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We describe a polynomial time (O(n®logn)) algorithm which has a high
probability of finding hamilton cycles in two classes of random graph which have
constant average degree: the m-out model and the random regular graph model.
We also show how the algorithm can be used to find a large cycle in a sparse ran-
dom graph. © 1988 Academic Press, Inc.

INTRODUCTION

The past few years have seen some important progress with respect to
the problem of the existence of hamilton cycles in random graphs. The
paper of Komlos and Szemerédi [15] gave the exact threshold for the
existence of hamilton cycles in the random graph G, ,,, tightening the
result of Posa [16]. Bollobas, Fenner and Frieze [7] described a
polynomial time algorithm HAM for finding hamilton cycles which gives a
constructive proof of the result in [15]. This improved the previous results
of Angluin and Valiant [2] and Shamir [18].

In [13] we studied random travelling salesman problems and gave
modifications to HAM which enabled us to prove that it has a high
probability of success on graphs with considerably fewer edges than needed
for the threshold [15] provided the minimum degree is high enough. In
this paper we continue this development for three classes of random graph
with constant average degree.

We first consider a variation on the class of graphs studied by Fenner
and Frieze [9]. Let veV,={1,2,..,n} independently make m random
choices c(v, i)e V,, i=1, 2, ..., m. These choices are not necessarily distinct.
This is done independently for each ve V,. Then D(n, m)=the multi-
graph (V,, E(n, m)), where E(n,m)= {(v, c(v,i)):veV,, 1<i<m and
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HAMILTON CYCLES IN RANDOM GRAPHS 231

v#c(v,i)}), i.e.,, we ignore orientation in (v, ¢(v, i)), but do not coalesce
multiple edges or remove loops.

The main result of [9] is lim, _, ,, Pr(D(n, 23) is hamiltonian) = 1.

The proof is existential and we make the following

Conjecture. lim,_, . Pr(D(n, 3) is hamiltonian) = 1.
Our first result gets a little closer to this conjecture:

THEOREM 1.1. There is an O(n’logn) time algorithm HAMI1 which

satisfies
lim Pr(HAMI1 finds a hamilton cycle in D(n, 10)) =1

We next consider random regular graphs. Here we let R(n, r) denote a
random regular graph chosen uniformly from the set of graphs on V,
which are regular of degree r. Bollobas [5] and Fenner and Frieze [10]
independently gave proofs that there is a constant r, such that for any
constant r > r,,

lim Pr(R(n, r)is hamiltonian) = 1.

The smaller value of r, was 796 of [10]. This paper improves this, but
more importantly gives a polynomial time constructive proof. More
specifically we have

THEOREM 1.2. There is an O(n’logn) time algorithm HAM2 which
satisfies

lim Pr(HAM2 finds a hamilton cycle in R(n, r))=1

n— o0

for any constant r > 85

It is reasonable to conjecture that r, = 3, especially as Richmond, Robinson
and Wormald [17] have proved the corresponding result for the bipartite
case.

Our final result concerns the random graph G, ,, p=c/n, ¢ constant,
which has vertex set ¥, and in which each of the (5) above possible edges
independently has probability p of being included and 1— p of being
excluded. Several papers [1, 11,4, 6, 12] have been concerned with the
length of the longest path or cycle in G, ,. The strongest result, for large c,
is given in [12]. For a graph G let A(G) = the length of the longest cycle in
G. In [12] we show that

lim Pr(A(G

n— oC

)=(1—ce ‘(1 +¢(c))n)=1,

n.p

where lim, _,  &(c)=0.
The proof in [12] was again existential. Our final result is
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THEOREM 1.3. There is an O(n’logn) time algorithm CYCLEFIND
which satisfies
lim Pr(CYCLEFIND constructs a cycle of length

n— oo

(I1—ce “(1+¢(c)))n)=1.
(The result is still valid if ¢ =¢(n) = 0.)

Notation. We give some notation that is used throughout the paper.

A graph G has vertex set V'=V(G) and edge set E= E(G). It has
minimum degree 6(G) and ve V has degree d;(v).

If ScV then G[S]=(S,Es), where Eg={eecE: ecS}. Also
N(S, G)={we V—S: Jve S such that (v, w)e E}.

An event E, will be said to occur almost surely (as.) if
lim,_,  Pr(E,)=1.

ALGORITHM HAM

The following idea has been used by many authors: given a path
P= (v, v,,..,0;) plus an edge e=(v;,v;), where 1<i<k—2, we can
create another of length £k —1 by deleting edge (v,,v;,,) and adding e.
Thus let

ROTATE(Pa e) = (vla D25 ooy Uy Ugs U g5 ooy U:’+1) and NEW(Ps e) = vf'+ 1-

v, is called the fixed endpoint, v, is called the rotated endpoint and e is
called the rotation edge of the rotation.

