Cover time of a random graph with a degree sequence II:

Allowing vertices of degree two
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Abstract

We study the cover time of a random graph chosen uniformly at random from the set of graphs
with vertex set [n] and degree sequence d = (d;)I;. In a previous work [1], the asymptotic
cover time was obtained under a number of assumptions on d, the most significant being that
d; > 3 for all i. Here we replace this assumption by d; > 2. As a corollary, we establish the
asymptotic cover time for the 2-core of the emerging giant component of G(n, p).

1 Introduction

Let G = (V, E) be a connected graph with n vertices and m edges. For v € V, let C,, be the expected
time for a simple random walk W, on G starting at v, to visit every vertex of G. The (vertex)
cover time Teoy(G) of G is defined as Tyoy(G) = maxyey Cy. It is a classic result of Aleliunas,
Karp, Lipton, Lovdsz and Rackoff [3] that Teov(G) < 2m(n — 1). Feige [15, 16] showed that the
cover time of any connected graph G satisfies (1 —o(1))nlnn < Tooy(G) < (1+0(1))5n>. Between
these two extremes, the cover time, both exact and asymptotic, has been extensively studied for
different classes of graphs (see, e.g., [2] for an introduction to the topic).

In the context of random graphs, a basic question is to understand the cover time for the giant
component C; of the celebrated Erdés-Rényi [11] random graph model G(n,p). Decomposing the
giant C; into the 2-core C%Q) (its maximal subgraph of minimum degree 2) and collection of trees
decorating C%Q), much is known about their structure (see, e.g., the characterization theorems in the
recent works [12, 13]). However, our understanding of the cover time for these remains incomplete.

It is well-known that for G ~ G(n,p = ¢/n) with ¢ > 1 fixed, the giant component C; is roughly

C

of size xn where x = x(c) is the solution in (0,1) of z = 1 — e~“*. Cooper and Frieze [9] showed

that in this regime
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with high probability (w.h.p.), i.e., with probability tending to 1 as n — oco. However, analogous
results for p = (1+¢)/n with ¢ = o(1), e®n — oo (the emerging giant component) were unavailable.
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Ding et al. [1] showed that when p = (1 +¢)/n with n=1/3 < & < 1 (here and in what follows
we let Ay < By denote limy_,oo An/Bny = 0) the cover time Tgoy(Cp) is of order nlog2(53n).
With this in mind, substituting ¢ = 1 4 ¢ with € > 0 in the estimates of (1.1), and noting that the
aforementioned z(c) becomes 2 + O(£?), shows that for small fized € > 0, w.h.p.

e+ 0(e?)

Toov(C1) = (1+ 0(e))nn2(e*n)  and  Teor(C?) = 7

nin®(3n), (1.2)

and one may expect these results to hold throughout the emerging giant regime of n=1/3 « e < 1.

A natural step towards this goal is to exploit the well-known characterizations of Cy, its 2-core
and its kernel: as mentioned above, by stripping the giant component of its attached trees one
arrives at the 2-core CP. By further shrinking every induced path in ng) into a single edge one
arrives at the kernel K (see §2.1 for more details). It was shown by Luczak [21] that the kernel
of the emerging giant component is a random multi-graph on a certain degree sequence, and so,
potentially, the cover times of K, CF) and C; could all be determined as a consequence of general

results on the cover-time of random graphs with a given degree sequence.

Promising in that regard is a framework developed by Cooper and Frieze, which was already
successful in tackling this problem for a variety of random graph models, notably including random
regular graphs [(] and random graphs with certain degree sequences [1] (also see [0, 9, 7, 8, 10]).
However, among the various conditions on the degree sequence in [l], a main caveat was the
requirement that the minimal degree should be at least 3, rendering this machinery useless for
analyzing the 2-core.

In this paper we eliminate this restriction and allow vertices of degree 2 in the degree sequence.
Of course, if our degree sequence d features linearly many degrees that are 2 — as in the case of the
2-core of the emerging giant — a uniformly chosen graph with these degrees will typically contain
isolated cycles, which would have to be removed. To avoid this issue, we let the degree 2 vertices
arise as they do in the giant component, as the subdivision of kernel edges:

e Givend = (d; < dp <--- <d,) with d; > 2 for all i, let vy be the number of degree 2 vertices,
and let d3 be the degree sequence restricted to all ¢ such that d; > 3.

e Choose the kernel Kq ~ q,, i.e., uniformly from all configuration multi-graphs with degree
sequence ds. (See Section 2.1).

e Replace each edge e of Kq by a path P, of length /. (edges), where the values of {{. : e € E(Kq)}

V2+|E(Kd)|*1)
v

are uniform over all ( possible choices, to obtain the final graph Gq4.

Under several natural conditions on d (e.g., satisfied when it has a power law/exponential tail, as
in the 2-core of C;), detailed next, we can determine the asymptotic cover time of Toov(Ga).-

Definition 1.1. Let d = (d;)j~; and let v; = #{i : d; = j} count the degree-j vertices in d. Let
N, M,d be the number of vertices, number of edges and minimum degree in the associated kernel:

N:ij?’ljj, M:%ijg)juj d=min{j > 3 :v; #0}.
We say that d is nice (and similarly, Gq is nice) if it satisfies the following conditions:

N — 00 asn — o (diverging kernel), (1.3)
2<dy <dy <. <dy < N where ¢y = o(1) (sub-poly degrees), (1.4)



2oi>3 §3v; < agM for an absolute constant ag > 1 (8rd moment bound), (1.5)

vg > alN for an absolute constant o > 0 (minimum kernel degree). (1.6)

Observe that without condition (1.3), the graph G4 would be disconnected w.h.p. The upper
bound in (1.4) is for convenience, and we can assume without loss of generality that

¢ >>ln1nN
0~ " InN

Condition (1.5) allows us to work directly with the configuration model of Bollobés [5]. It does,
however, restrict our attention to cases where the average degree in the kernel (thus overall) is
bounded, as Jensen’s inequality implies that 3,4 §3v; > N(2M/N)3 and so

2M agn 1/2
< —= < ap. 1.8
N ‘(2\/5) =10 (18)

Finally, the minimum kernel degree d (the focus of (1.6)) will be featured in the statement of our

(1.7)

main theorem. We note that some of the assumptions above can be relaxed at the cost of some
extra technicalities that would detract from the main new ideas of the paper.

The following two important classes of degree sequence are nice:
(i) Exponential tail: there exist real non-negative constants a, 8 with 5 < 1 and a positive integer
jo > 3 such that v;/N < af’ for j > jo.
(ii) Power law (moderate): there exist real positive constants ¢,y with v > 3 and a positive integer
jo > 3 such that v;/N < ¢j™7 for j > jg, and the maximum degree is No®),
This of course includes degree sequences with bounded maximum degree Ay.

The main result of this paper is the following.

Theorem 1. Let d be a nice degree sequence as per Definition 1.1. The following hold w.h.p.
(a) If vy = MY then

2(d—-1)
Toov(Ga) ~ 7d(d— 2)]\41n]\4
(b) If vo = M® for some fixred 0 < o < 1 then
2(d —1
Teov(Ga) ~ max {dEd—Q; a¢a,d} MIn M,

where

i © min -« z 1 ;
Payd = min {T 2 {(1 s (L(k 02T A Tk 02+ di2> } - 1} |
(c) If vy = M'=*W) then

mIn® M
feolGa)~ — =)
where m = |E(Gq)| = v2 + M and
E=M/m. (1.9)



Note that as @ — 1 we will have ¢, g ~ ﬁ and —In(1—-¢) ~ (1—a)InM. So, as o« — 1 we
see that Cases (b) and (c) are consistent. Finally, observe that the condition in Case (c) can also
be written as —In(1 — §) = o(ln M).

Going back to the cover time of C%Q), the 2-core of C1, we see immediately that the estimate
of [9] on its cover time (see (1.1)) readily follows from Case (c) of Theorem 1, whence

vy ~cx?e n/2  and M ~ cz®(1 — ce ®)n/2.

Furthermore, Theorem 1 implies that the estimate for TCOV(C?)) in case p = (1 + ¢)/n with
e > 0 fixed (see (1.2)) extends to the entire emerging supercritical regime. Indeed, by known
characterizations of the 2-core (see, e.g., [12]) this case corresponds to M ~ 2¢3n and v ~ 2¢%n.

Corollary 2. Let p = (1+¢)/n where e = o(1) and e3n — co. Then w.h.p.,

9

We conclude with an open problem. While this work eliminated the restrictive assumption of
minimum degree 3 for the degree sequence under consideration, vertices of degree 1 still pose a
significant barrier in the analysis. It would be interesting to extend Theorem 1 to degree sequences
that do include a linear number of such vertices, towards establishing the following conjecture for
the cover time of the emerging giant component.

Conjecture. Let p = (1+¢)/n where ¢ = o(1) and 3n — co. Then w.h.p.,

TCOV(Cl) ~ nln2(€3 )

Outline of the paper

We begin with those arguments that are common to all parts of Theorem 1. Section 2.1 describes
the configuration model of graphs with a fixed degree sequence that we will use throughout. Section
2.2 describes the distribution of the number of vertices (¢, — 1) that are placed on each edge e of
the kernel. Section 2.3 shows that most vertices have tree like neighbourhoods. Rapid mixing is an
important property of our graphs and Section 2.4 gives an initial analysis of conductance.

Lemma 3.1 is our main tool in proving an upper bound on cover time. Let T be a “mixing
time”. Fix a vertex v and let m, denote the steady state probability that a random walk on a graph
G is at v. Let R, be the expected number of returns to v of a random walk, started at v, within
time T'. Broadly speaking, Lemma 3.1 says that if we define the event

A¢(v) = {vertex v is not visited by the walk during the interval [T',¢]} (1.10)
then, if T'm, = o(1) and another more technical condition holds, then to all intents and purposes,
P(A(v)) & et/ o,

The above inequality has been used to prove an upper bound in [1, 7, 8, 9, 10, 11] and several other
papers. In this paper we use it in inequality (4.4) below.



e The case where 1, is not too large: We begin the proof of Case (c) of Theorem 1 in
Section 4.1, where we consider the case of v5 “close” to M. In this range, ¢ is not too small and
Lemma 3.1 is sufficient to the task. We have T' = O(In°Y M/¢2) and 7, = O(In M /(M)
and T'm, = o(1). Section 4.1.1 proves this and verifies the more technical condition. So,
Lemma 3.1 can be applied directly in this case. Given this, the main task that arises is in
estimating the values, R,. The number of returns to v is related in a strong way to the
electrical resistance of its “local neighbourhood”. This reduces to estimating the resistance
R(T) of a bounded depth binary tree T' where the resistance of an edge is equal to a geometric
random variable with success probability &. This is the content of Section 4.1.3. We only
prove bounds on the probability that R(T) is large.

e The case where v, is large: Section 4.2 deals with the case where 15 is large with respect
to M. We immediately run into a problem in using Lemma 3.1. As v, grows, the mixing
time of a walk grows like (vo/M)? and the steady state values decrease like 1/(voM). This
means that for vy large, T'm, > 1. This is where we need some new ideas. We choose some
w = N°M) and define ¢* = 1/€w. A typical edge e of the kernel will give rise to a path P,
of length (. = ©(1/£). We divide P, into ©(w) sub-paths of length ¢ € [¢*,2¢*]. (Because
¢* does not necessarily divide £, the value of ¢ may vary from sub-path to sub-path). We
then replace these sub-paths by edges of weight £*/¢ to create an edge-weighted graph Gj.
We consider a random walk W, where at a vertex, we choose the next edge to cross with
probability proportional to weight. We argue that the edge cover time of W is approximately
(£*)? times the cover time we are interested in.

At first glance, this should take care of the T'm, — oo problem. 1" should now be

O(In°WY M/w?) and 7, = O(In M/(wM). Unfortunately, the bound on T is false here. The
problem comes from edges of the kernel for which ¢, < £*. These edges to rise to single edges
of weight ¢*/¢. in Gy. In the worst-case we have £, = 1 and we have an edge f = (w1, ws)
of weight ¢*. The walk W, could spend a lot of time travelling back and forth from w; to
wy and vice-versa. In any case, such an edge can reduce the conductance of the walk Wy to
O(1/(¢*)?) undoing all of our work. Our solution to this problem is to modify the walk so that
it “races along” edges of high weight. This will give us a walk that satisfies the conditions of
the lemma. We then have to bound the time we ignored. This we can do with a concentration
inequality of Gillman [18].

