IMA Journal of Mathematics in Management (1986) 1, 1-11

Expected Behaviour of Line-Balancing Heuristics

ALAN FRIEZE
Department of Computer Science and Statistics, Queen Mary College, London

AND

ILKER BAYBARS

Graduate School of Industrial Administration, Carnegie—Mellon University,
Pittsburgh, PA 15213

[Received October 1985 and in revised form February 1986]

We present a random model of assembly-line balancing problems and show that if
edge density of the precedence network is low, then certain natural algorithms
have asymptotically good performance in expectation and probable error.

1. Introduction

IN the standard assembly-line balancing (ALB) problem, we are given a finite set
V.={1,2, ..., n} of tasks (together with the size x; of each task), a partial order
p (known as the ‘precedence relations’) defined on I, and a desired production
rate 1/T, and are asked to find an ordered partition S = {S,, &, ..., S,,} of I into
nonempty sets such that

@) Liesui<T,

(b) ifipjandie S, and j € S, then h <k, and

(c) n is minimized subject to (a) and (b).

In ALB, x; is the processing time of task i; and T is known as the cycle time and
it is the length of time the item is available for processing at each station along
the assembly line. If i pj, then the processing of task j cannot start until the
processing of task i is completed. The subset S, of I is the collection of tasks to be
performed at the kth station along the assembly line. The objective in ALB is to
minimize the idle time along the line which is equivalent to minimizing the
number of stations (Salveson [27]).

If (b) above is dropped completely (i.e. if there are no precedence relations),
the problem is the familiar bin-packing (BP) problem. ALB is a generalization of
BP (Wee & Magazine [31]) in the sense that in BP, x; is the weight or volume of
item i and T is the capacity of a bin. In BP, the objective is to pack all the items
in a minimum number of bins.

BP is NP-hard (e.g., Karp [20]) and hence so is ALB. Thus, unless P = NP,
there cannot be a polynomially bounded exact algorithm for solving ALB. Hence,
it is expected that determination of an optimal solution can require an excessive
amount of computation. The computational studies of exact algorithms support
this expectation (Johnson [17]). This drawback has necessitated the construction
of inexact methods for finding good approximate solutions, in particular, fast
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heuristic algorithms (see Baybars [1] and Baybars [2], for surveys of exact and
inexact ALB algorithms, respectively).

Whenever a heuristic method is used to solve a problem, a natural question
arises as to the ‘goodness’ of the heuristic solution. Three analytical approaches
are available to answer this question: (a) worst-case analysis, (b) probabilistic
(expected behaviour) analysis, and (c) statistical analysis. Worst-case analysis
establishes the maximum deviation from optimality; probabilistic analysis estab-
lishes the expected performance of the method or a bound on the probability that
the heuristic solution is within a prespecified percentage of the optimal solution;
and statistical analysis establishes the performance of the method by solving a
large number of sample problems, thereby enabling one to draw some statistical
inferences on the problem.

In Section 2 we describe some well-known bin-packing and line-balancing
heuristics and summarize the known results on the worst-case analysis of these
heuristics. In Section 3 we first present the known results on expected-behaviour
analysis of bin-packing heuristics. We then initiate a similar analysis of line-
balancing heuristics. Finally, in Section 4 we make some remarks and offer
suggestions for future research.

2. Packing heuristics

All algorithms discussed here start with an ordered sequence of initially empty
bins (stations) and the items (tasks) are packed (assigned) into (to) the bins
(stations) one at a time. The input to BP algorithms can be described as a list
L =(xy, X3, ..., X,) Of item sizes. For ALB algorithms the input also includes a
precedence relation p on V, = {1, 2, ..., n}.

2.1 Bin-Packing Heuristics

We describe here four of the better-known algorithms. The first two algorithms

do not sort (reorder) the items.

Fr: fori=1tondo
pack x; into the first bin in which it will fit od.

pr: fori=1ton do
pack x; into the best bin in which it will fit (i.e. the one with least available
space) od.

In FFD and BFD we sort L so that x,=x,=---=x, and then apply Fr and BF
respectively. ‘All four algorithms described above have the same order of time
complexity: O[n log n]. FF and BF are on-line algorithms, that is, packing is done
in the order given without knowledge of the size and number of the later items.