The algorithm we describe proceeds by a number of stages. At the begin-
ning of the kth stage we have a path P, of length k, with endpoints w,, w,.
We try to extend P, from w,. If we fail but (w,, w,) € E(H) then assuming
- connectivity we can find a longer path. Failing this, we do a sequence of
rotations with w, as a fixed endpoint, which creates new paths that we can
try to extend or close. We apply the same construction to all these paths
and so on until we have succeeded in obtaining a path of length £+ 1 or
we have run out of paths to rotate. We then take this set of paths and treat
each of them like P, but using w, as the first rotated endpoint.

We construct our sequence of paths in a “depth-first” manner. Suppose
the “current” path is Q. One end u will be kept fixed. Suppose its other end
v has neighbours x,,x,,..,x,, where x,eQ. We replace Q by
ROTATE(Q, (4, x,)) and continue with this “new” Q before considering x,
and the “old” Q, which will be done after backtracking.

The above procedures are all perfectly natural. We now come to a
somewhat unnatural procedure. It is included because without it we cannot
make our proofs work. We would like someday to avoid this trick but at
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present we cannot. Our algorithm HAM assumes the partition of the edges
E(H) of the input graph H into 2 sets £, and E_. The edges in £_ can
only be used to close cycles. We define H, = (V(H), E . ).

We now give a formal description:

HAM’s input is a connected graph H with 6(H) > 2 plus a partition of its
edges into E, and E_. We also assume that the input includes specific
orderings of the vertex adjacency lists, i.e., for each ve V(H) HAM is given
a total ordering of the set N(v, H) of neighbours of v in H. In this context
min,(X), for X < N(v, H), is the first vertex of X appearing in the adjacency
lists for v.

Algorithm HAM
begin
let P, be the degenerate path consisting of v, = min(V(H)) alone
k :=0;

LO:
begin [stage k begins here]
longerpathfound := false;

L1:

let P, have endpoints w,, w, where woe P, _, and w, ¢ P, _,; [of course
when k=1 wy=w,=v,.
storepaths := true; [ When this variable is true the new paths generated
by rotations during SEARCH are stored for later.
END, := {w,} [We keep track of the endpoints of some paths.
SEARCH(P,, w,, P); [Do rotations with w, as fixed endpoint
if longerpathfound then [i.e. if SEARCH has found a path longer than
P, '
begin

k:=k+1; P, :=P; goto LO
end else
storepaths :=false; [ No need to store paths now
for we END, do [SEARCH(P,, w,, P) constructs a set of paths

[{P(wo, w): we END,} where P(wg, w)
[has endpoints w, and w.

begin

SEARCH(P(wgy, w), w, P);

if longerpathfound then goto L1
end;
terminate unsuccessfully [successful termination with a hamilton cycle

[occurs in SEARCH

end;
end;
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procedure SEARCH(Q, u, P);

begin

let v be the endpoint of Q other than u;

DFS(u, *) [ * 1s used as a marker here.
end;

procedure DFS(v, y); [vertex y is such that ROTATE(Q, {v, y})
[reverses the rotation made immediately prior to this call of DFS.
begin
L2:
let X={x¢Q:{v,x}eE,};
if X # (& then
begin
x :=min,(X); p:=Q+ {v, x}; longerpathfound :=true [extension
end else
L3:
if{u, v} € E(H) then
begin [cycle extension
let C be the cycle Q + {u, v};
if C is a hamilton cycle then terminate HAM successfully
else
begin
starting from u, let a be the first vertex along Q which is adjacent in
H, to some vertex not in C; let B={xeC:{a,x}€E, };
b :=min,(B); let a, and a, be the neighbours of ¢ on C where a, <a,;
P:=P+{a b} —{a, a,}; longerpathfound := true
end
end
else
begin
let X={x,, x5, .., x,};
for i=1to p do
if e= {v, x;} € E, and not longerpathfound and ¢ has not been used
previously as a rotation edge in the current execution of SEARCH
then
begin
Q :=ROTATE(Q, {v, x;}); v' :=NEW(Q, {v, x,});
if storepaths and v'¢ END, then

begin
END, :=END, U {v'}; P(wy, V') :=0Q
end;
DFS(NEW(Q, {w, x,}), x,)
end;

end
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ify # * then Q := ROTATE(Q, {v, y}) [backtrack to the parent path
end;

Running Time of HAM

The running time of HAM is dominated by a factor dependent on the
number of rotations. Using the idea of [2] we may do each rotation in
O(log n) time. Each execution of SEARCH requires < | E , | rotations, each
of the <n stages requires <n executions of SEARCH giving O(n’log n)
time overall as in our examples |E | = O(n) a.s.

