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EDGE DISJOINT SPANNING TREES
IN RANDOM GRAPHS

A. M. FRIEZE (Pittsburgh) and T. LUCZAK (Poznan)

Abstract

We show that almost every G, contains m edge disjoint spanning trees.

Introduction

In this note we consider the maximum number of edge disjoint spanning
trees contained in the random graph @, .. Let a graph G = (V, E) have
property A, if it contains spanning trees 7', T,, ..., T, which are pair-wise
edge disjoint.

We consider the random graph G, =G, ;. This has vertex set
V,={1,2,...,n}. Bach v¢€V, independently chooses a set out (v) of
distinct vertices as neighbours, where each m-subset of V -{v} is equally likely
to be chosen. This produces a random m out-regular diagraph D,, which has
n—1

n
been selected uniformly from ] distinet possibilities. &, is obtained

m
by ignoring orientation but without coalescing edges. (See [1], [2], [3] for
properties of this model.)

Probability statements refer to the probability space of D,, and graph
theoretic statements refer to @,,.

TarorEM 1. Let m > 2 be a fived constant. Then
lim P(@,€A,) =1.
n— oo

[This is clearly best possible.]

The major graph theoretic result underpinning our proof is as follows.

TaEorEM 2 (Nash-Williams [5], Tutte [6]).

A graph G = (V, E) has property A, if and only if for every partition
Sy, oy oo, S of V, 2t < |V, there at least k(t — 1) edges of G joining
vertices in different subsets of the partition.
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(The necessity of the condition is obvious. The “meat” is in the suf-
ficiency.)

Proor of main result. For SV, let »(S) = |{vw € E(D,): v€S,

LemMA 1. The following events occur with probability tending to 1 (as
i ScV, 1<|8|< .49n implies p(S) > m
) S, 7cV,, SNT =4,|8|, |T| > .49n, implies p(S) + (T) > m.

Proor. Observe that p(S) > |{v € 8: out (v) & S}|. Hence p(S) > m for
| S| < m and

PASC V., m<|8] < 49n and p(S) < m) <
[B— 1] s—m+1

149n] (q 8 m
== s
s=m+1l18)]\s—m {1 n—l]
m
L49n] (5 s m(s —m+1)
=gy Js"‘l '— = > u,, say.
s=m+1\S | 0 S
Now
Ln/3] lnf3]  (mels S (19 m(s—m+1)
S e
s=m+1 s=m+1\| 8 n
— El eSgm—1 (mml)(s 2 O(n—(m—l))_
S=m-+1 n
Next let H(x) = a*(1 — «)' %, then
49 49
[2'”1 u, < 2 o) i] ( ]
s=[n/3] s= [n,H] n

< o HQ”J [[SJ"\[ 2] ] — o(1),
s=[n/31
and (i) follows.
(ii)
PES,TCV,, S|, |T|= 49, SNT =g and p(8) 4+ (T < m) <

|.61n] n—s n n — 8 S + t max {8, t} m(s+t—m-+1)
R
s——-[zamn] t:%anl 3 ¢ s+t —m 41 n

g n‘lgn 2.51nnm—1('51).03mn -m+1 = 0(1)‘
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Proor of Theorem 1. Let S,,S,,...,S, be a partition of V, where
| 8] >|8;] > ...>|5,|- Now in the graph &, there precisely y(S,) + »(S,) +
+ ... 4 (S, edges joining different subsets of the partition. But Lemma 1
implies ;

(if) Y(Sy) + 7(Sy) > m

and '

(i) P(Ss) + ... + p(S) = (¢ — 2)m

and so we can apply Theorem 3. O

We note the following interesting consequence Theorem 1: @, . is
super-eulerian with probability tending to one. (A graph is super-eulerian if
it contains a trail which includes every vertex.) This is because every graph
in A, has this property, Jaeger [4].

*
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