2.2 Line-Balancing Heuristics

The algorithms described in the previous section can be applied to ALB
problems by a minor modification to take into account the precedence relations.
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The input L and p are first pre-processed so that L is in topological order (i.e.,
ipj—i<j). We must be specific how this is done for our heuristics. Thus, let

LG)={ieVa:ipj} (ieV,).
Also let {A;, A,, ..., A,,} be the canonical partition of V,, defined by

k— -
A, ={ieV,:T, ()=}, Ak={ievn\L_J:A, : I‘p(i)gkL__J:A,} (k>1)

and m is the first index k for which, V, =, A,.
Now for # e HEURISTICS = {FF, BF, FFD, BFD}, we define a heuristic #P as
follows:
Algorithm #p
Input: list L, precedence relation p
begin
Construct A, A,, ..., A,,;;
Re-order L in the order A,,, A,.-y, -.., A1}
if # € {FFD, BFD} then sort tasks within each A, into descending order;
Let (x,, X3, ..., x,) now refer to the re-constructed list;
fori=1tondo
Assign x; to the first (4 € {FF, FFD}) or best (# € {BF, BFD}) station, j say, into
which it will fit, subject to all predecessors of x; being already assigned to
stations 1,2, ...,j od
end
The main contribution of this paper is a probabilistic analysis of the performance
of these heuristics.

2.3 Worst-Case Analysis

2.3.1 Bin-Packing Heuristics For input list L we let opT(L) denote the number
of bins used in an optimal solution. For heuristic # we let #(L) denote the
number of bins used by H. The following are well-known results (see, for
instance, Johnson et al. [16]) for all L:

(L) < Yorr(L)+2,  BF(L)=<4jorr(L)+2,
rrp(L) <Y opr(L)+4,  Brp(L)<%opr(L) +4,

Hence, the asymptotic error bound of both Fr and BF is 1-7 and they are 1-222 for
Frp and BFD. Brown [5] has shown that no on-line algorithm can guarantee an
asymptotic worst-case ratio better than 1-536. Thus, simple as it is, FF is a
remarkably good algorithm.

Fernandez de la Vega & Lueker [10] and Karmarkar and Karp [19] have shown
that the asymptotic worst-case ratio of 1 is achievable with a polynomial-time
algorithm (that is, the number of excess bins is guaranteed to be ‘little o’ of
opt(L)).
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2.3.2 Line-Balancing Heuristics Wee & Magazine [29, 30] have recently in-
itiated the worst-case analysis of line-balancing heuristics. Before we discuss their
results we extend the notation of Section 2.3.1: let opt(L, p) be the optimal
(minimum) number of stations for some ALB problem and let H(L, p) be the
number of stations found using some heuristic method # for that given problem.
Let 7; denote the work content of station j. Clearly, if the sum of the work
contents of any pair of consecutive stations, as determined by the heuristic
method, is less than the cycle time, then these two stations can be combined into
one, thereby reducing the heuristic solution by 1. Based on this argument, Wee &
Magazine have shown that if

T+ T, >T forj=1,2,...,H(L, p)—1,

then H(L, p)<2o0pr1(L, p)—1. Following Wee & Magazine, a heuristic is
reasonable if Ti>T —xnx for j=1,2,..,H(L,p)—1 where xpux=
max {x,, X, ..., X,}. Wee & Magazine have shown that if # is reasonable, then

H(L, p) <OPH(L, p)/(1 = Xpmax/ T) + 1

thereby improving the first upper bound given above.

In a recent report, Queyranne [26] complements the Wee & Magazine results,
assuming that P # NP. Queyranne has shown that there cannot exist a polynomial
heuristic with worst-case ratio less than 3 (thus no efficient heuristic method can
guarantee a solution better than 150% of the optimal solution). However, if tasks
are ‘short’, then the bounds can be improved slightly: if x,,, is within € of T (i.e.,
if Xmax <€T), then the worst-case ratio is no more than 1/(1—¢) (Wee &
Magazine [29]) but cannot be much better than 1/(1—4¢) for any polynomial-
time heuristic algorithm. Wee & Magazine conjecture that the worst-case ratio of
their algorithm IUFFD is 3.

3. Expected behaviour analysis

3.1 Expected Behaviour of Bin-Packing Heuristics

The probabilistic model of bin packing is as follows: item sizes are independ-
ently and uniformly distributed in the interval (0, u] for some u <1 and the bins
have unit capacities. Following Bently et al. (3], let L; denote the random
variable whose values are lists of n items generated according to this distribution.
Also let (L) denote the lower bound X, ¢, x; <opr(L). Then E (L) = jun.

We now summarize those results on the expected behaviour of bin packing
heuristics that are needed in the sequel.

THeEOREM 3.1 The following are true:
E[rr(Ly) — Z(L2)] = O((n log n)?), (3.1a)
E[Br(LL) — Z(L1)] = O(ntlogn), (3.1b)
E[rrD(L}) — Z(Ly)] = O(n), (3.1¢)
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E[erD(L}) — 2(L})] = O(n}), (.1d)
Efrr(L7) — Z(La)]=0(1) (u<3). (.1¢)

The estimates (3.1a) and (3.1b) above are proved in Shor [28], and (3.1c) and
(3.1d) are proved in Lueker [23] and (3.1e) is from [4].