For the remainder of this section we consider those executions of HAM
that terminate unsuccessfully. In particular suppose that HAM terminates
unsuccessfully in stage k. Let

END(H)=END, U {w,}
and

END(H, w)= {v: v is an endpoint of a path created during the
execution of SEARCH(P(w,, w), w, P)}

for we END(H).
The following lemma is clear.

Lemma 2.1. If HAM terminates unsuccessfully then weEND(H),
ve END(H, w) implies that (v, w) ¢ E(H).

A set X< E_ is deletable if no e € X is used to close a cycle at statement
L3 during the execution of HAM on H. The following lemma is also clear.

Lemma 2.2. If HAM terminates wunsuccessfully, X is deletable,
Hy=(V,, E(H)— X) and the adjacency lists of H y conform with those of H
then HAM terminates unsuccessfully on H, in stage k. Furthermore
END(H ) =END(H) and END(H y, w) =END(H, w) for we END(H).

We will need to show that |[END(H)| is a.s. large. This will always be
shown to follow from

LEmMMmA 2.3. If HAM terminates unsuccessfully then

IN(END(H), H. )| <2|END(H)|. (2.1a)
IN(END(H, w), H_ )| <2|END(H, w)|. (2.1b)
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Proof. We modify the argument of Posa [16]. We prove (2.1a); an
almost identical argument will prove (2.1b). To prove (2.1a) we show that

x€ N(END(H), H , ) implies 3y e END(H) such that (x, y)
is an edge of P,. (2.2)

Suppose xe N(END(H), H,), ze END(H), e=(x,z)e E, — P, and
neither of the neighbours u,, u, of x on P, is in END(H ). x # w, since
stage k terminated unsuccessfully. Eventually HAM creates a path P with z
as an endpoint and e will be considered for rotation. It will not have been
used before as x ¢ END(H) and P will contain both edges (x, u,), (x, u,)
because when an edge is deleted by a rotation one of the vertices is placed
in END(H). Thus e will be used to rotate and at least one of u,, u, is in
END(H )—contradiction. |}

M-OUT

This section is devoted to the proof of Theorem 1.1. Let m be a fixed
integer; m will be 9 for the main result. We construct an edge coloured
D(n, m+1) as the union of D(n, m), with red edges plus an independent
D(n, 1) with blue edges.

The input to HAM is H= D(n, m+ 1) with (1) adjacency lists in random
order (note that the adjacency list for v can contain two copies of a vertex
w if v chooses w and w chooses v) and (2) E, = E(m, n) = {red edges of H}
and E_ = E(n, 1) = {blue edges of H}.

We first note

LEMMA 3.0 [8]. D(n, m) is a.s. connected for m > 2.

The next lemma shows how we aim to prove Theorem 1.1.

LEMMA 3.1. Suppose that the following are true a.s. for o=a(m),
p=p(m), 0<f<a<l:

ScV,, |S| <an implies that |N(D, S)| =2|S| (3.1a)

where D = D(n, m).

HAM applied to D(n, m + 1) makes fewer than fn cycle extensions. (3.1b)
(1=B)>1 —a)x—A/a=5 (3.1c)

Then HAM a.s. finds a hamilton cycle in D(n, m + 1).
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Proof. We use a variation of the colouring argument of [9]. Let
w=[logn] and ¢>0 be small. Let Y be a random w-subset of V,. For
yeY let x(y) be the vertex chosen by y in the construction of E_. Let
X=X(Y)={(y,x(»)): ye Y}. We define two events.

E, = {(3.1a) holds for H, , (3.1b) holds and HAM fails on D(n, m +1)}.
E,=E,n {Xis deletable and | Y n END(H)| > yw}

where y = (1 —¢)(x— B)/(1 - B).
The lemma follows from two inequalities plus the fact that ¢ is arbitrary.
Pr(E,|Ey) = (1 —o(1))(1—B)*. (3.2a)
Pr(E,)<(1—a)™. (3.2b)

For then Pr(E,)=o0(1) and Pr(HAM fails)<1—Pr((3.1a) and
(3.1b)) + Pr(E,).

Proof of (3.2a). Given D(n,m+ 1) and an ordering of the adjacency
lists such that E, occurs, we have |[END(H)| > an from Lemma 2.3. The
probability of E, is then easily seen to be at least (1 —o(1))(1— f)“.