Section 4.2.1 deals with structural properties associated with this case. In particular showing
that there are relatively few vertices of high weight. It also deals in some detail with properties
that are needed for estimates of the conductance of our modified walk. Section 4.2.2 deals
in detail as to how we make edges out of sub-paths. The goal from now on is to estimate
P(A:(f)) where f is some edge of Gy. We deal with each f separately in the sense that we
create a graph G for each f. Splitting f by adding a vertex vy to its middle. Then visiting vy
will be equivalent to crossing f. Section 4.3.4 uses Gillman’s theorem to show that we have
not ignored too many steps.

The remainder of the paper is organized as follows. Sections 4.5 and 4.6 deal with Cases (b) and (c)
of Theorem 1. They are easier to prove than Case (c), being closer in spirit to earlier papers.



Section 5 deals with matching lower bounds on the cover time. Section 5.3 uses the Matthews
bound, see for example [20]. Section 5.2 and Section 5.1 follow a pattern established in the earlier
mentioned papers. We choose a time ¢ that is a little bit less than our estimated cover time. We
identify a set of vertices S that have not been visited up to time t. The size of S is large in
expectation and the Chebyshev inequality combined with Lemma 3.1 is used to show that S # ()
w.h.p.

2 Structural properties

Recall that for a degree sequence d = (d1 < ... < d,) we let vj count the number of vertices of
degree j. It will be useful to further define V; = {i € V : d; = j} (so that v; = |V}|) as well as
Dk = ijljj
7=3

(so that N = Dy and M = D;/2 are the number of vertices and edges in the kernel, respectively).

2.1 Configuration model

We make our calculations in the configuration model, see Bollobas [5]. Let W = [2m] be our set
of configuration points and let W; = [dy + -+ dj—1 + 1,dy + --- + d;], @ € [n], partition W. The
function ¢ : W — [n] is defined by w € Wy,). Given a pairing F' (i.e. a partition of W into m
pairs) we obtain a (multi-)graph Gz with vertex set [n] and an edge (¢(u), ¢(v)) for each {u,v} € F.
Choosing a pairing F' uniformly at random from among all possible pairings €y, of the points of
W produces a random (multi-)graph Gg. Let

F(2m) = ngn'

This is the number of pairings F' of the points in W.

(2.1)

The kernel Kr is obtained from G by repeatedly replacing induced paths of length two by
edges. The number of vertices in the kernel is N, the number of vertices of degree at least three
and the number of edges in the kernel is M < D3/2 < a(l)/ N /2 by Assumption (c).

Let
2v9 + Do

E . . < SERE——
77 om dj(d; = 1) 2v9 +2M oQ)
by Assumption (c).

Assuming that d,, = o(m!/3) (as it will be for nice sequences), the probability that G is simple
(no loops or multiple edges) is given by

Pg =P(Gp is simple) ~ e~ 7277/ = (1), (2.2)

See e.g. [23]. Furthermore each simple graph G € Ggq is equiprobable. We can therefore use G as
a replacement model for G4 in the sense that any event that occurs w.h.p. in Gg will occur w.h.p.
in Gd.

We argue next that:



Lemma 2.1. The distribution of K is that of a configuration model where W is replaced by
W:WV2+1 UWVQJ,_QU"'UWTL.

Proof. Indeed, we can define a map ¢ : Qw — Qg such that for all F1, Fy € {5 we have
|vp~Y(F)| = [~ 1(Fy)|. Each induced path P of G comes from a set of pairs e; = {z;,9;}, 1 =
1,2,...,r where (i) ¢(z1),p(yr) ¢ Vo (= the set of vertices of degree two) and (ii) ¢(z) € Va for
z € {x9,.. ., Tr, Y1, .-, Yyr—1}. Replacing e;, 7 = 1,2,...,7 by {z1,y,} defines ¢(F) € Q. The
number of F' € Qp that map onto a fixed F’ € ()y;; depends only on vo,m and N. This implies
the lemma. O

2.2 Distribution of vertices of degree two

We can therefore obtain F' € Qy by first randomly choosing F’ € Q2 and then replacing each edge
e of Gp+ by a path P,. The next thing to tackle is the distribution of the lengths of these paths.
Let £, be the length of the path P.. Suppose now that the edges of F” are ey, e, ..., ep and write
¢; for L, .

Lemma 2.2. The vector ({1,4s,...,Ly) is chosen uniformly from

{6;>1,i=1,2,....,M and by + Lo+ -+ Ly = vy + M}.

Proof. Each such vector arises in 15! ways. Indeed, we order V5 and then assign the associated
vertices in order, £1 — 1 to e; to create P.,, {2 — 1 to ey to create P, and so on. O

Some calculations can be made simpler if we observe the alternative description of the distri-
bution of ({1, 02, ..., ¢nr).

Lemma 2.3. Let Z be a geometric random variable with success probability £. (€ can be any
value between 0 and 1) here). Then (l1,0o,...,Lyr) is distributed as Zy,Za,...,Zy subject to
v+ Zo+ -+ Zy =vo+ M, where Zy,Zs, ..., Zy are independent copies of Z.

Proof.

P(Z1,Za, ..., Zn) = (1,22, ..;xm) | Zv+ Zo+ -+ Zy = v+ M)
[ (a-¢m e

7 —
> to o tyng=vasnr Lz (1 = €)¥i71E

_ (- gmeM
(M2 (1 — g)reeM
1
e Il
M

The best choice for ¢ will be that for which E(Z1+ Za+---+2Zy) = vo+ M, ie. METT = v+ M.
We therefore take £ as in (1.9).

Pursuing this line, let P refer to probabilities of events involving Z1, Zs, ..., Zy without the
conditioning Z1 + Zo + -+ Zyy =vo + M.



Lemma 2.4. Let £ = Mﬂfm and M, vy — oo.

(a) Let ( = z1+ 22+ -+ + 2z and k = o(M) where k( = o(M + v3),

P(Z122'1,ZQ:2’2,"' ,Zk:Zk‘Zl—l-Zg—i-"‘-l-ZM:VQ—f—M)S
P(Zy=21,Z0 =20, , Zp = zx)(1 4+ ) = F(1 — )F(1 4 ¢),

where 3k¢
= . 2.
€ Y, (2.3)

(b) If k € {1,2} and { = z1 + -+ + 2z = o(12) then

P(Zi=zi,i=1,....k| Z1+Zo++Zy =vp+ M) =" (1— &) F(1+n)

1= (0 igig) vo(2))

(¢) Let by = 202IIM _ fge=11y Nf. Then

where

P(Je: le > lmax) = o(1).

(d) Let lpin = [A%Tﬁ/[] — LfM%nM—‘ and suppose that vo /M In M — oo then
P(3e: le < lmin) = o(1).
Proof. (a) Observe that

P(Zy = 21,20 =20, Zyy =21 | Z1+ ZoA4 -+ Zyp = v2 + M)
 P(Zi=2,Z0 =20, Zpy = 2k) N Zpr + Zo+ -+ Zyy =v2 + M — ()
B P(Zy+ Zy+ -+ Zpy = v + M)
P(Zy=21,Z0 =29, , Zk = 2k)P(Zgs1 + Zo+ -+ Zyy=v2+ M — ()
P(Z1+Zo+ -+ Zy =v2+ M)

GRS
e »
k . c—k .
M—i vo—i+1 .
i = 2.
il_[lm—i_M_iXil_[ll/g—}—M—k—i’ since ¢ > (2.5)
¢~k ,
1
< k 1] 1+
B l_Ile—i-M—k_l’
pa (k+1Dvy— (i —1)M
_ ¢k C—k 5 — (1 —
= ¢k — 1
€(1-¢) 1_11< e oy e o
- 1+o(1)(k+1)\**
Sﬁk(l—f)Ck(lJr( 2(+))fM >> »



<A -1 +e).

(b) Going back to (2.5) with k = 2 we use

k .
M—i 1
HV2+M—i_€ <1+O<V2+M>>

=1

and

it

El/g-}-M—k—i

_ va(vg — 1) (v2 — k) Xgﬁlw

Tt M —CH Rt M —Ct Dt M—0) j:k+1y2+M_j
¢—k-1 2

) 1 B M _ M

— <1+O<V2>> (1 legrl< vo(vo + M) +O<V2(V2+M)2>>

(1) <1+O<,,2(,§22]f]\4)> +O(Vlz>)'

(c) It follows from (2.4) with k =1 that

12 M+vo— C*l)

M—2
P(Ee: feo 2 bua) SM D~
(=lmax (a2
2M2 V2 M—-2
Y (e
vy M+ —1
ngmax
2IM? & (M —2)¢
< N Sh— A R
2 C; eXp{ M+V2—1}
- 2M? (M — 2)lmax 1
~ e exp M4vy—1 | 1— e (M=2)/(M4v2—1)
- 2M? 2 2(M + )
) M4 M

(d) It follows from (a) with £ = 1 and ¢ < £y that

P(Fe: le < luin) < 2Mlpiné = o(1).

2.3 Tree like vertices
Let a vertex x of K be locally tree like if its Kp-neighborhood up to depth
LO == 50 In N

contains no cycles.

(2.7)

(2.8)



Here
Inln N

In N

do > Co > (2.9)

where (p is as in (1.4).

A vertex of G is locally tree like if it lies on a path P. where e = (v,w) and v,w are both
locally tree like. An edge of G is locally tree like if both of its endpoints are locally tree like.

Lemma 2.5. With Ly as defined in (2.8) we have that for the graph Kp:

(a) W.h.p. there are at most N10%Ma0 non locally tree like vertices.

(b) W.h.p. there is at most one cycle contained in the (2Lg)-neighborhood of any vertex.

Proof. (a) The expected number of vertices that are within distance 2Ly of a cycle of length at
most 2Lg in the graph Kz can be bounded from above by

2Lg 2L k 2Lg 2L _
>3 S e [T < 0 ()
M 1l = M\ M
=0 k= 3U1a =1 j=1 =0 k=3
W1,-- »wl
2Lg 2Lg
<)) agtt < NS (2.10)
=0 k=3
where

d(v) denotes the degree of vertex v € V' in the graph Gp.

Markov’s inequality implies that there are fewer than N19% a0 gych vertices w.h.p.

Explanation of (2.10): We choose v1,vs, ..., v as the vertices of the cycle and wy, we, ..., w;
as the vertices of a path joining the cycle at v1. The probability that the implied edges exist in Kp
can be bounded by

d(v)d(vs) (d(v) — Dd(vs)  (d(vy) — D(d(v1) — 1)

2M —1 2M — 3 2M — 2k +1
(d(v1) —2)d(wy) (d(w1) — 1)(d(wz)  (d(wg-1) — 1)d(wg)
2M — 2k —1 2M — 2k —3 2M — 21 -2k +1

(b) If the condition in (b) fails then there exist two small cycles that are close together. More
precisely, there exists a path P = (vy,vs,...,v;) where k < 5L¢ plus two additional edges (v1,v;)
and (vg,v;) where 1 <4, j < k. The probability that such a path exists can be bounded by

L L
525 vy dedi) dwodl) P ) "iz&p?pk !
M M Mk+2
k=4 1<i,j<k V15 Vk =1 =
= O(N°D=1 = p(1). (2.11)
Part (b) follows. O

10



2.4 Conductance

Given a graph G = (V. E) let 7(v) = gf}é)‘ denote the steady state probability of being at v. The

conductance ®(G) of a random walk W, on G is defined by

. 05|
P = m P h 0] = — 2.12
(@) S:W(S;I%l/Q (S) where ®(5) a(9) (2.12)

and where d(S) = ) cgd(v) and w(S) = > cg7(v) and S denotes the set of edges with one
endpoint in S and the other not in S. (We consider the conductance of random walks on edge-
weighted graphs in Section 4.2.2).

The following lemma follows directly from Lemma 10 of [1].

Lemma 2.6. Let d be a nice degree sequence. Let F' be chosen uniformly as in Section 2.1. Let
K be the kernel of the associated configuration multi-graph. Then with probability 1 — o(nfl/g),

1
B(Kp) > —.
(F)—mo

Note that ®(Kp) > 0.01 implies that Kp and hence G is connected. Using (2.2) we see that
the probability that Gq is not connected is o(n~'/?) = o(1).

We will now estimate the conductance of Gr using Lemmas 2.4 (Part (c)) and 2.6.

Lemma 2.7. Let d be a nice degree sequence. Let F' be chosen uniformly as in Section 2.1. Let
GF be the associated configuration multi-graph. Then with probability 1 — o(nfl/g),

-0 (%),

Proof. Consider a set S C [n] that induces a connected subgraph of Gr. We can restrict our

attention to such sets. Suppose S only contains part of some path P.. To be specific, suppose
P, = (v,uq,...,ux, w) where v,w are of degree three or more and wuj,us,...,u; are of degree
two. k = 1 is allowed here. Assume that v € S. Then we wish to eliminate the case where
U, ug,y ..., up € S and ujpq ¢ S where [ < k. If we add an edge of P, that is not contained in S
to create S’ then d(S") > d(S) and |95’| < |0S]|. Let S conform with the kernel if for all e € Kp
we have either (i) S contains all internal vertices of P, or (ii) S contains no internal vertices of P,.
Then w.h.p.