For each heuristic # e HEURISTICS, there is a heuristic #2 which proceeds in
the same manner as H, except that #2 never packs more than 2 items in a bin. We
now give two lemmas:

LemMa 3.2 Let L' be a sub-list of L. Then;
H2L)Y=H(L) forall lists L, (3.2a)
H2(L'Y<Hn2(L) foralllists L and L' with L' L. (3.2b)

Proof. The case H = FF was proved in [4] and the case # = BF was proved in [28].
The other 2 cases follow immediately. O
We now note the following:

LeMMaA 3.3 Replacing H e HEURISTICS by #2 in (a)-(d) of Theorem 3.1 yields
the same conclusion.

Proof. (a) and (b) are what is proved in Shor [28] and then he uses Lemma 2 to
prove Theorem 1(a) and (b). Cases (c) and (d) follow from the work of Lueker
[23]. He describes a bin-packing algorithm BiNpacki for which he proves

E BiNpacki(L}) = 3n + O(nb). (3.3a)
But by removing the single sentence (Lueker [23: Part C of Proof of Thm 3])

“Now if x; is packed into a bin which already had 2 items S;_, will be the
same as S;, so that the problem does not arise.”

we obtain a proof of
BINPACKI(L) = Hp2(L) for # € {FF, BF} and L arbitrary. O (3.3b)

3.2 Expected Behaviour of Line-Balancing Heuristics

For our probabilistic model of ALB we have x,, x,, ..., x,, generated as for BP.

To generate a random precedence relation p we take p = p(n) and then for each

i <j we independently include (i, j) in p with probability p and exclude it with

probability (1 —p). The main results of this paper are summarized in the

following theorem. It generalizes Theorem 3.1.

THEOREM 3.4 Suppose p(n)— 0 as n— . Then for H e HEURISTICS

(a) E #p(Ln, p) =[1+0(1)]E orr(Ly, p), (3.4a)
Pr {#®(Ly, p) =[1+ o(1)]orT(Ln, p)} =o(1), (3.4b)

for suitable o(1) terms.
(b) In particular assume p =cn~" where ¢,y >0 are constants. Then, we have
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the following table:

H o<y<l1 y=1 y>1

F A=0(n'""(logn)*™) A = 0(n**(log n)zn A= 0((nlogn)®)
BF A= 0(n"""(logn)") A=0(n"*(log n) A=0(n"logn)
D  A=0(n'"") A=0(n"?*(log n)"? A=0(n"?)

B0 A=0(n'""?) A= 0(n"(log n)'? A=0(n'?

where A= A(H) =E[up(L}, p) — or1(L}, p)].
We first prove two lemmas.

LemmMa 3.5 Let HeHEURISTICS and let L and p be arbitrary. Let
Ay, A,, ..., A,, be as defined prior to algorithm Hp. Then,

HP(L, p) < i H2(A)). (3.5a)

(Here H2(A;) is the number of bins used by the BP algorithm H2 when applied to
the list A;. Although the A; are defined as sets, we assume that the list L induces an
ordering on them.)

Proof. Let HP2 denote the algorithm that applies #H2 separately to
A,., Ap_1, -.., A and then concatenates its solutions in this order. Clearly

#rAL, p) = i H2(A). (3.5b)

We prove, by induction on |L|, the number of items in L, that
He(L, p) < ur2(L, p). (3.5¢)

The base case |L|=1 is trivial, and so assume that (3.5c) is true for all lists
shorter than L. Let S and S’ be the sets of items packed into the first bin by Hp
and HP2, respectively. It is clear that S’ = S. Also, the remaining bins are packed
as HP(L\S’) and HP2(L\S’), respectively. Thus;

HP(L) = 1+ up(L\S), HP2(L) = 1+ HP2(L\S"). (3.5,¢e)
We show that
HP2(L\S') = HP2(L\S). (3.59)
The induction hypothesis gives
HP2(L\S) = Hp(L\S). (3.5g)

Now, (3.5d)-(3.5g) together imply (3.5c). To prove (3.5f), let B,=A\S for
i=1,2,..., m. We show that

u € B, and t#1 implies that there exists v € B,_, such that u pv. (3.5h)

Suppose (3.5h) is not true for some u € B,. Then there exists a nonempty subset T

”"
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of S such that T={v:veA,_; and upv}. But then #p has packed T before
packing u; a contradiction.

