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Christofides heuristic is extended to the problem of finding a minimum length k-person tour
of a complete graph using lengths that satisfy the triangular inequality. An approachable upper
bound of% is demonstrated for the ratio of heuristic to optimum length solutions.

Introduction

This note considers an approximation algorithm for a k-person version of the
travelling salesman problem: Let G=(V,E) be a complete graph containing n
vertices vy,...,U,. For a positive integer & a k-tour A is a set of & sub-tours
denoted H,, ..., H, where

(1a) H, is a simple cycle containing at least 3 edges for i=1,...,k. [We discuss
relaxing the lower bound of 3 edges later on.]

(Ib) H; uses vertex v, for i=1,...,k.

(1c) For each ve V\{v;} there is a unique sub-tour H; that passes through v.

We imagine k salesmen each starting at vertex v; and visiting sets of vertices
which collectively include all the vertices in ¥\ {v,}.

Suppose next we are given a non-negative distance function d : E — R satisfying

d(@u, v) +d, w)=d(u,w) for all u,p,weV 2)

For a k-tour H its length d(H)= Zf:l d(H;) where, for SCE, d(S)=1Y,_; d(e).

We consider the problem: Find a A-tour A of minimum length.

This problem is NP-hard and we concern ourselves here with the worst-case
analysis of an approximation algorithm.

When k=1 this is the travelling salesman problem. The polynomial time heuristic
with the best known performance guarantee is that described by Christofides [1] -
see also Cornuéjols and Nemhauser [2]. Other algorithms are analysed in Frieze [5]
and Rosenkrantz, Stearns and Lewis [8].

k-person problems are analysed in Frederickson, Hecht and Kim [3] and
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Frederickson [4]. The above problem does not seem to have been analysed from this
point of view previously.

An extension of Christofides heuristic

The heuristic we describe is a natural generalisation of Christofides heuristic and
has almost the same worst-case performance.

Algorithm

Step 1. Find a spanning tree T, of G of minimum length among those that have 2k
edges incident to vertex v;. (Glover and Klingman [6] show how to solve
this problem in O]V |?) time.)

Step 2. Identify the set of vertices X, which are of odd degree in 7. Construct a
minimum length perfect matching M, in the subgraph of G induced by Xj.
(|X| is always even and the matching problem is solvable in O(| X 1)
time - see Lawler [7].)

Step 3. Gy=(V, TyUM,) is connected and each node is of even degree (ToUM,
may include repeated edges and set Wheoretic notation is not entirely
accurate). Construct an eulerian cycle ECy of Gy i.e. a cycle that uses each
edge of G, exactly once. (EC, can be constructed in linear time.)

Step 4. We next reduce EC; to a k-tour Hy. let U be the set of nodes adjacent to v;
in T;. Suppose that EC, follows the node sequence v, = wy, Wy, ..., Wy, =0y,
Follow the sequence deleting a node w; if
(a) w;#v,; and w; has appeared before,

(b) w;eU and v, ¢ {w;_;, Wi, }.

At the end of Step 4 the node sequence that is left defines a k-tour H,. Deletions
in (a) ensure that each node v+#uv, is visited once only and deletions in (b) ensure
that each sub-tour includes at least two nodes other than v,.

Now let H* be a minimum length k-tour.

Theorem 1. d(H,)<3d(H*).

Proof. First note that
d(Ty) <d(H*). 3

This is because by deleting one edge not containing v, from each of the sub-tours
of H* we obtain a tree satisfying the degree constraint at v,.

Next suppose that H*={(w;, wy), (wy, W3), ..., (Wp, Wy = vy)} where p=n+k-1
and that Xo={w, ..., Wy, } v, where i} <--- <ipg. H={(Wj;, W), ..., Wy, Wi)}. If
we define the simple cycle H={(w;, W), (Wy,, Wi), ..., (Wi, w;)}, then (2) implies
that d(H)=<d(H*) and as H is the union of 2 disjoint perfect matchings we have



An extension of Christofides heuristic 81

d(My) = +d(H)<1d(H*). Now
d(Hy) =d(Ty) + d(My) = d(H*) + Ld(H*). U

Theorem 2. The upper bound of % is approachable.

Proof. We generalise the examples of Cornuéjols and Nemhauser but only produce
non-euclidean problems (see Fig. 1).

(a) k=2, n=9 v + E )

TH+M=H
(b) s

Fig. 1.
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Let G, be a complete graph with vertices V, ,={0}U{[m,/]:1=m=n and
1=/=<2k}. Let

E,  ={O[1,M): 1=I=2k}U{([t.!], [t+al]): 1=l=n—aa=1,2}.

All edges in E, ; are given length 1 and for (v, w) ¢ E,, ; the length d(v, w) of edge
(v, w) is the shortest distance from v to w in the graph (V, (E, ¢).

It is straightforward to show that:

(i) The optimal solution H* is the union of the sub-tours H;,i=1,...,k where
for n even:

H;=(0,[1,2i-1],[3,2i-1),...,[n—1,2i—1],[n,2i = 1], [n = 2,2 — 1], ...
e [2,2i =10, 12,21, [4, 21), ..., [, 2], [n = 1, 24], ..., [1,21], 0),
and for n odd
H;=(0,[1,2i-1],[3,2i-1],...,[n,2i - 1], [n— 1,2i — 1], ... etc.)

Thus d(H*)=2k(n+2).

(ii) The minimum degree restricted spanning tree 7 is the union of the trees
T ={0, [1,i1), ([1,i],[2,¢]), ..., (In =1, 0], [, i])} for i=1,...,2k.

A minimum matching M= {([n,2i—1],[n,2i]):i=1,...,k} and Hy=MUT is the
k-tour produced by the algorithm.

Now d(Hy)=2k(n+ | 4n]+1) and so d(Hy)/d(H*)—3 as n—>oo. [J

We next consider the restriction (1a) that each H; has at least 3 edges.

If there is no lower bound to the number of edges, then (2) implies that the
optimum solution consists of 1 tour through all the nodes of G plus kK — 1 empty sub-
tours, i.e. the problem reduces to the travelling salesman problem.

If the restriction is that each tour has at least 2 edges, i.e. (vy,v,v,) is allowable
sub-tour then we can transform to a problem where (1a) must hold: replace each
node v by a pair of nodes v’,v” and let the modified lengths d’ be defined by (where
for node v, only v{=uy)

d’(U’, v”)=0, Ve V\{U]}!
da'(,w)=d'(v,w")=d'v",w)=d'@", w")=d,w), v,weV,

one can easily see that d’ satisfies (2).

Problem equivalence is straightforward: given a solution to the original problem
replace each sub-tour (vy, Wy, ..., W,, ;) by (v, Wi, W, ..., Wp, Wp, 07).

The lengths of the 2 tours are the same. Conversely consider a solution to the
transformed problem. Suppose there is a ve V' such that v’,v” are not adjacent
vertices of the same sub-tour. Removing v” from its sub-tour and putting it adjacent
to v’ cannot increase total length. Do this as many times as necessary until each v/, v”
appear together. Then replace v’,v” by v to get a solution to the original problem
of the same length.
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