. |0S] : |0S]|
O(Gp) > — _ 2.13
(Gr) 2 min w(gr)nglip d(s)’ 1/2—emax1/rrlr127r(5)§1/2 d(S) + 2lmax (2.13)
S conforms with Kp S conforms with Kg
The lemma now follows from /pax = o(m) and d(S) < lpaxd(S NV (KF)). O
We note a result from Jerrum and Sinclair [19], that
|PO(z) — 70| < (m0/ma) 21 — B2/2)1. (2.14)

There is a technical point here. The result (2.14) assumes that the walk is lazy. A lazy walk
moves to a neighbour with probability 1/2 at any step. This assumption halves the conductance.
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Asymptotically, the cover time is also doubled. Otherwise, the lazy assumption has a negligible
effect on the analysis, see Remark 3.2. We will ignore this assumption for the rest of the paper;
and continue as though there are no lazy steps.

3 Estimating first visit probabilities

In this section G denotes a fixed connected graph with v vertices and p edges. A random walk
W, is started from a vertex u. Let W, (t) be the vertex reached at step ¢, let P be the matrix of
transition probabilities of the walk and let Pu(t)(v) = P(W,(t) = v). We assume that the random
walk W, on G is ergodic with stationary distribution 7, where 7, = d(v)/(2x), and d(v) is the
degree of vertex v.

Let

(t) = max |PO () -, (3.1)

and let Ty x be a positive integer such that for ¢ > Tyx

(O () | < =10
ifgzé)‘i/\Pu () —m| < v % (3.2)

Consider the walk W, starting at vertex v. Let r, = r(v) =P(W,(t) = v) be the probability
that this walk returns to v at step t =0,1,... . Let

TMIX - 1

Rr(z) = Z rizd (3.3)
j=0
and let
R, = Rp(1).
A proof of the following lemma can be found in [9].
Lemma 3.1. Let G = (V, E) and let u,v € V be fized and let T = Tyux(G). Suppose that
Tmy, =0(1),
| lmiln)\ |R(2)| > 0 for some constant 6 > 0.
z|=1+

Then there exists a constant K,, and values 11,19 = O(Tm,) such that if

1
A=——r—. 3.6
KmTl\'HX ( )
and
p,v = 7’[{1} . (37)
Rv(l + %)
then for allt > T,
1+ _

Py (A (v)) = (Hip"’)t + O(TmpeM/?). (3.8)

where A(v) is defined in (1.10).
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Remark 3.2. One effect of making the walk lazy is to (asymptotically) double R,. Later in the
analysis, this would double our upper bound on the cover time, as it should. Thus it is legitimate
to ignore this technicality required for (2.14).

Using Lemma 2.7 and (2.14) we see that we can take
In* M
S
This is a little larger than one might expect at this stage. We will explain why later.

TMIX (GF ) -

Lemma 3.1 is our main tool for proving upper bounds on the cover time.

4 Upper bounds

To begin our analysis we let G = (V, E) be a graph and let v = |V|. Assume that Tyx = Tux(G) <
v. Let

T.(G,7) = min {t > 7 : W, visits every vertex of G at least once in the interval [7,t]} .

Let U; be the number of vertices of G which have not been visited by W,, during steps [Tyux,t].
The following holds:

TCOV(G7 U) <E, (TC(G, TMIX))
< Thx + Z Pu(Tc(G7 TMIX) > t) ,

tzTMIX

=Tux + Z Z Pw(TC(G7 0) >t - TMIX)PU(W”LL(TMIX) = w)
t>TMIX weV

< Ty + Z Zﬂ'w TcG 0)>t_TMIX)+E1
t>Twix weV

< 2Tix + Z Z TP 7'c G TMIX) >t— TMIX) + 4
t>2T\ax weV

— 2TMIX + Z Z 7Tw TC G TMIX) > t) + El (41)

t>TMD< weV

where

*1/_102 ZIP’ (1e(G,0) >t — Tux) < _4—1—221[” (1.(G,0) >1/)_

t>Tvix WEV t>v5 weV
_ — TMIX — 1% I/
S (= tra ) g S Y ) o) (a2)
t>v5 weV t>v5 weV

Here we use O(l/4 logv) as a crude upper bound on the mixing time Tyx. It is obtained from the
fact that the conductance of the walk is at least 4/v2.

Now

Py(7(G, Tonx) > t) = Py(Uy > 0) < min{1, E,(U)} . (4.3)
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It follows from (4.1),(4.2),(4.3) that for all ¢ > T\

Teov(Gou) <t +o0(t) + > muBu(Us) =t+ot)+ Y mw Y > Py(A(v)). (4.4)

s>t w weVvV veV s>t
We will choose a value ¢ and then use Lemma 3.1 to estimate P,,(As(v)) and show that the double
sum is o(t). It then follows that Teov(G,u) <t + o(t).
The final expression in (4.4) leads us to define the random variable

Z Z TPy (As(w))

veVwesS s>t

for any S C V, ¢t > 0. (Here ¥ is a random variable on the space of graphs G).

We can use (4.4) if we have a good estimate for P,(As(w)). For this we will use Lemma 3.1.
Let
41 = 60/100 (4.5)
4.1 Case (cl1): MM <y < M1HN

We first check that Lemma 3.1 is applicable.

4.1.1 Conditions of Lemma 3.1 for G

Checking (3.4) for Gp:
By assumption, the maximum degree in G is at most N°1). So for v € [n] we have from (3.9),
(M +1p)?In* M Ne®)

ThixTy <p M2 . M+ = 0(1)

where we use A <; B to denote A = O(B). So, (3.4) holds.

Checking (3.5) for Gp:

Suppose that v is one of the vertices that are placed on an edge f = (w1, ws) of Kp. We will say
that f contains v. We allow v = w; here and then for convenience we say that v is contained in
one of the edges incident with v of Kr. We remind the reader that w.h.p. all Kp-neighborhoods
up to depth 2L contain at most one cycle, see Lemma 2.5(b). Let X be the set of kernel vertices
that are within kernel distance Lg of f in Kr. Let A; be the sub-graph of G obtained as follows:
Let Hy be the subgraph of the kernel induced by X. Thus f is an edge of H. To create Ay add
the vertices of degree two to the edges of H as in the construction of Gp. The vertices of X that
are at kernel distance Lo from f in Kr are said to be at the frontier of Ay. Denote these vertices
by ®;.

In this paper we consider walks on several distinct graphs. We have for example, W,,, the random
walk on G, starting at v. We will now write this as W.SF. The idea of this notation is to identify
explicitly the graph on which the walk is defined.

Let us make ® into absorbing states for a walk WvAf in Ay, starting at v. Let 8(z) = TM“ < B2t
where ; is the probability of a first return to v at time t < Ty;x = Tyux(GF) before reachmg D
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Let a(z) = 1/(1 — B(2)), and write a(z) = Y ;2 az2', so that oy is the probability that the walk
W, 7 is at v at time t. We will prove below that the radius of convergence of a(2) is at least 1+ A,
where A is as in (3.6).

We can write

Rr(z) = a(z)+Q(2) (4.6)
1
= 15 T (4.7)
where Q(z) = Q1(z) + Q2(z2), and
TN[IX
Qi(z) = Z(Tt—at)z
t=1
Q2(z) = — Z a2t
t=Twux+1

We claim that the expression (4.7) is well defined for |z| < 1+ A. We will show below that

Q2(2)| = o(1) (4.8)

for |z| < 142X\ and thus the radius of convergence of Q2(z) (and hence «(z)) is greater than 14 A.
This will imply that [3(z)| < 1 for |z| < 1+ A. For suppose there exists zp such that |3(zp)| > 1.
Then B(|z0|) > |B(z0)| > 1 and we can assume (by scaling) that 3(|z0|) = 1. We have (0) =0 < 1
and so we can assume that 5(|z]) < 1 for 0 < |z| < |2¢|. But as p approaches 1 from below, (4.6)
is valid for z = p|zo| and then |Rr(p|z0|)| — oo, contradiction.

Recall that A = 1/ Ky Ty, Clearly (1) < 1 (from its definition) and so for |2] < 1+ )
B(|Z’) < B(l + )\) < ﬁ(l)(l + )\)TMIX < Bl/Km_

Using |1/(1 — B(2))| = 1/(1 + B(|z])) we obtain

| > #
1+ B(])

We now prove that |Q(z)| = o(1) for |z| < 1+ X and we will have verified both conditions of
Lemma 3.1.

R (2 ~1QE) > e — Q) (+9)

Turning our attention first to Q1(z), we note that r, — «; is at most the probability of a return to
v within time Ty, after a visit to ® for the walk WUGF .

Lemma 4.1. Fiz w € ®y. Then

PWEF wisits f within time Ty) = O(N~%/3).

Proof. Now consider the walk W,,. We will find an upper bound for the probability that it reaches
wy or wa, the endpoints of the K; edge that v was added to. We consider a simple random walk
X on H that starts at w and is reflected when it reaches ® ;. We show that

P(X reaches wi within time Ty;x) < N7%/6, (4.10)
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Let P be one of the at most two paths P, P’ from w to wy in Kp. P = P’ whenever wy is locally
tree like. Now to get to w; the walk X will have to traverse the complete length of one of two
paths, P say. We can ignore the times taken up in excursions outside P. So, we will think of X
as a walk along a path in which there are Ly points at which the probability of moving away from
wy is (at least) 2/3 as opposed to 1/2. (There could be a couple of places ~1,v2 where P meets P’
and then we will have the particle moving further or closer to wy with different probabilities). We
can also assume that ¢, = 1 for all e € P. This follows from an application of Rayleigh’s principle.
We are reducing the resistance of P by increasing the conductance of individual edges. This will
increase the (escape) probability of the walk reaching w; before returning to w. (Alternatively we
can couple the original walk with a walk where we have contracted some edges).

So we next consider a biassed random walk ) on [0, Lg] where ) starts at 0 and moves right with
probability 1/3. It follows from Feller [17, p314] that

1
P(Y reaches Lo before returning to 0) < T < N%0/2 (4.11)

(We write Lo — 2 instead of Ly to account for the two possible places 71,72, where we can just
insist on a move towards wy ).

Let Ny = N%/4_ If we restart X' from w then the probability that we reach w; after Ny restarts is
at most NgN—%/2 = N—%/4 We observe that Tyux = O(N?1 In* N) < N%/40 gee (2.9), (3.9) and
(4.5). To summarise,

P(W,, reaches wy within time Tyx) < Ty N 00/4 < N—00/5, (4.12)
By doubling the above estimate in (4.12) to handle wy, we obtain the lemma. O
Thus,

1Q1(2)] < (1+N)PmQq(1) < 2(1 4+ NP N =0T = o(1). (4.13)

We next turn our attention to Q2(2). Let oy be the probability that the walk on Ay has not been
absorbed by step t. Then oy > 4, and so

o0

Q)< Y ol

t=T\ux+1

For each w € ®; there are one or two paths from v to w. We first consider the number of edges in
such a path. It follows from Part (c) of Lemma 2.4 that we can assume that the number of edges
in such a path is L < Lolyax-

Assume first that v is locally tree like. The distance from v of our walk on Ay dominates the
distance from the origin of a simple random walk on {0,£1,42,...,} starting at 0. We estimate
an upper bound for o; as follows: Consider a simple random walk X (b), X fb), ... starting at |b| < L
on the finite line (-L,—L +1,...,0,1, ..., L), with absorbing states —L, L.

XT(S) is the sum of m independent +1 random variables. So the Central Limit Theorem implies
that there exists a constant ¢ > 0 such that

PXO > Lo X0 <—1)>1-¢12
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Consequently, for any b with |b| < L,

P(XxM, > L) >1-¢ L. (4.14)
Hence, for £ > 0,
o <P(XO| < L, 7=0,1,...,t) < e [1/2L)] (4.15)

Thus the radius of convergence of Qo(2) is at least e/ (3cL*)  As L < 4Lo&*In M we have L? <
Tux, see (3.9). (The need for L? < Tyx explains the larger value of Tyyx than one might expect
n (3.9)). So e!/GeL?) > 1 42X and for |z| < 1+ 2),

o0

1Qa(2)] < Z eQAt—Lt/(QcL2)J — o(1).

t=Tux+1

This lower bounds the radius of convergence of «(z) by 1+ 2\, proves (4.8) and then (4.8), (4.9)
and (4.13) complete the proof of the case when v is locally tree like.