It follows from (3.5h) that if B,# then B, B,_,, ..., B; are all sets in the
canonical partition of L\S. Thus

H(L\S) = S, H(B)
<5 h4) + mAA,_\S)+ H(ANS) by (3.2b)

i-1

=m2(L\S’). O

LemMA 3.6 Suppose € >0 is such that p®<1/e (where e is the base of natural
logarithms). Suppose also that H e HEURISTICS is such that

Em(Ll)<in+an”
where 0 < o <1 and a > 0 are constants. Then,

n eynpl—t,\ a
EX maA)<in+ a[np"‘“"“e’ + (—n(ep p) ) ] (3.6a)
i=1

Proof. Note that

En(a)= 3 E[n(A)) | |4 =K1 Pr (4] = k)

< Y (3k +ak*) Pr (A =k)

k=0

= 1E|A1| + aElA;'“.
Thus, letting A, = ¢ for i >m,

2 EnA)<} 21 ElA/| +a i_El ElAi|~

i=1

n
=in+a ) E|Al*
i=1

<in+a Y, (ElA)* (3.6b)
i=1

(by Jensen’s inequality; see, for example, Feller [8]). Now A; #J ixﬁplies that the
digraph (V,, p) contains a directed path of length i — 1. Thus,

Pr (A; # ) < Pr (there exists a path of length i — 1)
< E(# of paths of length i — 1) = (';)p"“. (3.6c)

Hence, n
E|A,| <n Pr(A,#0)< n( i)pi'l
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Now, let k = [np'~¢|. Then our assumption implies kK =2np — 1. Hence,

k k @
> Elahe<i=(3 Elal) (3.64)
< kl—a'na
and
3 ele< 3 [a(7)] (3.6¢)
i=k+1 =k+1 4

n

Note that, for i =k + 1, we have ( )p' / (z

of (3.6e) is bounded from above by

(" o] 1 e o=+ yms -] <[, 2 )ot] Jt-27.

Thus (3.6d) and (3.6e) imply
g(ElA"D“skl_“"”[ (k+1) ] / =279

(A Ay

n ne k+1
i = . .6b).
using ( K+ 1) ( P 1) The result now follows from (3.6b). O

Lemmas 3.5 and 3.6 show that the expected value of the solution produced by
the various heuristics on (L}, p) is bounded by the RHS of (3.6a).

Proof of Theorem 3.4. To prove (3.4a) we note first that if p =o0(1/n%) then
p = J with probability going to 1 as n goes to « and then the result follows from
Theorem 3.1. Thus we can assume that p =c/n® for some constant ¢>0. In
which case, putting £ =% in (3.6a) yields (3.4a).

To prove (3.4b) let

)p‘ 1<, and therefore the RHS

P

(L.

A(Ly, p)=H(Ln, p) — Z(Ly).

(3.4a) and E Z(L}) = in implies that E A(L}, p) = o(n) and hence A(L})=o(n)
a.s. by the Markov inequality. Since X(L}) = 1[1 —0(1)]n a.s. we have our result.

To prove part (b) of Theorem 3.4, we need only specify the values of £ to be
used in (3.6a). We claim, and the reader can easily check, that the following
suffice, in conjunction with Lemma 3.3:

il

oy

2/(ylogn) ifo<y<li,
g=19 loglogn/logn ify=1,
1-y '+ 8/logn (8 large) if y>1.
This completes the proof. O
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We have not thus far used the rather unexpected result (3.1e). We would like
to be able to say something about E rrDP(L;, p). Lemma 3.5 is not much help
here, since (3.1e) is specifically excluded in the statement of Lemma 3.3. We have
to be satisfied, with a rather ‘unnatural’ algorithm, FrpP’, which simply applies
FFD to the sets A;, A,, ..., A, independently and then concatenates the results as
does HP2 of Lemma 3.5. This yields the following:

THEOREM 3.7 ForO<u=<}%,

E rrop' (LY, p) <3un +am, (3.7a)

where a>0 is constant and my= min {k : (:)p"—l < l/n}. In particular, if
p(n)=c/n®, then :
_[O(n'"*logn) for a<1,

Mo= {0(1) for a>1. (3.70)

Proof.
E rroP/(LY, p) = D, EFFD(A,), < D, (BuE|A,| + aE 8A,)
i=1 i=1
where a >0 is constant and

0 ifA=(,
1 ifA#3.

This follows directly from (3.1e). Thus,
E FroP (L7, p) <3un +aEm

s4={

where m = max {i : A, #J} as before. It follows from (3.6c) that Pr (m = m,) <
1/n. Thus Em <my— 1+ n Pr (m = mgy) <m, and (3.7a) follows. Equation (3.7b)
follows by routine calculation. O

4. Remarks

The paper presents a random model of assembly-line balancing problems. We
have shown that certain natural algorithms have asymptotically good performance
in expectation and probable error, provided the edge density p(n)— 0. We note
that large practical problems tend to have a low edge density. From a theoretical
point of view, it would be interesting to see if the algorithms are good for p(n)
constant.

Karp, Luby, & Marchetti-Spaccamela [21] have carried out a probabilistic
analysis of multidimensional bin-packing problems. We hope to generalize their
results to assembly-line balancing with resource constraints.
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