Proof of (3.2b). We prove this by showing that
Pr(E;|Hy)<(1—a)™ (3.3)

(by ( |Hy) we mean that we are given Y, the m + 1 vertex choices for v¢ Y
and the m vertex choices for ve Y). If E, occurs then Lemmas 2.1 and 2.2
and (3.1a) imply that

HAM fails on Hy, |Y nEND(H,)| = y» and
|[END(H y, w)| = an for we END(H y). (3.4a)

ye YN END(H ) implies x(y)¢ END(H,, y). (3.4b)

It is important to note that, given H,, although Y is determined the
choices x(y), ye Y are arbitrary and hence equally likely.

Now Pr(E,|Hy)=0 if H, does not satisfy (3.4a) and so assume that
(3.4a) is satisfied. In this case

Pr(E,| Hy) < Pr((3.4b)| Hy) < (1 — )Y 2 ENDUI

and (3.3) follows. |
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LEMMA 3.2. Let

3mxx(m—3)x(1 _x)m(l—Sx}
22x(1 _3x)m(l—3x}

¢m(x) =

Ifm>4, o <(2m—4)/(6m—3), and ¢,,(x) <1 then (3.1a) holds a.s.

Proof. Let
n! 3k mk k m(n— 3k)
&) =)
kK!(2k)!(n—3k)!' \ n n

Then Pr((3.1a)) fails) <> u, <>%*{ #,.(k/n)" on using Stirling’s
inequalities.

Now one can see that for some constant 4,,, ¢,,(x)<(4,,x)*. Thus
SL124ml gy < SLY2Am) (A4, k/n)* = O(1/n). On the other hand, by differen-
tiating log ¢,,(x) twice we find

¢:1(x)_(¢;n(x))2= 2m 3m  om-3_ 9
Pm(x) \ $(x) (

I—xP 1—-x' x 1-3x

9
(1-3x)

> (6m—3)—

Thus the lemma’s assumptions imply ¢, is convex in [0, a]. Since
$,.(1/24,,) <1 the result follows. |

LEMMA 3.3. Let ¢>0 be arbitrary. Then HAM a.s. makes no more than
(14 ¢)n/(2m— 1) cycle extensions.

Proof. Consider the start of stage k, in particular the first execution of
L2. Here v=w, and

n

m—1
SU= (E) e~ mu _k’/"). (35)
n

kK\™ ! 1\ m(n—k)
Pr(X = | previous history) < (;) (1 __)

To see this we observe: at any stage of the algorithm P, contains two types
of vertex, live and dead. A vertex w is dead if at some time previously, at
statement L2 we found X = J for v=w. For such a vertex we know that it
has no neighbours in Q, =V, — P,. If wis a live vertex than all we know is
that each time w has appeared as v in L2, X # . Let L, = {live vertices }.
Consider now the choices made by vertices in Q,. The only way they have
been conditioned is that they do not choose in P, — L,, 1.e., their chances
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of choosing in L, have increased. Furthermore, we have no information
about which vertices in L, are chosen by xe Q,, for when the algorithm
establishes such a choice x immediately becomes an endpoint of the current
path. Now w, has just been added to P,. By the above we know that given
the previous history the probability that the (=) m — 1 choices of w, that
are not yet known to us are all in P, is <(k/n)” ' and independently the
probability that no vertex in Q, chooses w, is <(1—1/n)"" %), and (3.5)
is verified.

It follows that the number of times we do not make an immediate exten-
sion from w, at the start of stage k is stochastically dominated by the sum
of n 0-1 random variables Z,, Z,,..., Z,, where Pr(Z,=1)=u,. Thus,
using Theorem 1 of Hoeffding [14],

Pr( Z.>2(1+¢) Z u,.)ge—szzleunS:o(]),
i=1

Hence for large n HAM a.s. makes fewer than

n =
(1+¢) Y u;<(1+2e)n| x" le ™" Ydx (3.6)

i=1 0

ol
—(+2e)n| 1=y e ™ dy (3.7)

Y0

ol

<(1+2)n| e Cm-Drdy

0

and the result follows as ¢ is arbitrary. |

To prove Theorem 1.1 we take m=9. a =0.27 satisfies the conditions of
Lemma 3.2. Taking f=1/17 from Lemma 3.3 and applying Lemma 3.1
yields the theorem. (Note that using the exact value for the integral in (3.7)
does not reduce the value of m. Now if X' = ¢ on the first execution of L2
in stage k then w,’s choices are random in L,. Using this we can reduce m
to 7 and replace 10 by 8 in Theorem 1.1. This requires us to obtain a.s.
upper bounds for the number of dead vertices at any stage and use a com-
puter to estimate integrals numerically. We judge that it is not worth
reproducing the entire argument here.)