We now turn to the case where Ay contains a unique cycle C. The place where we have used the
fact that As is a tree is in (4.15) which relies on (4.14). Let x be the furthest vertex of C' from
v in Ay. This is the only possible place where the random walk is more likely to get closer to vy
at the next step. We can see this by considering the breadth first construction of Ay. Thus we
can compare our walk with random walk on [—L, L] where there is a unique value d < L such that
only at +d is the walk more likely to move towards the origin and even then this probability is at
most 2/3. The distance of the walk WvAf from v is dominated by the distance to the origin of a
simple random walk, modified at one of two symmetric places P;, P, to move towards the origin
with probability 2/3 instead of 1/2. A simple coupling shows that making P;, P» = £1 keeps the
particle closest to the origin. We can then contract 0, =1 into one node 0 with a loop. When at 0/
the loop is chosen with probability 2/3. The net effect is to multiply the time spent at the origin
by 3, in expectation. We can couple this with a simple random walk by replacing excursions from
the origin and back by a loop traversal, with probability 2/3. In this way, we reduce to the locally
tree like case with Ty« inflated by 4 to account for the loop replacements.

We have now established that in the current case, G satisfies the conditions of Lemma 3.1.

4.1.2 Analysis of a random walk on Gp

We have a fixed vertex v € V and a vertex v and we estimate an upper bound for P(A:(v)) using
Lemma 3.1. For this we need a good upper bound on R,. Let f = (w;,wz) be the edge of K
containing v.

We write R, = R} + R! where R) is the expected number of returns to v within time Ty;x before
the first visit to ®¢ and R), is the expected number of visits after the first such visit.

R, =d(v)Rp (4.16)

where Rp is the effective resistance (see, e.g., Levin, Peres and Wilmer [20]) of a network N,
obtained from A by giving each edge of this graph resistance one and then joining the vertices in
® ¢ via edges of resistance zero to a common dummy vertex.
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For future reference, we note that (4.16) can be replaced by
R, = \(v)Rp (4.17)

when edges have weight A(e) and vertices have weight equal to the weight of incidence edges and
edges are chosen with probability proportional to weight.

If f is locally tree like, let T 1 fg be the trees in Ky rooted at w;, w2 obtained by deleting the edge
f from H;. We then prune away edges of the trees fl, T> to make the branching factors of the two
trees exactly two, except at the root. We have to be careful here not to delete any edges incident
with the roots. Thus one of the trees might have a branching factor at the root that is more than
two. Then let 17,75 be obtained from ﬁ, T by placing vertices of degree two on their edges. If f
is not locally tree like then we can remove an edge of the unique cycle C' in Hy not incident with v
from A, and obtain trees fl, T\g in this way. Having done this, we prune edges and add vertices of
degree two to create 11,75 as in the locally tree like case. Removing an edge of C' can only increase
effective resistance and R,.

Let Ry, Ry be the resistances of the pruned trees.

We h
e have 1 1 1

I — + .
Rp {+ Ry ly 4+ Ry
Here /; is the number of edges in the path from v to w; in Gy. If v is a vertex of K then we can

dispense with f5, Rs.
Now when v ¢ V(KF) we have
1 1 4
+ >
l(+R  l+Ry (4R
which follows from the arithmetic-harmonic mean inequality.
When v € V(KF) we have
LN S SN S d?

RP_€1+R1 5+ Ro Ed-l-Rd_g—i-R’
where d = d(v) > 3 and ¢; is the length of the ith induced path incident with v and R; is the
resistance of the tree at the other end of the path.

Let Emax be the event that £ < lpax for all e € E(Kp). With ¢ as defined in (2.3),

(4.18)

~ ~ ~

P(Rl > p1, R > po, b1+ s = l) < (1 + E)P(Rl > pl)]P)(RQ > pg)]P)(gl + 4y = l) (4.19)

This follows from Part (a) of Lemma 2.4. If w € {Ry > p1, Re > p2, {1 + {3 = 1} then k(w) < 3% =
M°M) = o(M). Also, if Emax holds then ¢(w) < klmax and so k¢ = M°WM /¢ = o(vy + M). Since
{R1 > p1},{R2 > p2}, {¢1 + ¢2 =} depend on disjoint sets of edges, we can write the product on
the RHS of (4.19).

We will implicitly condition on &pax When using P and this can only inflate probability estimates
by 1+ o(1).

We will show in Section 4.1.3 that

= {1 p < Lo

P(R 4.20
F=0 = gm0 - g2 p> 1, 20
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Note that 1 — ¢ can be as small as N~°(1) and so we cannot replace (1 — &)?=2 by (1 — £)? without
further justification.

We will show in Section 4.1.4 that
R =o(R)). (4.21)

Let Z; ,, p, be the random variable that is equal to the number of vertices of G with parameters
£ =101+ ¥y, Ry > p1,Ro > pa. Then we have that where p = p; + p2 that

E(Zeprps) <o, E(1 =& x 32o(1 - g)lmtiee, (4.22)
veV(G)

where \; = 1,,>1, for i =1,2.
For these vertices, we estimate

d(v) . 1 4
2m d(v) £+p

Py (As(v)) < exp {—(1 +0(1)) } + O(waﬂmaxef)‘tm) (4.23)

using (4.16), (4.17) and (4.18) to bound

1 1 4
72 -oges

Using Lemma 3.1 we see that, where m = M + vy = |E(GF)|,

Z ZZ/ §)€+p1>\1+92>\2x

Yy s>t P1:P2

E(¥(V,t)) <

<exp {—(1 + 0(1))‘12(;) 5 d(lv) 7 jl_ p} + O(TMImeaXe’\W)) . (4.24)

where Tpax = max {m, : v € V}.

This is to be compared with the expression in (4.4). Here we are summing our estimate for P(A(v))
over vertices v. Notice that the sum over w € V can be taken care of by the fact that we weight
the contributions involving w by m,. Remember that here w represents the vertex reached by W,
at time Tyx.

We next remark that with t = Q (ﬁ%f_g] ) the term

O(TMIXT(maxeiAt/2) — O(G*Q(leo(l))

can be neglected from now on.

We then have

E((V,1))
2s
= ve;@ T )Y /  dpdpep {(1 +o(1)) ((e pda + pada)In(l — €) M)}
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exp {(1 +0o(1)) ((E + p1Az + p2A2) In(1 = &) — m(?j—p))}

32L0£
<b Z (1—¢€)* Zg: /pl’p2 dpydpy | — exp {_ 2+0(1) }

m(+p)

(4.25)

Our estimate for T¢oy is €2 (f’ﬂﬁ%» So, the contribution from ¢1, /s, p1, p2 such that £+ p <
~v1n

le\_/lg) is negligible for small enough ~. If £ + p > % then ¢ + p1Ao + poro ~ £ + p,
where A ~ B denotes A = (1 + o(1))B as N — co. Finally observe that the contributions from

b+p>-2 1(1n 3 will also be negligible.

Ignoring negligible values we obtain a bound by further replacing the denominator in (4.25) by
Q (_ninl(nlﬁ)). Thus,

E(W(V,1))

mln M 32Log ot
© 2 Thi-g o Z/pmd’“d”exp{(”O“”(“””n“‘9‘m<z+p>}

mIn M 32L0§ (8 4+ o(1))(=In(1 — &)t
= Z —In(1-¢) g /Pl P2 Aos e exp{_\/ m }

veV(Q)

<, 120 e {_ ¢ (8+ o(1))(~In(1 - 5>>t} | (4.26)

m

Putting ¢ ~ 8(_%%, where the implied o(1) term goes to zero sufficiently slowly, we see that the
RHS of (4.26) is o(t). (Note that Lo = o(In M) and nay, (1 — )71, (= 1In(1 — €))~F = M°M) here).
Summarising, if
. (1+o(1))mIn® M
— 8(=In(1-¢))

(4.27)

then
E(¥(V,1)) = o(t)

and then Markov’s inequality implies that w.h.p.
U (V,t) = o(t).

This completes the proof of the upper bound for Case (cl) of Theorem 1, modulo some claims
about R,.

4.1.3 Estimating Rp

Assume first of all that we are in the locally tree like case. We consider the trees T7,T5. Their
main variability is in the number of vertices of degree two that are planted on the edges of fl, TQ.
Fortunately, we only need to compute an upper bound on P(R(T') > p) where R(T) is the resistance
of one of these trees. We focus on T7. Now let the subtrees of T7 be 17 1,...,T1 4, where d > 2.
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We have

1 1 1 1 1
R~ 0+ R T 0T+ RO W) T R(Thy) | () + R(Ts) -2

where ¢; = ((T;), i = 1,...,d is the resistance of the path in Gy from the root of T} to the root of
T

It follows from this that
P(R(T1) > p) < 2P(£y + R(T1.1) > 2p)P(fy + R(T1.2) > p). (4.29)

This is because if R(T1) > p then (i) both of the R(T1 ;) + ¢;, i = 1,2 must be at least p and (ii) at
least one of them must be at least 2p.

Now,
P(ly =0)=¢(1—- &) (4.30)
and

Pty >0) < (1-¢)L (4.31)

Let the level of a tree like 77 be the depth of the tree in K from which it is derived. Let Rj be
the (random) resistance of a tree of level k, obtained from a binary tree of depth k by the addition
of a random number of vertices of degree two to each edge. Putting Ry = 0 we get from (4.29) and
(4.31) that

P(R; > p) <2(1 - €)% 2 (4.32)

Assume inductively that for £k > 1 and p > 1,
P(Ri > p) < ap(1—€)%7* (4.33)

where a;, = (2.5)F.

This is true for £ = 1 by (4.32). Using (4.29) we get that

2p—1
P(Rg41 > p) <2 <Z P(ly = s)P(Ry > 2p — 5) + P(¢1 > 20))
s=1

2p—1
<2 (Z €1 -8 xap(1— &7k 4 (1 - f)”) (4.34)
s=1

2p—1
=2 <ak€(1 SOy (-9 (1 6)2”>

s=1
< 2ap + 1)(1 - &>+
<api(1— &AL

This verifies the inductive step for (4.33) and (4.20) follows after taking k = Lo, with room to
spare.

For the non locally tree like case, the deletion of a cycle edge of Hy to make a tree ﬁ, say, may
create one or two vertices of degree two out of kernel vertices. After adding a random number of
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degree two vertices to each edge of ﬁ to create 17 we will in essence have created at most two
paths whose path length is (asymptotically) distributed as the sum of two independent copies of
Z, see Lemma 2.3. (Such a path arises by concatenating the two paths P., P, for a pair of edges
e, €’ that are incident with a vertex of degree two of fl) We claim that the resistance of such a
tree is maximised in distribution if such paths are incident with the root and the rest of the paths
have a distribution as in the tree-like-case. For this we consider moving some resistance € from one

edge closer to the root:

(++b(b__+)> - <+bb+> :E<l‘ <b—e+cz><b+c>> =Y

for e < b. Here we have an edge (x,y) of resistance a and two edges of resistance b, ¢ incident to y

before moving ¢ of resistance.
The resistance R of k + 1 levels of such a tree now satisfies

1 1 1

g + 4.35
R pi+pl+5  ph+p5+ S5 (4.35)

where S, Sy are copies of Ry, and pf, pY, ph, phy are copies of Z.

Now we will use
P(ph + o = p) < 2P(ph > p/2) < 2(1—&)P/*7" and P(ph + pf > 2p) <2(1-¢)""".  (4.36)

and so arguing as for (4.29) and (4.34), with p > L, and using (4.33),

A

@(RL > ,0) < (1 o {)3/2—1(2'5)L(1 o 5)2(2;)—5)—1 + (1 o £)p—1

This completes the verification of (4.20).

4.1.4 Estimating R

It follows from (4.12) that
R" < N=%/5(R + R"
and hence

R! < N—%/SR! (4.37)

The proof of the upper bound for Case (c1) of Theorem 1 is now complete.

For the next case we let
w= N

where (2.9) holds and
Co < (1 = 0(dp) and now 0p¢y log N > 1. (4.38)
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4.2 Case (c2): M1 <y, <e¥

We recommend that the reader re-visits Section 1, where we give an outline of our approach to this
case.
It is worth pointing out that
§=o(1)
in this case.

We will be considering several graphs in addition to Gr and Kr and so it will be important to
keep track of their edge and vertex sets. For now let

Vr =V(GF),Er = E(Gr) and Vg = V(KF), Ex = E(KF).

We see an immediate problem in the case where v5/M — 0o too fast. In this case we have

n*mM 1 vy Int M

So if v > M? then we cannot apply Lemma 3.1 directly. Our main problem has been to find a
way around this.

We let

= HJJ (4.40)

We begin with some structural properties tailored to this case.

4.2.1 Structural Properties

Lemma 4.2. W.h.p. there is no set S C Vi, |S| < ng = N'759000 sych that e(S) > (1.001)|S].

