dk(Gn)|t1 ≤ n]Pr [t1 ≤ n]

+

n
∑

t=1

∑

G∈Gt

E [d∗k(n)|Gt0 = G]Pr [t0 = t, Gt = G]

= O (n) (Pr [t0 > n] + Pr [t1 ≤ n])

+
n
∑

t=1

∑

G∈Gt

(

2n

2 + mq

k
∏

i=m+1

i − 1

i + 2/q
+ Õ

(

t + nq/2
)

)

Pr [t0 = t, Gt = G]

=
2n

2 + mq

k
∏

i=m+1

i − 1

i + 2/q
+

O (n) (Pr [t0 > n] + Pr [t1 ≤ n]) + Õ
(

nq/2
)

+ Õ (1)E [t0|t0 ≤ n] (19)

It only remains to show that the contributions from (19) are Õ
(

nq/2
)

. Let C be the constant
defined in Lemma 9

Firstly,

Pr [t0 > n] ≤ Pr
[

γn ≤ nq/2
]

≤ C

(

nq/2

n

)m

= o(n−1)

and, as t0 ≥ nq/2/m

Pr [t1 ≤ n] ≤
n
∑

t=nq/2/m

Pr [γt ≤ m] ≤
n
∑

t=nq/2/m

C
(m

t

)m
= O(n−mq/2) = O(n−1).

Finally,

E [t0|t0 ≤ n] ≤
n
∑

t=N

Pr [t0 ≥ t] ≤ nq/2 +
n
∑

t=nq/2

C

(

nq/2

t

)m

= O
(

nq/2
)

.

2

6 Concluding remarks

We have shown that modeling the influence of a search engine within the preferential attachment
framework leads to a qualitative change in the familiar power-law degree distribution. Each of a
collection of celebrities captures a constant fraction of the total degree of the graph, and the degree
of the remaining nodes follow a steeper power law.
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Our model differs from reality in many obvious ways: edges are undirected, outlinks are not modified
after creation, pages do not die, there is no topic-based clustering, and there is no propensity toward
forming bipartite cores as in the copying model.

Despite these limitations, our results lend support to recent articles by political scientists [10] in
the popular press expressing apprehension about the extent to which search engines concentrate
the collective attention of Web surfers to “mainstream” Web sites. Another study [13] involving
live users rating jokes confirms the existence of the entrenchment effect, and shows that it can be
reduced by limited randomization of the ranked list.

However, there is no verdict yet on the severity of the entrenchment effect of search engines in
practice. A recent study [9] claims that the use of search engines actually has an egalitarian effect,
in part owing to the diversity of query words used in searches. Enhancing entrenchment models
with link-copying and query effects would be natural candidates for future work.

Acknowldegement: We would like to thank the referee for his/her persistence in suggesting the
use of martingale convergence in the proof of Theorem 1(a).
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