REGULAR GRAPHS

This section is devoted to the proof of Theorem 1.2. We must first
describe how the edges of R(n, r) are partitioned into £, and E_. We let
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each ve V, independently choose one edge randomly from its r incident
edges and place it in E*. Thus the same edge can be chosen twice.

Next let W= {veV,: v is incident with >r/2 edges of E*} and then
E_={eecE*enW=(J}. Having made this partiton we put the
adjacency lists in random order and apply HAM. In order to prove
Theorem 1.2 we need a model for studying R(n, r). Let REG(n, r) be the set
of r-regular graphs with vertex set ¥, and consider the model defined in
Bollobas [3]. Let Dy, D,,.., D, be disjoint sets with |D,|=r and set
D=U;_, D;and 2m= |D|=rn. A configuration C is a partition of D into
m pairs, the edges of C. Let @ be the set of all &(m) = (2m)!(2~"m!) con-
figurations. Turn @ into a probability space by giving all members of @ the
same probability. For Ce @ let g(C) be the multi-graph with vertex set V,,
in which i is joined to j whenever C has an edge with one end-vertex in D,
and the other in D;. Clearly REG(n, r) < g(®) and | g~ '(G)| =r!" for every
R(n, r)e REG(n, r).

Let O be a property of the graphs in REG(n, r) and let Q* be a property
of the configurations in @. Suppose these properties are such that for
GeREG(n, r) and Ce g '(G) the configuration C has Q* if and only if G
has Q. All we shall need from [3] is that if almost every C has Q* then
almost every G has Q.

We shall thus be able to prove the theorem if we can show that HAM
applied to a multigraph g(C), C chosen randomly from @, almost surely
finds a hamilton cycle.

In terms of configurations our partition of the edges of C is done as
follows: suppose that D, = {(i—1)r+t:t=1,2, .., r} for i=1,2, .. n Let
A,={(i—-lr+1:i=1,2,.,n} and C*={eeC:end,#JF}.

Let D¥*=D;,nU.ccve and C,={eeC*:enD,# JF} for ieV,. Let
W={ieV,:|D¥ >r/2} and thenlet C_=J,, ,C,and C, =C—C_ and
let B,=A4,nU.cc_e.

For C chosen randomly from g~ '(REG(n, r)), taking E, = g(C, ) and
E_=g(C_) yields an R(n,r) with the same random edge partition as
that given at the start of this section. We now prove the equivalent of
Lemmas 3.1-3.3.

LEMMA 4.1. Suppose that the following are true a.s. for a=oa(r),
B=PB(r), y=y(r), 0<p+y<a<l.

S<V,, |S| <an implies that |N(S, g(C,))| =>2|S|; (4.1a)

HAM applied to g(C) makes fewer than Bn cycle extensions; (4.1b)

B, = (1—7y)n; (4.1c)

1——[-))—>(1—é)em, (4.1d)
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where 0 =(a—f—7v)/(1 —B—7v). Then HAM a.s. finds a hamilton cycle in
R(n, r).

Proof. Let w=[logn7?and ¢>0 be small. For xe D let p(x, C) be the
element of D paired with x by C. Also let 4(x) be defined by xe D,,,,.

Let Y be a random w-subset of B,, Z={h(y):yeY} and
X={eeC:enY+# }. We define two events:

E, = {(4.1a) holds for C , (4.1b) (4.1c) hold and HAM fails on C}
E,=E,n {Xis deletable and (i) |Z n END(g(C))| = ¢w,
(i1) [Z N END(g(C), w)| = {w for we END(g(C)) },

where ¢ = ¢(n) is such that éw is the smallest even integer > (1 —¢) dw.
The lemma follows from two inequalities as before.

Pr(E, | E}) > (1—o(1)) (1 -—%) (4.22)
Pr(E,) < (1+ o(1))((1 — £/2) e¥2)°. (4.2b)

The proof of (4.2a) is essentially the same as that for (3.2a).
To prove (4.2b) we show

Pr(E,| Cy) < (1 40(1))((1—=¢/2)e?)>, where C,=C-—X.

If E, occurs then Lemmas 2.1-2.3 and (4.1a) imply that

HAM fails on g(Cy), |ZnEND(g(Cy))| = ¢w and
|ZNEND(g(Cy), w)| = éw for we END(g(Cy)). (4.3a)

z=h(y)e Zn END(g(Cy)) implies h(p(y, C)) ¢ END(g(Cy), z).  (4.3b)

It is important now to note that, given C,, Y is determined but the
elements of X are paired up arbitrarily.