Proof. The expected number of such sets can be bounded by

ng < 1.001) > <(]1§\4$>(1 o = Z Z < L 001 dJ(wS)>(LOOI)S (4.41)
S0

0/ 52.001 £3Co $0.001 ©
40001

Explanation for (4.41): Having chosen a set X of (1.001)s configuration points for (1.001)s
distinct edges, we randomly pair them with other configuration points. After pairing i of them, the

. . . . . . d(S)—(1.001)s—i _ d(S)
probability the next point makes an edge in S using only one point of X is ==5—~5—— < 5. U
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An edge e of Kp is light if £y < fe < £*. Let

EU:{GEEKieiS light }
?U:{UEVKZHQGEUS.TJ.UGG}

Note that
Ple € E,) <& <

Lemma 4.3.

d(‘Z,) < 73 with probability at least 1 — w™
w

Proof. For any value D we have

E(Hveffgzd(v)gD}D SD|{v€V:d(v)§D}\ SND-

w w

Putting D = w'/3 and applying Markov’s inequality we see that with probability at least 1 —w=1/3.

N
vEVy:d(v)<wl/3
In addition we have

3/2
. D anD 2aq, N
D2 Z vjj < D3 and so Z d(v) < ?3 = 32/31 = w02/3 ’

= 2
, . w
jzDb vEV:d(v)>wl/3
where we have used (1.8). O
Now define a sequence Xy = \70, X1, Xo,..., where X;11 = X; U{zi+1} and z;41 is any vertex in

Vi \ X; that has at least two neighbours in X;. This continues until we find k for which every
vertex in Vj \ X has at most one neighbour in Xj. Let vy = | Xo| < jl—% w.h.p. Then X; has vy +1
vertices and at least 2i edges. Now (4.38) implies that vy = o(ng) (of Lemma 4.2) and so if i > 1
then we contradict the claim in Lemma 4.2. We let

Vo’ = Xk and V)\ = VK \ VU (4.42)

and observe that

6N 6N 1T
‘VO'| < m and so d(Vo-) < DO’ = W (443)
Note also that V, is well defined in the sense that all sequences x1,xo, ..., lead to the same final

set.

We will see in Remark 4.10 why we need V, instead of the simpler 170.

Lemma 4.4. W.h.p. there is no path of length Ly in Kp that contains more than Lo/10 members
of V.
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Proof. First note that if vy, vs,...,vs € V, then there is an ordering such that v1,vs, ..., vs appears
as a sub-sequence of x1, xs, ..., above. We will assume this ordering and inflate our final estimate
by s! to account for the choice.

We continue by asserting (justification below) that for vertices vy, va,...,vs,s < Lo,
20s N6\ ?
P(vl,vg, o, Us € Vs | d(Vo‘) < Da) < <w2/3> (4.44)

Thus, given D = {d(V,) < D}, the expected number of paths in question is bounded by

Z ﬁd(vl)d(vzﬂ) Ly M Lo/10<
2M Lo/10 2/ <

V1y-sVLo+1 eV 1=1

3 d(v1)d(vr,+1) IL_OI d(v)? <2OOL06N6<°>LO/10

M , M Ww2/3
Ul:"'7UL0+1 1=2
D%DQLOil 200Lge N Lo/10 200 Loea? N6 Lo/10
= " pfLo < w2/3 > <y N <w2/3> = o(1),

after using (4.38).
Proof of (4.44): Observe first of all that

P(vit1 € Vo | v1,v2,...,0; € V,, D)
=P(viy1 € Vo | v1,02,...,0; € Vo, D)P(v1,v2,...,v € Vo, D | v1,02,...,v; € V,,D)
< P(vig1 € Vo | v1,02,...,0; € V5, D)

iN¢o N PN ~

< Vi +P(UZ‘+1 eV, | V1,02, ..., € Vi, D, (’L)Z'Jrl,vj) ¢ EU,VJ) (445)
iN%  N¢o

<

- M + w
92 NS0

<2 (4.46)

w

Explanation of (4.45): The first term iN /M is a bound on the probability that v;(; is a
neighbour of some v;,j < 4. The second term is a bound on the probability that an edge incident
with v; 41 is light. We deal with the conditioning by first exposing Kr and then exposing the
placement of the vertices of degree two.

We will now prove that

PN 18 N6
P('Ui_;,_l GVO—\VU ‘ V1,02, ...,0U; EVU) < W (4.47)
Recall that we assume the order v1, v2, ..., v; is such that v; can be placed in V,, once vy, va, ..., vj_1
have been so placed. Then, using the notation of Section 2.1, we let W = W\ W, . If [W,,_ |

is odd, we first choose a random point x € W and pair up the remainder of points to create F.
Suppose now that W, = {x1,22,...,21}. We define a sequence of configuration multi-graphs
Fo=Kz,T'1,...,I'y = Kp. We obtain I'j1; from I'; as follows: If k£ — j is odd then we pair up z;
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with the unpaired point in I';. If £ — j is even we choose a random pair {y, z} in I'; and pair x4
with y or z equally likely, leaving the other point unpaired.

We first claim that I'g,I';,...,I'x are all random pairings of their respective point sets. We do
this by induction. It is trivially true for I'y. When k& — j is odd, the construction is equivalent to
choosing a random point to pair with x;;1 and then choosing a random configuration (I';) on the
remaining points. If k — j is even, then we again pair z;; with a random point y, say. Then z
will be a uniform random point and the remaining configuration will be a random pairing of what
is left.

Assume that d(V,(Ty)) < D,. Now v;11 will be placed into V;(I'y) only if there are two values of
j for which x4 is paired with a point associated with a vertex in V,(I';). Up to this point we will
have V,(I';) C V,(I'g). It follows that xj1; is so paired with probability at most

O

Equation (4.47) (and the lemma) follows from (4.48), after inflating the final estimate by s!. [

Consider the following property of S C V) (defined in (4.42)): Let s = |S].
(i) S induces a tree in Kp; (i) d(S) < sln Nj (iii) e(S : V) > ns = max {3, [s/500]}.  (4.49)

Lemma 4.5. W.h.p., if S satisfies (4.49) then |S| < s1 where

1000010 N
T T he

Proof. Let Z; be the number of sets satisfying (4.49) under these circumstances. Assume that
s > s1. Then, from (4.43),

E(X,) < (1+0(1) > <§(5?0> <§4")8/500 (j(_SD (dj(ws)>s_l. (4.50)

|S|=s>s1
d(S)<sInN
Explanation: We choose configuration points that will be paired with V, in (8(1/(5%)0) ways. The

probability that all these points are paired in V is at most

<2Md (Vzi)(S) > e <2M DUd(S) > e

see Lemma 4.3. We choose s — 1 configuration points for the edges inside S. The probability they

s—1
are paired with other points associated with S can be bounded by (21\/1{(7;?()1\4) The factor
1+ o(1) arises from the conditioning imposed by assuming (4.43). Also, after conditioning on V,
d(S)

we only allow a vertex in V) to choose a single neighbour in V,,. Thus ( ) is an over-estimate of

/500
the number of choices.

Continuing,

6N /70 In N\
E(X,)< Y. (500eln N)*/50 (M) (eInN)S<S;7>
|S|=s>s1

d(S)<sInN
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Ne\® 6NG\ /7 sl N\ *7!
< [ = s/500 s
< < S) (500eIn N <w1/3> (eln N) < ~ )

C0/500 1,,2.00240(1) s—1
<s N (CN ! 511500 : N) ; C = 2+ (3000¢) (1 +0(1))/500
w
= o(1). see (4.38).
So,
-1
CN%/50 12 N\
ZXs ngZ <w1/1500 =o(1).
s$>81 §>81
This implies that w.h.p. we have X; =0 for s > s;. O

We now wish to show that small sets of Kr-edges do not contain too many vertices of degree two.

Lemma 4.6. W.h.p. there does not a set S C Ef such that [S| < eM and £(S) =) cgle > L =

61/2M/§. Here ¢ is a sufficiently small positive constant. Indeed, it is sufficient for ¢ < €1 where

g1 18 the solution to £3/2¢1/65/% _ 9.

Proof. Let S be “bad” if it violates the conditions of the lemma. We can assume w.l.o.g. that
|S| = eM here. Now using (2.6) to go from the first line to the second,

M\ (-1 ()
eM E:ZL eM —1 ( 2]‘\"/\:[1 1)

(i\;\[;)eM <£}>6M€€M(1 _g)e_eM <1+ (1+0U(21))5M>£—5M

(amig (1 2 ) (0 (1 Lt

(;ij) (1= (1—22)). (4.51)

WE

(=

~

| A

>

Putting ¢ = AM /¢ into the summand u, of (4.51) we obtain for sufficiently small € that

eM
10 Ae—A4/(2¢)
up < <0€€2 < 6_61/2M/3. (4.52)

Now A > £!/2 and a quick check shows that (4.52) is valid if £3/2¢1/621/° > 10.

So,
P(3 a bad S) < me=<"/*M/3 — o(1),

given our upper bound of MY for m. O

The next lemma shows that our assumption on degrees implies that a small set of vertices has small
total degree.
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Lemma 4.7. If S C Vi and |V| < eN then d(S) < 2ape'/*N fore < 1.

Proof. Let Sy = [N, N] where N. = N —eN + 1. It is enough to prove the lemma for S = Sj.
Let D, = des dj and L = dy_. Then

N
D. < Z kuy, < Z —uy < GL (4.53)
k>L k>L

If L > 1/¢/3 then we are done and so assume that L < 1/¢/3.
Let S1 = {j:d; > L/El/?’}. Then, following the argument in (4.53) for S; we get

NL 13N
Z d < e CLO€

s T T
j€D1

and the result follows. O

4.2.2 Surrogates for G

We have seen that we can use (4.4) if we have a good estimate for P,(As(w)). We have seen in
(4.39) that we cannot necessarily apply the lemma directly in this case. So what we will do is find
a graph G that satisfies the conditions of Lemma 3.1 and whose cover time is related in some easily
computable way to the cover time in Gp. (This statement is only approximately true, but it can
be used as motivation for some of what follows).

In the following, we define graphs that will be surrogates for Gr with respect to computing the
cover time.

Let e be an edge of K. We will break the corresponding path P, of length £, = pel* + qe, pe >
0,0 < g < ¢£* in the graph G into consecutive sub-paths Qy, f € F,. For a typical path, where
Pe > 1 there will be p. — 1 paths of length ¢* and one path of length ¢* + g.. There will however
be some cases where e is light and so we have to be a little more careful. When e is light we do
nothing to P.. In this case, P, is considered as a sub-path of itself in the following and is replaced
by a single edge in the graph Gg defined below. Otherwise we construct p. — 1 paths of length £*
and one path of length £* 4+ g.. Let Q. denote the set of sub-paths created from P..

We define the graph Gy = (Vp, Ey) as follows: For each e € Ef, we replace each sub-path Q € Q.
of length /g by an edge f = fq of weight or conductivity k(f) = £*/€g. The resistance p(f) of edge
f is given by 1/k(f). Note that the total resistance of a heavy edge e is £./¢*.

We will use the notation f € e to indicate that edge f of Gg is obtained from a sub-path of edge
e € Fg.

We now check that the total weight of the edges in G is what we would expect. We remark first
that since M = o(r2) and M = ©(N) we have

m o~ ’V(GF)‘ ~ 9.

Lemma 4.8. W.h.p.,
E(G vo + M
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Proof. Each edge e € Ex gives rise to a path of length £, in Grp. We let

Ko={e€ Ex:le <%}, Klz{eEEK:€*§€e<€*wl/3} and K» = Ey \ (Ko UK}).

Then,
1
Bol=5 D (fe—ac)+|Kol (4.54)
ec K1UK>
m |Ko| 1
= Z ge + | Kol- (4.55)
ec K1UK>

Now for e € Fx and 0 < ¢ < ¢*, and using Part (b) of Lemma 2.4 with £k =1,{ = g,

* 1
P(q, = ~ 1— ré*+q—1 _ 1 q_1‘7*N 1_ q—l.
(ge = q) ;Oa £) =" T e ~ w1 =)
So,
— k-1 w§ .
]E(qe) ~ ; kwf(l - 5) < (1 _ 5)2 < 14 )
and
E Z ge | <p O°M. (4.56)
ecFEg
So w.h.p.
gi* > e =o(Mw'?). (4.57)
ecK1UK>
Now .
E(|Kol) ~ MY~ €1 —&)T" = O(f"¢M) = O(M [w).
q=1
So,

|Ko| = o(M) w.h.p. (4.58)
Going back to (4.55) with (4.57) and (4.58) and

%NwM

we see that our expression for |Ep| is correct, w.h.p.

Now w.h.p.

