EDGE DISJOINT SPANNING TREES IN RANDOM GRAPHS

A. M. FRIEZE (Pittsburgh) and T. ŁUCZAK (Poznań)

Abstract

We show that almost every G_{m-out} contains m edge disjoint spanning trees.

Introduction

In this note we consider the maximum number of edge disjoint spanning trees contained in the random graph $G_{m\text{-out}}$. Let a graph G = (V, E) have property A_k if it contains spanning trees T_1, T_2, \ldots, T_k which are pair-wise edge disjoint.

We consider the random graph $G_m = G_{m\text{-out}}$. This has vertex set $V_n = \{1, 2, \dots, n\}$. Each $v \in V_n$ independently chooses a set out (v) of distinct vertices as neighbours, where each m-subset of V_n - $\{v\}$ is equally likely to be chosen. This produces a random m out-regular diagraph D_m which has been selected uniformly from $\left(\frac{n-1}{m}\right)^n$ distinct possibilities. G_m is obtained by ignoring orientation but without coalescing edges. (See [1], [2], [3] for properties of this model.)

Probability statements refer to the probability space of D_m and graph theoretic statements refer to G_m .

THEOREM 1. Let $m \geq 2$ be a fixed constant. Then

$$\lim_{m\to\infty}\mathsf{P}(G_m\in\mathsf{A}_m)=1.$$

[This is clearly best possible.]

The major graph theoretic result underpinning our proof is as follows.

THEOREM 2 (Nash-Williams [5], Tutte [6]).

A graph G = (V, E) has property A_k if and only if for every partition S_1, S_2, \ldots, S_t of $V, 2 \le t \le |V|$, there at least k(t-1) edges of G joining vertices in different subsets of the partition.

Mathematics subject classification number, 1980/85. Primary 05C80. Key words and phrases. Random graphs, Spanning trees.

(The necessity of the condition is obvious. The "meat" is in the sufficiency.)

PROOF of main result. For $S \subseteq V_n$ let $\gamma(S) = |\{vw \in E(D_m): v \in S, w \notin S\}|$.

Lemma 1. The following events occur with probability tending to 1 (as $n \to \infty$).

(i) $S \subseteq V_n$, $1 \le |S| \le .49n$ implies $\gamma(S) \ge m$

(ii)
$$S, T \subseteq V_n$$
, $S \cap T = \emptyset$, $|S|$, $|T| \ge .49n$, implies $\gamma(S) + \gamma(T) \ge m$.

PROOF. Observe that $\gamma(S) \ge |\{v \in S: \text{ out } (v) \subseteq S\}|$. Hence $\gamma(S) \ge m$ for $|S| \le m$ and

$$P(\exists S \subseteq V_n: m < |S| \le .49n \text{ and } \gamma(S) < m) \le \sum_{s=m+1}^{\lfloor .49n \rfloor} {n \choose s} {s \choose s-m+1} \left(\frac{s-1}{m}\right)^{s-m+1} \le \sum_{s=m+1}^{\lfloor .49n \rfloor} {n \choose s} s^{n-1} \left(\frac{s}{n}\right)^{m(s-m+1)} = \sum_{s} u_s, \text{ say.}$$

Now

$$\begin{split} &\sum_{s=m+1}^{\lfloor n/3 \rfloor} u_s \leq \sum_{s=m+1}^{\lfloor n/3 \rfloor} \left(\frac{ne}{s} \right)^s s^{m-1} \left(\frac{s}{n} \right)^{m(s-m+1)} = \\ &= \sum_{s=m+1}^{\lfloor n/3 \rfloor} e^s s^{m-1} \left(\frac{s}{n} \right)^{(m-1)(s-m)} = O(n^{-(m-1)}). \end{split}$$

Next let $H(\alpha) = a^{\alpha}(1-\alpha)^{1-\alpha}$, then

$$\sum_{s=\lceil n/3\rceil}^{\lfloor .49n\rfloor} u_s \leq \sum_{s=\lceil n/3\rceil}^{\lfloor .49n\rfloor} e^{o(n)} H\left(\frac{s}{n}\right)^{-n} \left(\frac{s}{n}\right)^{ms} \leq$$

$$\leq e^{o(n)} \sum_{s=\lceil n/3\rceil}^{\lfloor .49n\rfloor} \left(\left(\frac{s}{n}\right)^{\frac{s}{n}} \setminus \left(1-\frac{s}{n}\right)^{\left(1-\frac{s}{n}\right)}\right)^n = o(1),$$

and (i) follows.

(ii)

$$\begin{split} & \mathbb{P}(\exists \, S, T \subseteq V_n, \, | \, S \, |, \, |T| \geq .49n, \, \, S \cap T = \emptyset \, \text{ and } \, \gamma(S) + \gamma(T) < m) \leq \\ & \leq \sum_{s = \lceil .49n \rceil}^{\lceil .51n \rceil} \sum_{t = \lceil .49n \rceil}^{n-s} \binom{n}{s} \binom{n-s}{t} \binom{s+t}{s+t-m+1} \binom{\max{\{s,\,t\}}}{n}^{m(s+t-m+1)} \leq \\ & \leq n^2 \, 2^n \, 2^{.51n} \, n^{m-1} (.51)^{.98mn-m+1} = o(1). \end{split}$$

PROOF of Theorem 1. Let S_1, S_2, \ldots, S_t be a partition of V_n where $|S_1| \geq |S_2| \geq \ldots \geq |S_t|$. Now in the graph G_m there precisely $\gamma(S_1) + \gamma(S_2) + \gamma(S_3) = 1$ $+ \dots + \gamma(S_t)$ edges joining different subsets of the partition. But Lemma 1 implies

(ii)
$$\gamma(S_1) + \gamma(S_2) \ge m$$

and

(i)
$$\gamma(S_3) + \ldots + \gamma(S_t) \ge (t-2)m$$

and so we can apply Theorem 3.

We note the following interesting consequence Theorem 1: G_{2-out} is super-eulerian with probability tending to one. (A graph is super-eulerian if it contains a trail which includes every vertex.) This is because every graph in A₂ has this property, Jaeger [4].

ACKNOWLEDGEMENT. We thank P. CATLIN for pointing out the connection between Theorem 1 and super-eulerian graphs.

REFERENCES

[1] T. I. FENNER and A. M. FRIEZE. On the connectivity of random m-orientable graphs and digraphs, Combinatorica 2 (1982) 347-359. Zbl 523: 05056

[2] A. M. Frieze, Maximum matchings in a class of random graphs, J. Combin. Theory B 40 (1986) 196-212. MR 87f: 05153

[3] A. M. FRIEZE and T. ŁUCZAK, Hamilton cycles in a class of random graphs: one step further. (To appear)

[4] F. JAEGER, A note on sub-Eulerian graphs, J. Graph Theory 1 (1979) 91—93. MR 80k: 05036

[5] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36 (1961) 445—450. MR 24A: 3087
[6] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J.

London Math. Soc. 36 (1961) 221-230. MR 25: 3858

(Received March 8, 1988)

DEPARTMENT OF MATHEMATICS CARNEGIE MELLON UNIVERSITY PITTSBURGH, PA 15213 U.S.A.

INSTYTUT MATEMATYKI UNIWERSITET A. MICKIEWICZA UL. MATEJKI 48/49. PL-60769 POZNAÑ POLAND

(Present address of T. LUCZAK) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MN 55455 U.S.A.