Now Pr(E,|Cy)=0 if C, does not satisfy (4.3a) and so assume that
(4.3a) is satisfied. In this case

Pr(E,|Cx) <Pr((4.3b|Cy)
< 20 — o) (2w — {0)/2)/{(w)
= (1 +o(1))((1—¢/2) e?)".

using | X| < 2w and that the “first” {w/2 points of Z " END(g(C,)) have at
most 2w — {w choices of points to be paired with. The lemma follows. ||
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LEMMA 4.2. Let
(3x)(" 1)x/2,(1 — 3x)/6

x¥(2x)7(1 = 3x)T

¢.(x)

Ifr=260,0<a<(r—7)/(3r—3) and ¢,(2) <1 then (4.1a) holds a.s.
Proof. Now

Land n!
Pr((4.1a fails) < :
r((4.1a fails) kglk!(zk)!(n—%)!“"

where n, =Pr(N(V,, g(C,)) = {k+1,k+2, .., 3k}).

SMALL k. Suppose first that 1 <k <e,n, where &, = (2812")/~12)/3,
Since the minimum degree in g(C, ) is at least /2 we have

rk
g 3 3 ==y i . b ] y Ga=y g
Ty ([‘rk/4‘|) Pr({1,2, .., [rk/47} are paired by Cin {1, 2, ..., 3rk})

rk 3k\M A4
< -
(l— rk/ﬂ)( n )
(12ek)k’/4
< .
n

A routine calculation using

n[ n3k

: <
k!(2k)!(n—3k)! ~ e¥*k*(2k)*

now yields

2 Fanim 30 =0

LARGE k. We consider the pairings made by all the points in
k_,D,—A,. This yields

. (B(r— 1)k + n)"" e (31«)‘“ D skys

rn n

and hence, on using. Stirling’s inequalities,

3 ik S .(k/m) (44)
T < Ak/n)". .
ko K1) (n—3k) 6, =
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We next use

Pm(x) (';.é:n(x))z_r—7 9
6.(x) \d(x)) 2x 1-3x

to show that r is convex in [0, (r—7)/(3r—3)]. One then checks that
¢,(x) <y, (x)=(3x)" " D%(3¢'®) and y,(1/r) < 1 if r >41. The lemma now
follows from (4.4) provided 1/r <e¢, and this holds if r > 60. |

2 rf2—1
1B, ;(1 hzr(r_ez) )n as.

Proof. 1f [D¥| > r/2 then at least r/2—1 out of {2, 3, ..., r} are paired by
C with elements of 4,. We deduce therefore that

r . 2¢ 7?1
P * < —(Frﬂ"l—i)g )
(21> (o0 ) (=5)

LEMMA 4.3.

Hence

rfl2—1
E(|W|)g( L ) n.
r—2

One may similarly show that Var(|W|)=0O(n). Thus the Chebycheff
inequality shows that |W|<2E(|/W|) as. Now use the fact that
|B,|=n—r|W|. 1

LEMMA 4.4. Let ¢>0 be arbitrary. Then HAM a.s. makes not more
than (1 +¢)n/(r — 3) cycle extensions.

Proof. Consider the start of stage k, in particular the first execution of
L2. Here v=w, and

(4.5)

. _ r—2
Pr(X = | previous history)g((r Bl k)) :

(r—=2)k+r(n—k)

To see this we can assume that the previous history gives us all pairings in
C that only involve elements of D., ie P, ,. Assume that this leaves
d<(r—2)(k—1)+1 elements of D,, ie P, _, unaccounted for. One point
of D, is known to be paired with a point of D;, je P, ;. The remaining
points of D are paired arbitrarily. We consider r—2 such points of
D,— A,. The probability that each of these is paired with one of the d
points previously mentioned or the n—k points of A4, associated with
vertices not in P, is bounded above by the RHS of (4.5).
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Arguing as in Lemma 3.3 we then see that HAM a.s. makes fewer than

L/ (r=2)x+(1—x)\"?
““)L((r—z)xw(l—x)) o

cycle extensions. The result follows on substituting x =1 — y in the integral
and using

(r—2)—(r—3)y _(r_3)y —(r=3)y/(r—2)
(r—2)+2y <(1 r— )“<‘e -1

To obtain the theorem we use o =0.309 in Lemma 4.1. Everything goes
through for r > 85.