B = Y <e—1+£*fqe>+zg

e€EK1UK> e€Kp
qe ) *
= Z e Tk + Z A
ec K1UK> < g + de ec Ko Ee
_m Qe T2
P Y s (e
ec K1UK> eeKo



To finish the proof we show that the terms other than m/¢* contribute o(wM) in expectation and
then we can apply Markov’s inequality. We can use (4.57) to deal with the first sum. We are left
with

" z—1
ADWAELDIDIES =
ecKop e€bk k=1

123 M+V2 k 1)

1/3
(1 Z E Z M+l/2 1)

_1/3 M-—1

Mlnvy M2 { (M — 2)u/?
b

T © _M+uz—1}zo(wM)’

w o
where to get the final expression we have used the calculations in Part (c) of Lemma 2.4. Of course
we can use (4.58) to deal with >z Lo /0" < [Kol. O

Since, from (4.54) and the above analysis,

> -1 < Vol 1Bl < ) pe+o(wM)

ec K1UK> ec K1UK>

we have that w.h.p.
Vol ~ |Ep| ~ wM.

We will analyse the expected time for a random walk W& on Gy to cross each edge of Gy at
least once. We will be able to couple this with WEF=%  the projection of WEF onto V. We will
see below that if either walk is at v € V) and w is a neighbour of v in Gy then w has the same
probability of being the next Vj-vertex visited in both walks.

It is easy to see that after W& has crossed each edge of G, in the coupling, W &F will have visited
each vertex of Gp.

We must modify Gy slightly, because we have to cover the edges of Gy. Let f* be an edge of Gy.
The graph G = G§(f*) will be obtained from G by splitting f*. We give edges (vi,vs+) and
(vp=,v2) a weight of & = min {ay, 1} where oy is the weight of edge f.

WEo is the random walk on G{, where we choose edges according to weight; WGV g the
projection of W onto Vy. This walk is W0 with visits to v« omitted from the sequence of
states. This means that time passes more slowly in W& than it does in W& 7%, We use G{ in
order to deal with the edge cover time of Gg, which is what we need, see (4.63) below.

Our goal is to compute a good upper estimate for P(A4(f*)) where As(f*) is the event that we
have not crossed edge f* in the time interval [Tyx, s]. We do this by going to G§ and estimating
P(As(vy+)) for the random walk on G. Note that P(As(f*)) = P(As(vy+)) if f is a heavy edge and
P(As(f*)) < P(Ag(vg+)) if f is a light edge. Indeed, in both cases there is a natural coupling of
WEG and WG, up until vy or vy are reached. This is because walks in Gy and walks in G{j that
do not contain v or vy as a middle vertex have the same probability in both. Having reached wv;
or vo there is no lesser chance of crossing f* in G than there is of visiting vy« in G§. In the case
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of a heavy edge, we can extend this coupling up until vy« is visited. This follows from our choice
of weight for the edges (v, vs+),i = 1,2.

There is a problem with respect to using G as a surrogate in that its mixing time can be too large.
If the edges of a graph are weighted then the conductance of a set of vertices S is given by

Yresyes F@y) _ K(DS)

B(S) =

Consider an edge e = (u,v) € Ex for which ¢, = 1 and such that (i) u,v both have degree three in
K and (ii) all edges of Ex other than e incident with u, v are heavy. Let S = {u,v}. Then in Gy,
®(S) = O(1/¢*), making ®(Gp) too small. The situation cannot be dismissed as only happening
with probability o(1).

We remark that if the following conjecture is true, then we will be able to fix the problem of small
edges by adding more vertices of degree two. We will be able to do this so that ¢* divides ¢, for all
e € Fx. This would simplify the proof somewhat.

Conjecture 4.9. Adding extra vertices of degree two to the edges of Kg to make £, > £* for all e,
does not decrease the cover time.

In the absence of a proof of this conjecture, we must find a work around. We observe for later that
if every edge e has a weight x(e) € [kL, K] then we have

KOS
2(8) 2 kud(S)

(4.59)

where 0S5 is defined following (2.12).

We now define the graph G. It will have vertex set V' = V) U {v1, v+, v2}, see (4.42). A Gjj-edge
f contained in V) will give rise to an edge of weight x; in G.

Next let N1 be the set of vertices in V) that have Kp-neighbors in V, and let Ny = N{U{v1, v+, v2}.
The edges from N7 to V,, will also give rise to G edges. For each x € V, U N7 and y € N1 we define
0(z,y) as follows: Consider the random walk W0, This starts at = and it chooses to cross an
incident edge of the current vertex with probability proportional to its Gj-edge weight, Suppose
that this walk follows the sequence xg = x,x1 € V,,x9,..., and that k,k > 1 is the smallest
positive index such that xp ¢ V,. Then, 0(z,y) = P(zx = y). Then for x € Ny and z € V, for
which f = (z,2) is an edge of G§j and y € Ny (y = «x is allowed) we add a special edge, oriented
from x to y of weight x¢6(z,y). We remind the reader that ry = £*/{;.

We have introduced some orientation to the edges. We need to check that the Markov chain we
have created is reversible. Then we can use conductance to estimate the mixing time. In verifying
this claim we will see that the steady state of the walk is proportional to k(z) for x € V). We
do this by checking detailed balance. For x,y € V) we let P(z,y) be the probability of moving
in one step from z to y. We let P(z,y) = Py(z,y) + Pi(x,y) where Py(z,y) is the probability of
following a special edge from z to y. We have k(z)P;(z,y) = k(y)P1(y, z) because these quantities
are derived from the random walk on G§. As for Py(z,y), we have

-1

k(z)Po(z,y) Z Z x) P (x, 2o HP1 zi, Ziy1) X Pi(z1,9)

20€EVy 21,22...2] i=0
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-1

= Z Z ,‘q(zo)Pl(zo,x)HP1(Z¢,ZZ'+1) x Pi(z,y)

20€EVy 21,22...2] i=0

= s(y)Po(y, x).

As a further step in the construction of G, we remove some loops. In particular, if x € Ny and
p = P(xz,xz) > 0 then

P(z,x) < 0 and P(x,y) < P(z,y)/(1 —p) for y € N1,y # .

Because the chain is reversible we can define an associated electrical network A/, which is an
undirected graph with and edge (z,y) of weight (conductance) Cy, = k(x)P(x,y) = r(y)P(y, x).
We claim that we can couple X; = WY and A, = W& where W& VA is the projection of
WE6 onto Vy. This walk is W0 with visits to V, omitted from the sequence of states. Indeed, we
have designed G so that for each v,w € V),

PXi(t+1)=w|Xi(t) =v) =P(Xa(t + 1) = w | Xao(t) = v).

Remark 4.10. The reader can now see why we defined V, in the way we did. If we had stopped

with ‘A/g then Gog might contain isolated vertices.

Coupling W W& and WEr:
We consider the vertices V) of Gy to be a subset of the vertices of Grp. We couple WEF with a

random walk W on Gy. In the walk W&o edges are selected with probability proportional to
their weight /conductivity. We will now check that there is a natural coupling.

Suppose that WEF is at a vertex v € V. Suppose that v has neighbours wy,ws, . .., wg in Gy and
that f; = (v,w;) for i = 1,2,...,d. In G there will be corresponding paths P; from v to w;. Let
i* € [d] be the index of the path whose other endpoint is next reached by W&F. Then if £(P) is
the length of a path P, we prove below that

(P! K

)= (P T+ 4 0P) L kit + kg (4.60)

P(i* =i

where x; = k(f;).

This can be proved by induction. Let ¢; = ¢(F;), i = 1,2,...,d. Our inductionison L = {1+ - -+44.
The base case where ¢; = 1 for ¢ = 1,2,...,d is trivial. Now suppose that ¢; > 2. Then if

IM=PGE*=1),
I = (h -1~ (el -1, H> (4.61)
(61_1)71+g;1+...+g;1 0y ) '
(ti-1)~!

Explanation: The factor 1 is, by induction, the probability that the walk reaches

(01 —1) 1485 oty
the penultimate vertex of P; and then % is the probability that the walk reaches the end of P;
before going back to v. The term % is then the probability that * = 1 in the case that the walk

returns to v.
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Equation (4.60) follows from (4.61) after a little algebra.

Note that (4.60) is the probability that W& chooses to move to w; from v. Thus we see that
WEF and WE0 can be coupled so that they go through the exact same sequence of vertices in Vj,
although W0 moves faster.

The expected relative speed of these walks can be handled with the following lemma.

Lemma 4.11. Suppose that T is a tree consisting of a root v and k paths Py, Ps,..., Py, with
common vertex v and no other common vertices. Path P; has length £; for i =1,2,...,k. A walk
W starts at v.
(a) The expected time A for W to reach a leaf is given by

_ b4+l

Tk 1

>ic1l; '

(b) If t; < 0 fori=1,2,... k then A < (2.

Proof. (a) Observe that
2001 + -+ ly)
S

The RHS is twice the number of edges in T times the effective resistance between v and the set of

E(time to reach a leaf) + E(time back to v) = (4.62)

leaves. (see e.g. [20], Proposition 10.6)

It follows from (4.60) and the fact that a simple random walk takes £? steps in expectation to move

¢ steps in distance that
k

0!
E(time back to v) = Z !

2
— X f
k-1 i
=1 Zi:l gz

Part (a) of the lemma follows.

(b) We simply observe that increasing ¢; increases the numerator and decreases the denominator.
O

We next observe that in this coupling, if W& has covered all of the edges of Gy then WEF has
covered all of the edges of G, and so the edge cover time of Gy, suitably scaled, is an upper bound
on the edge and hence vertex cover time of Gp.

It follows from Lemma 4.11(b) and the fact that all sub-paths have length at most (1+0(1))¢* that
that if D, is the expected time for the walk W,, on G to cover all the edges of Gr and D} is the
expected time for the walk W5 on Gy to cover all the edges of G, then

Teoy = max C,, < max Dy, < (1 + 0(1))(£*)?(max D} +1). (4.63)

(The +1 accounts for the case when wu is in the middle of a sub-path).

In the same way, we can couple W& and WY, up until the first visit to vy+, in the following sense.
We can consider the latter walk to be the former, where we ignore visits to V,,. By construction,
if v € Vy,w € Vy then for both walks we have that w has the same probability of being the next
vertex in V¥ = V) U {vy«} that is visited by the walk. We will show in Section 4.3.4 that the time
spent in V, is negligible.
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4.3 Conditions of Lemma 3.1 for G

Checking (3.4) for G:
We first claim that we have
Tuix(G) = O(w? In® M). (4.64)

Let G = (Vi, E)) be the subgraph of Kp induced by V). We begin by estimating the conductance
of G, as in (2.12). Let g, 0<B<1<5< 5= w3 N1+20 he the probability that there is a
connected set S C V) with |S| = s and ex(S) = fd(5)/2 > |S| and ex (S : V,) > (1 — 5)d(S)/2.
(Here ex (S) is the number of G (or Kr) edges contained in S and e (S : V) is the number of
edges joining S and V, in Kp).

Lemma 4.12. The following holds simultaneously and w.h.p. for every set S C V\ that induces
a connected subgraph of G: In the following, ex(S : S) is the number of Gy edges joining S to
S =V\\'S. Note that

(a) If (i) |S| < so and (ii) e(S) = Bd(S)/2 > |S| then

ex(S:8) > (1_2)‘“5)
(b) Ife(S)=|S| —1 then
~ 2d(5)
: >
6)\(5 S) = 381 s
where s1 = W.

Proof. (a) We estimate Ilg ; from above by

102 3 (4 _gpalsy2) <N1M%>(lmdw (sasr) ((ﬁ)ﬁd(S)/2' (465)

|S|=s
where C' can be any positive constant.

Explanation: We choose configuration points that will be paired with V, in ((1_3)((‘19()5) /2) ways.
The probability that all these points are paired in V, is at most

)

L A(Vy) ey (5AAE)/2
2M —d(S) = \2M — d(S)

see (4.43). We choose £d(S)/2 configuration points for the edges inside S. The probability they

d(S) )Bd(S)/Q‘

are paired with other points associated with S can be bounded by (W

Using (4.65) we see that

< 26 (1_5)55/2 N]‘*CCD (17ﬁ)65/2 26 ﬂ58/2 Bé‘s E(SS/Q
Mo 2. \7=5 M 3 oY

d(S)=ds
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ds/2
g%: 3 <2(N—CC0>1—6 <2§V‘55>5> _ (4.66)

We first consider the case where 3 < 6 < A = N, Let t5 s be the proportion of sets of size s that
have d(S) = ds. In which case, (4.66) becomes

0s/2
N 2¢As\”
Mg <b Y 05,5<$) (2eN—C<1—ﬁ><0 < €NS> )
1

B/2-1/5 os
< 277 —C(1-B)o (5 B/2 ) )
< % 055 <2e N ( N) A (4.67)
At this point we observe that by assumption, we have 5d(S)/2 > |S| and so
)
% > 1. (4.68)

Now because 6 > 3 and ) _6055 = 1, we have

ds s
Mg <p %:95,3 <2e2A6/2 (;)1/24> < (%) M g (4.69)

ds
Mo < 3 s (262 45/2 N—CC0/4) < N3C0s/8  if B < 3/4 and C > 2.
1

Now the number of choices for 3 can be bounded by d(S) and we bound this by N¢s. This gives,

for this case,
50 s \ /16 50
DM < 3 NOs ()7 4 B NN = o),
B,s s=1

s=1
if C > 3.
We now consider those S for which d(S) > A|S|. Going back to (4.66) we see that for these we

have
As/2
N 2eN%Ws\ "
5. < E 6 2e N—C(1=8)C0/2
8,8 b : 4,8 <:8 ) (i € N

s \B-2/a\ 4%/2
<3 05 <4€1+2/AN—C(1—6)C0 s )
5 )

This yields

S AS/5
s, < (N> if B> 1/2. (4.70)
As/2
My, < (4e 0O N=00/2) ” p<1y
and we can easily see from this that > 5 I = o(1) in this case too, for C' > 3. Thus w.h.p.

e(S: Va) = d(8) — 2¢(S) — e(S : V) = d(S) — BA(S) — e(S : V) = (1 — B)d(S)/2.
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(b) Now consider sets with e(S) = |S| —1 and use Lemma 4.5. If [S| > s; then either d(S) > sIn N
or e(S:V,) <[s/500]. The former implies that

e(S:Vy)
d(s)

d(s) —2(1S1=1) — 15| _
aS) =1-o0(1)

>

and the latter implies that

e(S : V)\)
a(s)

d(s) — 2(|S| — 1) — [|S]/500] _ 249
d(s) 250

>

If |S] < s1 then and since d(S) > 35|,

e(S:VA) _ d(S)—2(S|—1) =18 _ 2 _ 2
as) = a(s) Z 315 7 38y -

We verify next that if S C 1, and |S] is too close to N then x(S) will exceed x(G)/2. Suppose
then that |S| > (1 — n)N where 2a9n'/? = &1 of Lemma 4.6. It follows from Lemma 4.7 that
dr,(Vk \ 95) < 2aon*/3N = £, N. It then follows from Lemma 4.6 that

1/2 1/2
M 2,/ * M
> fe< T andhence Y £ >2m - 515 > (2 - 36,/ %)m.

ecEx 6 e€Ek
enS=0 eNS#D
It follows from this and Lemma 4.8 that
351/2
k(S)>[1- # k(Go). (4.71)

It is shown in [1] that if S C Vi, then in K we have
e(S: Vi \'S) > d(S)/50 for all sets S with d(S) < M. (4.72)

Now suppose that S C Vj and k(S) < k(Gp)/2. It follows from (4.71) that |S| < (1 —n)N. This
implies that dg,.(S) <2M — 3nN.

If dg,(S) < M then (4.72) implies that e(S : S) > d(S)/50.
If dg,.(S) > M then 3nN < dk,.(S) < M and hence e(S : S) > 3nN/50 > (3n/50a0)d(S).
It follows that if k(S) < k(Gop)/2 then

2d(S)

e(S'V)>{351 151 < %0 (4.73)

a(S:Vh) 2 .
SLd(S) — d(V,) > sold(S) — N0 > 21.4(S) s < |S|< (1—n)N

Now every heavy edge of Gy has weight at least 1/2. Applying the argument for (2.13) we see that
(4.73) implies that

B(Go) =  min @GO(S):Q<1>>< min M:Q(1>.

SCVo gmax
K(S)<Lw(Vo) [SI<(1—n)N
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Taking account of the special edges introduced to bypass most of the light edges can only increase
the conductance of a set. This is because it won’t affect the denominator in the definition of

conductance, but it might increase the numerator.

All that is left is to consider the effect of splitting the edge f* into a path of length two in order to
define G§j = G§(f*). The conductance of a connected set S not containing v; or ve is not affected
by this change. If S contains v1,vs then after the split, the numerator remains the same. On the
other hand, the denominator can at most double. If S contains one of v, vy then the numerator
still remains the same and again the denominator can at most double.

Thus ®(G) = Q(®(Gy)). Equation (4.64) now follows from Tyux(G) = O(®~21In M).
We then have

21,5
T (G (v-) = O (W) — o(1). (4.74)
Checking (3.5) for G:

Let f* = (v1,v2) as before. Suppose that v; is one of the vertices that are placed on a Kr edge
f = (w1, ws). We allow v; = w; here. We now remind the reader that w.h.p. all Kp-neighborhoods
up to depth 2Ly contain at most one cycle, see Lemma 2.5(b). Let X be the set of kernel vertices
that are within kernel distance Lo of f in Kp. Let Ay be the sub-graph of G obtained as follows:
Let H be the subgraph of the kernel induced by X. This definition includes f as an edge of H. If
H contains no members of V] =V, \ {v1,v2} then we do nothing. Otherwise, let T be a component
of the subgraph of H induced by V and let L = {vg, v(), v1,...,vs} € Nj be the neighbours of T' in
V¥ where vg, v, are the vertices in L that are closest to {wy,ws}. Here vy = vy is allowed and this is
indeed occurs in the majority of cases w.h.p. Note also that by the construction of V,,, each v;,7 > 1
has one neighbour in 7. We replace T' by special edges (vo, v;), (v), vi), (vi, vo), (U}, v0),i = 1,2,...,s.
If T contains a vertex w that is at distance Lo from {wj,ws} then we remove T' completely.

Next add vertices of degree two to the non-special edges of H as in the construction of the 2-core.
We obtain Ay by contracting paths as in the construction of Gg. The vertices of X that are at
maximum kernel distance from f in K are said to be at the frontier of A;. Denote these vertices
by ®;.

We now follow the argument in Section 4.1.1 between “Let us make ®; into...”

and Lemma 4.1,

the proof of which requires some minor tinkering:

Lemma 4.13. Fiz w € ®7. Then

*

P(Wfo visits f within time Tyx) = O(N~%/2) = o(1).

Proof. Let P be one of the at most two paths P, P’ from w to wy in Kp. P = P’ whenever w; is
locally tree like. Let eq,ea,...,er, be the edges of P.

Assume first that neither of these paths contain a member of V,. We will correct for this later. In
this case we can follow the argument of Lemma 4.1 until the end.

Suppose now that the paths contain members of V,. It is still true that there are only one or two
paths from boundary vertex w to wj or ws. The only change needed for the analysis is to note
that after contracting special edges these K paths can shrink in length to 9Ly/10. Here we use
Lemma 4.4. This changes 26072 in (4.11) to 2900/10=2 and allows the proof to go through. O
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The remainder of the verification follows as in Section 4.1.1.

4.3.1 Analysis of a random walk on G

This is similar to the analysis of Section 4.1.2 and may seem a bit repetitive. We will first argue

that

w?M In* M
8+ 0(1)

After this we have to deal with the time spent crossing edges with at least one endpoint in V,,. This

will be done in Section 4.3.4.

the edge cover-time of G is w.h.p. at most (4.75)

We have a fixed vertex u € V) and an edge f* and we will estimate an upper bound for P(A;(vs+))
using (3.1). For this we need a good upper bound on Ry,.. Let f = (w1, ws) be the edge of Kp
containing f*. Recall the definition of A in Section 4.3 where we were checking (3.5). If f is locally
tree like let 717,75 be the trees in G rooted at wi,ws obtained by deleting the edges of Ay that
are derived from the edge f of K. If f is not locally tree like then we can remove an edge of the
unique cycle C' in Ay not incident with v« from Ay and obtain trees 77,73 in this way. Removing
such an edge can only increase resistance and Ry.

We write R, .. = R;f* + R;)'f* where R/

v, 15 the expected number of returns to v within time Ty
before the first visit to @ and R;’f

is the expected number of visits after the first such visit.

*

R, . =2aRp (4.76)

’Uf*
where Rp is the effective resistance as defined in Section 4.1.2, but associated to the weighted
network A. Here « is the weight of the edge f that we split.

We first assume that Ay contains no vertices in V,; and then in the final paragraph of Section 4.3.2
we show what adjustments are needed for this case.

We will show in Section 4.3.3 that
R! =o(R, ). (4.77)

Uf* Uf*

We first prune away edges of the trees 11,75 tree-like neighbourhoods to make the branching factor
of the associated trees at most two. Of course, in tree like neighborhoods we can say exactly two.
This only increases the effective resistance and R, pop Let R, Ro be the resistances of the pruned
trees and let R = R; + R».

We have
1 ! + ! (4.78)
Rp a 140/t + Ry a l4lo/lr+ Ry '

Here ¢;/0* is the total resistance of the G edges in the path from v; to w; derived from f. If v; is

a vertex of K then we can dispense with f2, Rs.

Note that
1 1 4

>
al+ 0/t + Ry * al+ 0o/t +Ry — 4+ (/0" +R

(which follows from a > 1/2 and the arithmetic-harmonic mean inequality).

(4.79)
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Let Emax be as defined before (4.19) and note that given Eyax we have e = O ( ‘22(?\3[}:/% ) = o(1),
where ¢ is defined in Part (a) of Lemma 2.4. We re-write (4.19) as

P(Ry > p1, Ry > po, L = (1 + ) /07 = 1/0%) < (14 2)B(Ry > p1)P(Ra > p2)P(fy + €5 = 1). (4.80)
Note next, that with ¢ = ¢; + {2, and given « and that £ = o(1),
P(L = (b1 + ) /0" = £/0" | Emax) < E(1— )71 <y g7 L/,
We will show in Section 4.3.2 that for p = M°() we have
P(Ry 2 p | Emax) <p 3P0/ (4.81)

This is a simpler expression than (4.20) because here we have £ = o(1).
Let Z1, , p, be the random variable that is equal to the number of vertices of Gy with parameters
L, p1, p2. Then we have

E(ZL py py) <p wM x LE* x g™ 1/@ 5 3Loe=Rlw — glog N Lo (EFp)/w, (4.82)
where p = p; + p2. (The factor £, = L{* comes from the number of choices of edge to split in path
P.).
Using Lemma 3.1 and (4.79) we see that

BV (E(G0).0) < 3wer 0 [

s>t L

<exp {_(1 +0o(1))

dL / dy, d,, Le™LHP/wy
P1,P2

S 4
2wM 4+ L+p

} + O(Tﬁlxwmaxe—w)) . (4.83)

where Tpax = max {m, : v € V}.

Some explanation: The first line is direct from (4.82). Then ﬁ)—o‘M is asymptotic to the steady
«a 1 1

state for vy« and there is a 5- factor from (4.76). So g—f* is asymptotic to 525 - 5o = 5.
v

This is to be compared with the expression in (4.4). Here we are summing our estimate for P(A4(f))

over edges f of weight a. Recall that As(f) is the event that we have not crossed edge f in the
time interval [Ty, $].

Notice that the sum over v € V' can be taken care of by the fact that we weight the contributions
involving v by 7,. Remember that here v represents the vertex reached by WEO at time Thx.

Ignoring a negligible term we have
E(¥(E(Go)),1))

< 3OwEM Y L /

L+p 2s
dL/ dy,d Lexp{—l—l—ol ( + )}
[ dpdy o) (2 Sty

s>t L
expq —(1+0(1)) %%—i
<y 3M0wEM L / dL/ dpydp, L { ( 2+O(1)“’M(L+P)) } (4.84)
L P1,P2 1—exp{—m}
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Note now that in the current case, ¢ = o(1) and so our estimate for Ty is ~ Cw?M In? M where
C > 1/8. So, the contribution from ¢, p such that L + p < wln M/100 is negligible. As are the
contributions from L 4 p > bwln M.

Ignoring negligible values we obtain a bound by further replacing the denominator in (4.84) by
Q(1/w?M In M). Thus,

L+p 2t
E(¥(E(Go),t)) <p 3X0wel* M? In M / Lexp {— — }
( ( ( ) )) L<5win M J p<5w?In M w WM(L—l_p)

t
<p 310w M? In M x (win M)3 exp {— §M} . (4.85)
w

Putting ¢ ~ %w2M1n2 M we see that the RHS of (4.85) is o(t).
We now consider the contribution of O(T2,mmaxe */2) to E(¥(E(Gyp),t)). We bound this by

1 w?M In? M
<p (W?In® M)? x — Q| ——— =o0(1).
< @ MY x o xexp -0 () b= o)
Summarising, if
¢! +80(1)w2M1n2 M (4.86)

then
E(V(E(Go),t)) = o(t)

and then the Markov inequality implies that w.h.p.