SPARSE RANDOM GRAPHS

This section is devoted to the proof of Theorem 1.3. Let G=G,, ,. The
idea is to define a “large” set ¥* =V, such that the graph H=G[V*] is
a.s. hamiltonian. This is what is done in [12].

Construction of V*

Step 1. The 2-core of G is the largest set S< V,, such that 6(G[S]) > 2.
It exists because if 6(G[S;])=>2 for i=1, 2 then é(G[S, v S,])=>2.
The following algorithm constructs the 2-core TWOC:

begin
TWOC :=V,;
while 5(G[TWOC]) <2 do TWOC :=TWOC — {we TWOV:

dG[TWOC](w) < 2}
end.

On termination TWOC is the 2-core. This is because one can easily show
inductively that each iteration removes vertices not in the 2-core. Note also
that no cycle of G contains a vertex of V,-TWOC.

The remaining steps remove vertices so that S< V*, |N(S, H)| <2|S|
implies that S is large.

Let ve V, be small if d;(v) <¢/10 and large otherwise.

Step 2.

begin
SMALL = {small vertices }, X := (J;
repeat
S:={veV,—X:|N(v,G)n (X USMALL)| >2};
X:=XuUS
until S=J
end
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Thenlet Y={yeV,:ds(y)=2 and N(y,G)n X # I} and
4
=U 774
t=1

where W,= {ve SMALL: 3we SMALL and a path of length 7 from v to w
in G}. (We allow v=w when t=3 or 4.)

We finally define V*=TWOC—(WuXuY) and H=G[V*]. The
reasons for the exact definition of W, X, Y are made clear by the proofs in
[12]. O(n?) time is ample for the construction of H. The following results
are proved in [12].

LEMMA 5.1. For large enough ¢ we a.s. have

(@) |V*=n(1—(1+¢(c))ce ), where lim,_ ,ée(c)=0.
(b) |SMALL| < ne 2
(c) SSLARGE=V,-SMALL, |S|<n/12 implies |[N(S, G)| =6|S].

(d) ScV,, n/12<|S|<n/2 implies |{(v,w)e E(G):veS,w¢S}| >
c|S|/15.

(e) S<V* |S|<n/12 implies |N(S, H)| =2|S|.
(f) ScV,, |S|=ne “implies |{e€c E(G):enS# J}| <4c|S|.

Note now that by construction
dy(v)=dg(v)—1 for veV*. (5.1)

To complete the description of CYCLEFIND we must describe the par-
tition of E(H) into E, and E_. To do this we first construct £< E(G) as
follows: independently for each e = (v, w) € E(G) we do a v-experiment and
a w-experiment both of which have probablllty 1 /\/5 of success. If both
succeed we include e in E. Thus we can view E as E(G), where G = G,.pp-
Next let H=G[V*], where V* is defined in terms of G. Let
LARGE = {ve V*: dg(v) > ¢/20}.
We let E_ = {ec E:e< LARGE}.

LEMMA 5.2. For large enough ¢ we a.s. have

(a) ScV* |S|<n/12 implies |N(S, H, )| =2|S]|.
(b) H, is connected.
(c) |E_|>=cn/s.
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Proof. (a) Let now S< V* with |S|<n/12. Let S=S,US,, where
S, =S8N LARGE. Now

IN(S, H, )| =|N(S\, H, )|+ IN(Sy, H, )| = IN(S, H, )0 S,|
—IN(S2, H )OS\ = IN(Sy, H ) N(Sy, H)l. o (5.2)

But, assuming the conditions of Lemma 4.1 hold,

IN(S,, H,)|=|N(S,, H)| =2|S,| by Lemma 5.1(e).  (5.3a)
IN(S2, H, ) 2 |N(Sy, H) 2 |N(S5, G)[ =S, as V*nX=g
=55, by Lemma 5.1(c) with ¢ replaced by ¢/2.
IN(S,, H, )N S,| <|S,] (5.3c)
IN(S,, H,)n S| <|S,| as V*nW=g (5.3d)
IN(S,, H.)nN(S,, H,)| <|S,) as V*nW=g. (5.3e)

(5.3b)

Equations (5.2) and (5.3) together imply (a).