U(E(Gy),t) = o(t).

4.3.2 Estimating Rp

We first assume that A; contains no vertices from V5.

We follow the argument in Section 4.1.3 down to (4.30), (4.31) which we replace by
Bta/t" = p) = €(1 - g (4.87)

and
Py /0" > p) = (1 - )" (4.88)

Let the level of a tree like 77 be the depth of the tree in K from which it is derived. Let R} be
the (random) resistance of a tree of level k. Putting Ry = 0 we get from (4.29), (4.87) and (4.88)
that

P(R; > p) < 2(1— &) (4.89)

Assume next that for aj, = (2.5)%, k = o(In M) and for integer 1 < p < M),

P(Ry > p) < ag(1 — €)% (4.90)
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for t > 1. This is true for k =1 and a; = 2+ o(1). Using (4.29) and arguing as in Section 4.1.3 we
get

2p0*—1
P(Riy1 > p) <2 Z Pty = $)P(Ry, > 2p — s) + P(£1 > 2p0*) (4.91)

2p0*—1
<2 3 €0 -T T xag(l - @I 4 (1 )t

2p0*—1

=2 | (L+o(M))axt(1-"" Y (11— +(1-9*" (4.92)

s=1
< (2+ o(1))(ax + 1)(1 — %"
< apa(1 -6

This verifies the inductive step for (4.90) and (4.81) follows. Remember that (1 —¢)%°" < e72007¢ =
—2p/w
e .

For the non locally tree like case we now argue as in Section 4.1.3 down to (4.36) and obtain

2pl*—1
P(R>p) <2 pz: (1— &) /2(2.5)k(1 — )29 | (1 — ¢)2"
s=1
<2((25)8(1 - (&) + (1 - %)
<p w(2.5)FL 1 — )Pt

There is enough slack in (4.81) to absorb the w factor when k = L.

Now suppose that A; contains vertices from V,,. When we encounter a component 7" of V, N Ay we
replace it A by edges (v, v;) (or (v, v;)) and these edges will have been given the same resistance
distribution as other edges of Ay, conditioned on being heavy. This happens with probability
1—o0(1) and the net result is to replace the factor 2 in (4.91) by 2+ 0(1). This will not significantly
affect the rest of the calculation here.

4.3.3 Estimating R/

Uf*

It follows from Lemma 4.13 that

Ry, <n %R, +R].)
and hence
Ry, <n ™R, (4.93)
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4.3.4 Completing the proof of upper bound in Case (c) of Theorem 1

We are almost ready to apply (4.63). We have estimated the cover time, but we have ignored some

E, = U P..

ecEx
eNVy#0

of the time. Specifically, let

We have not accounted for the time that WEF spends covering Ej.

For this we can apply a theorem of Gillman [I8]: Let G = (V, E) be an edge weighted graph and
forx € V let Nq = H%HQ where 7(z),x € V is the steady state distribution for the associated

random walk and ¢(z),z € V is any initial distribution for the starting point of the walk. Let 6
denote the spectral gap for the associated probability transition matrix.

Theorem 4.14. Let A CV and let Z; be the number of visits to A int steps. Then, for any~y > 0,
P(Z, — tw(A) > ) < (14 ~6/10t)Nge 7 /20,

We apply this theorem to the random walk WEF. Let A = E; and v = M/£2. Tt follows from
Lemmas 2.4 (Part (c)) and 4.3 that w.h.p.

WM x & InM
M + 12

m(A) =0 ( ) = O(w '3 M).

It follows from Lemma 2.7 that § = Q(¢2/1n? M). Now let ¢t = M In? M/&2. Then with q of the
form (0,0,...,1,0,...,0) we have

P(Z; > tr(A) + ) = O(m!/2e M/ M)y — (1),

This completes the proof of Case (c2).

4.4 Case (c3): v, >e¥

In this case we can use the fact that w.h.p. fe € [lnin, fmax] for e € Ex to (i) partition all induced
paths of G into sub-paths of length ~ p = me /2, (ii) replace these sub-paths by edges to create
a graph I' and then (iii) apply the Case (c) reasoning to I' and then scale up by u? to get the
claimed upper bound.

The proof of the upper bound for Case (c) of Theorem 1 is now complete.

4.5 Case (b): ,=M*0<a<]1

Our argument for this case will not be so detailed as for the previous cases. It is closer in spirit to
that of the previous papers of the first two authors.

Note that in this case

So,
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Lemma 4.15. Let § > 0 be an arbitrarily small positive constant. Then w.h.p. b, < ly =
[1/(1 —a)+1+6] foree E(Kp).

Proof. Going back to (2.6) we have

3 s—1
P(Ee:le>Ly) <M Y M- (1 + a> = o(1).
= M+ M

O]

The next thing to observe in this case that there will be very few vertices of degree two close to
any vertex of Kp.

Suppose that d,, = A. We choose dy < 1/100 such that ALo < p(1-a)/2,
Let E, s be the set of edges of Kr that are within distance s of vertex v € V(KFp).

Lemma 4.16. Then w.h.p.
> le < By Lol + 2La

GEE’UVLO

Proof. Let h = |E, 1,|. Then we have

s—h
Pl Y tezh+20 | <o)+ > Y > pmeh) <1+M+3Ma>

eeE’U,LO ’UEV KF) s>h+20q ze,e€E, Lo
o Ze=S$
s 1 —R)(1— 1
)+ M Z M (s=h)(1—a+o(1))
s>h+20,,
1 s—h
<b0 +M Z < —h Ml a—i—o())
s>h+20
Z M7(17a+o(1))/2
s>h+20,,
= o(1). O

It is not difficult to show that the conditions of Lemma 3.1 hold w.h.p. and so it is a matter of
estimating the R,’s. This involves estimating the effective resistances R] so that we can use (4.16).
The inequalities

-

1 1 1 1

F1ts R®RTS

L <1+1f ive it R<gS
_ — — IO0r positive 1mtegers
R+1 S—1°R"5P ®

imply the following:

(i) If v € Vi and if we assume k = O(1) vertices of degree two within distance Ly of v then
we get the maximum effective resistance in (4.16) by distributing these degree two vertices
equitably on the edges incident with v.
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(ii) If d(v) = 2 then we get the maximum resistance when v is in the middle of the path P, that

it lies.

There are now three cases to consider:

(1) If £ = 0 and v is locally tree like, then the resistance satisfies

d—1

/
< =

(4.94)

where d is the minimum degree in Kr. The value d(dd:12) is the resistance R of an infinite

d-regular tree Tt,. Trimming the tree at depth Lg explains the inequality. We obtain the

resistance of Ty, by first computing the resistance p of an infinite tree with branching factor
d — 1. This satisfies the recurrence % = % giving p = ﬁ. The resistance Ry, then satisfies

jut
— = 1L, giving Ry = (1+p)/d.

Rd,oo

If on the other hand, k = pd + ¢ where 0 < ¢ < d then

- d d—q
- 1
p+l+g5 (p—i—ﬁ) <p+1+d12)
d d—q d—q
_E+L+ 1 1 k 1 1
d ™ a2 (p+ﬂ) <p+1+ﬂ> (a+ﬁ> (P+1+ﬂ)
d
k 1
T a2

The case (4.94) is equivalent to p = ¢ = 0.
Next observe that the number of vertices with this value of k is O(M*~(1=®*) w h.p. Thus the

main contribution from these vertices to U(V,¢) can be bounded by

S

<o Y Mo { -+ o)yt 2L

SN MUk exp {(1 + m»ﬁ : d} (4.95)

_1
s>t k>1 + 3=

ISHES]

If v € P, e is locally tree like and v is the middle of k > 1 vertices of degree two, then

1 ( 1 N 1 ) , (4.96)
R, =\ [+ 1)/2)+ 25 [(h+1)/21+ 25

Observe that once again the number of vertices with this value k is O(M*~(1=®%) w h.p. Thus
the main contribution from these vertices to ¥(V, ) can be bounded by

1=(=a)k o0 (1 4 o(1))—— L !
2™ p{ o ””W(L(kﬂ)/zwdlﬁ(<k+1>/21+d12)}
(4.97)
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Comparing (4.95) and (4.97) we see that the latter dominates, except possibly for the first term
corresponding to (4.94). Asin [!], this first term forces Tooy > (1 +0(1))27’fM In M. The other
terms in (4.95) force

Teov 1 n !
2M \ [(k+1)/2)+ 75 [(k+1)/2] + 25

(3) Non locally tree like edges and vertices: This follows from two easily proven facts: (i) There

mkin{(l —a)kln M +

> } > (1+0(1)) In M.

are M°1) such vertices and edges, (ii) the resistance R/ in all such cases is O(1/(1 — «)). This
means that all such vertices will w.h.p. have been visited after o(M In M) steps.

This completes the upper bound for Case (b) of Theorem 1.

4.6 Case (a): v, = MW
This is essentially treated in [1]. W.h.p. every K neighbourhood up to depth Ly attracts at most

one vertex of degree two when edges are split. Furthermore all but an M~(1~°(1) fraction are free
of vertices of degree two. It is easy therefore to amend the proof in [!] to handle this.

5 Lower Bounds
5.1 Case (a): vy = M°W)

This is essentially treated in [1].

5.2 Case (b): m=M*0<a<1

This can be treated via the second moment method as described in [7]. We give a bare outline of
the approach. Let
2(d—1)
7»Da,d = Inax {d(d—2) 7¢a,d} )

set t = (1 —o0(1))¥q,aM In M and suppose for example that ¢, q = %. This is true for o small

and d large. We then let S denote the set of vertices that (i) are locally tree like, (ii) have no
degree two vertices added to their Lg-neighbourhood and (iii) have only degree d vertices in their
Lo-neighbourhood. We find that |S| = Q(n'=°M) w.h.p. and we greedily choose a sub-set S; of
S so that (i) if v,w € S; then dist(v,w) > 2Lg and (ii) |S;| = n'=°M). Let S* denote the set of
vertices in S7 that remain unvisited at time ¢. We choose the o(1) term in the definition of ¢ so
that E(]S*|) — co. We will then argue that if v,w € S; then

P(A(v) N Ap(w)) ~ (A (0))P(Ar (w)). (5.1)

This means, via the Chebyshev inequality, that w.h.p. S* # (), giving the lower bound. To prove
(5.1) we consider a new graph G’ where we identify v, w to make a vertex T of degree 2d. We then
apply Lemma 3.1 to G’ to estimate P(A¢(Y)). Observe that up until the walk visits T in G’, its
moved can be coupled with moves in G. Also, v has steady state probability approximately equal
to that of v, w combined, but Ry ~ R, ~ Ry, and (5.1) follows.
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5.3 Case (c): vp = Q(M'oW)
We use the following result of Matthews [22]. For any graph G
1
> =

where
Kg = min K(u,v).

u,VES

Here K(u,v) is commute time between u and v. Le. the expected time for a walk W that starts
at u to visit v and then return to w. This in turn is given by

K(u,v) =2|E(G)|Reg(u,v),

E(G) is edges of G, and Reg(u,v) is effective resistance between u and wv.
It is now simply a matter of finding a suitable set S.

Fix an integer ¢ and consider
Sy = {u : Je € K such that u is the middle vertex of P, and ¢, > ¢} .

Now
Reg(u,v) > £/2 for u,v € Sy.

To see this, let P., Py be two paths of length (at least) ¢ and let a,b,c,d be their respective
endpoints. Let u,v be the midpoints of P, Pr. Let V) be the set of vertices not on P, or Ps.
Contract the set V) U{a,b,c,d} to a single vertex z. This does not increase the effective resistance
between u and v. What results is a graph consisting of two cycles intersecting at z. The effective
resistance between u and v is now at least ¢/4 4+ ¢/4 = (/2. Here ¢/4 is a lower bound on the
resistance between u and z etc.

Now m > vy and we will choose our ¢ to be ¢y = % It follows from Lemma 2.4 (Part (b))
with k = 1 that E(|Sy,|) ~ M(1 — &)%. Lemma 2.4 (Part (b)) with & = 2 allows us to use the

Chebyshev inequality to show that |Sy,| ~ M(1 — &)% w.h.p. (Here we take ( < 2fpay so that

VQiM =0 (—IHLM) = 0(1).) Note that M(1 — &) = M'/? — .

Putting this altogether we see that w.h.p.

In M " In M
—41n(1 -¢) 2

Toon(GF) > (1 — o(1))re x (5.2)

Since —In(1 — &) ~ ¢ for small £, this also includes Case (c). This completes the proof of Case (c)
of Theorem 1.

Remark 5.1. Our assumption, In(1 — &) = o(In M) implies that we can ignore the fact that ly is
an integer. That is, by defining by without [-] we can include the error in the (1 — o(1)) factor.
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