(b) Suppose that H, contains a component A4, where |A4|<|V*|/2
and let B=V*—A4. By (a) of this lemma we know that |A4|>n/4 as.
Lemma 5.1(a) and (f) imply that for large ¢

|E(G)— E(H)| <5ce “nas. (5.4)

But then LemmaS5.1(d) implies that H as. contains at least
c|A|/15—5ce “n=cn/100 (large c) edges joining 4 and B. Conditional on
this event the probability that none of these edges is included in E is no
more than 2~ /'%, Thus

Pr(H , is not connected) < 2"2 ~ /1% 4 o(1)

=o0(1) large c.
(c) An application of the Chebycheff inequality shows that
{veV, ds(v)<c/2+1}|<ne *  as. (5.5)
Equations (5.1), (5.5) and Lemma 5.1(a) imply that for large ¢
[{ve V* dy(v)>c/2}| =n(1—2e %) a.s. (5.6)
Since |E(G)| is binomially distributed with mean cn/2 it is easy to show

|E(G)| = Tcen/15 a.s.
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and using (5.4) we have, for large c,

|E(H)| = 6cn/13 a.s. (5.7)

Let A= {e=(v,w)e E(H):dy(v),dy(w)>c/2}. It follows from (5.6) and
(5.7) that for large ¢

|A| = 5cn/11 a.s. (5.8)

Now let A=A n E. We have

E_|>|A4|— ) du(v)x(v) (5.9)
ve V*
where
x(v)=1 if d;(v) = 3c or dy(v) < ¢/2 or there are at

least d,,(v) — ¢/20 successfull v-experiments

= () otherwise.

Now (5.8) plus the fact that ee A is independently placed in A with
probability 1/2 yields

|A| > 5cn/23  as. (5.10)

Now, by construction, the random variables x(v), ve V* are independent
and

Pr(r(v)=1)<( du(v) )(L)dmr}_ﬁm for ¢/2<dy(v)<3c
' \Le¢/20 ﬁ " -

20ed ;,(v)\*°
- ) — /2
g ( 2 (dy(r)—¢/20)/2

<27 for large c.

The independence of the x(v)’s then implies

Y d,(v) x(v)<2'*n a.s. (5.11)
¢/20 -;g‘;;:) < 3¢
Now
Y dylv)<d= Y  dgv). (5.12)
ve V* ve V,

dg(v) =3¢ dg(v) = 3¢
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But

"o n—1Y , n—1—k
= T k(") a-p

k=[3cn

n
< 6cn (|'3c_|

Also it is not difficult to show that Var(4)= O(n) and thus, using the
Chebycheff inequality,

) P (1= p) =< n(ef3)

A4<2(e/3)*n a.s. (5.13)

Equation (5.5) plus (5.9)-(5.13) yield (c) for large c¢. |}

Having constructed H we will of course apply HAM. In this case the
adjacency lists need not be randomised. Indeed we can assume that they
are in increasing order. We finish our proof as before. Having generated £
we generate X< £ by independently including e in X with probability
p1=logn/n. Our two events are

E, = {the conditions of Lemmas 5.1 and HAM fails on H}
E,=E, n {Xis deletable and no edge of X is incident with any ve V, — V*
or v such that d;(v) <c¢/2+ 1}
The theorem follows from
Pr(E,|E))<(1—p)* for c large (5.14)
Pr(E,) < (1 — pp,/2)"*®. (5.15)

Proof of (5.14). HAM makes fewer than n cycle extensions and given
E,, Lemma 5.1(a) and (f) and (5.5) imply there are fewer than 5ce “’n
edges incident with a vertex of V, — V*.

Proof of (5.15). As usual we show that
Pr(E,|Gy)<(1—pp,/2)""*®,  where Gy=(V,, E(G)—X). (5.16)

Now if E, occurs then applying the method used to construct H from G
will produce Hy from G . Furthermore HAM will fail on H, and

(i) [END(Hy)| = n/12.

5.17
(i) |END(Xy,v)|>n/12  for ve END(H,) (5.17)

and of course

eeY={(v,w): ve END(Hy), we END(H, v)} (5.18)
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implies e¢ X. Note that even (5.17) is determined by G,, not G. Now
Pr(E,|G,)=0 if (5.17) does not hold and so assume it does. Note next
that if G, is given then X is a random subset of E(G ), where e€ E(G ) is
independently included with probability pp,/(2(1 — p)) = pp,/2. But then

Pr(E,|Gx) < Pr((5.18)| Gx) < (1 — pp,/2)"" < (1 — pp,/2)"**

and the theorem follows.

CONCLUSION

We have extended the results of [7, 13] to random graphs with constant
average degree. The most important open problems are to (1) reduce the
values of 10 and 85 in Theorems 1.1 and 1.2 to 3; (2) modify CYCLEFIND
so that it as. finds the longest cycle in G,, and get an asymptotic
expression for this length; (3) remove the necessity for partitioning E(H)
into E, and E_; and (4) extend all these results to digraphs.

Note added in proof. T. Luczak and the author have now reduced the 10 of Theorem 1
to 5.
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