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Let p, denote the proportion of n-vertex graphs in class 2, that is, such that the
chromatic index exceeds the maximum vertex degree. We extend a result of Erdds
and Wilson, and show that n=(2+ehcp <p-tB-a" for p sufficiently large.
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1. INTRODUCTION

An edge-colouring of a (simple) graph G is an assignment of colours to
the edges of G such that no two incident edges have the same colour. Thus
the edges of any given colour form a matching. The edge-chromatic
number or chromatic index y’ = ¥'(G) is the minimum number of colours in
an edge-colouring of G. For a survey of results on edge-colouring see [8].

Of course x' > 4, where 4 = 4(G) is the maximum vertex degree of G. In
1964 Vizing [12] showed that always 3’ =4 or 4 + 1. Much attention has
been focussed on finding conditions which imply that a graph is in class
I (y=4d)orinclass2 (y' =4 +1).
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Vizing showed also that any graph in which the vertices of maximum
degree induce an acyclic subgraph is in class 1. Erdés and Wilson [6] (see
also Bollobas [1]) showed that the proportion of labelled graphs on »
vertices with more than one vertex of maximum degree tends to 0 as
n— co. It follows that if p, denotes the proportion of labelled graphs on n
vertices which are in class 2, then p,— 0 as n — 0.

It is of interest to know how quickly p,, = 0 as n — co. The approach of
Erdés and Wilson yields an upper bound on p, of O((n log n)~'/?) at best
(see Lemma 7 below). However, we shall see that for any ¢>0

n—(l/2+£)n <p" <n—(l/8—5)n

for n sufficiently large.

This result will follow from the two theorems below on random graphs.
Recall that G, , is the random graph with vertex set V,={1,2,..,n} in
which the () possible edges occur independently with probability p. We
shall present a polynomial time algorithm A that attempts to 4-edge-colour
a graph. This algorithm runs in time O(n*) on a graph of order n (that is,
with »n vertices).

THEOREM 1. Let p, ¢ be constants, with 0<p<1, c<p/2, c<4. Then

P{algorithm A fails to A-edge-colour G, ,}
=0 (exp{—1Lcnlogn}).

THEOREM 2. Let p be a constant, with 0<p < 1. Then
P{G,, is inclass 2} > exp(—3n {log n + O(log log n)}).

Let us recall some results concerning algorithms to edge-colour graphs.
Holyer [10] showed that determining the edge-chromatic number of a
graph is NP-hard, even for cubic graphs. Fournier [9] presented a
polynomial time algorithm to edge-colour a graph G using at most 4 + 1
colours. Further, this algorithm uses only 4 colours if the vertices of
maximum degree in G induce an acyclic subgraph. Thus by the Erdds and
Wilson result [6] we know that this algorithm will optimally edge-colour
almost all graphs.

Given these two contrasting results it is natural to ask the question “Is
there a polynomial expected time algorithm which optimally edge-colours
all graphs?” By Theorem 1 it would suffice to find an algorithm that
optimally edge-colours all graphs of order n in worst-case time O(n*") for
some o < §. However, this still seems to be rather difficult.

In Section 2 below we introduce algorithm A together with a class of
graphs on which it always works. Then in Section3 we analyze this
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algorithm. Section 4 concerns lower bounds. In it we prove Theorem 2 and
give lower bounds related to the Erdés-Wilson approach. Finally, in
Section 5 we make a few concluding remarks.

2. A COLOURING ALGORITHM

Recall from [9] that any graph whose vertices of maximum degree
induce an acyclic subgraph can be 4-edge-coloured, in O(n®) time. Given a
graph G, denote by H the set of vertices of maximum degree in G. Our
algorithm tries to remove a set S of matchings from G to obtain a sub-
graph G’ such that (i) the set of vertices of maximum degree in G’ is also
H, (i) H induces a stable set in G’, and (iii) 4(G’) = 4(G) — | S|. Thus, the
vertices of maximum degree in G’ form a stable set and G’ can be
(4(G) — | S|)-edge-coloured. By also using each matching in S as a colour
class we can colour G with 4(G) colours, demonstrating graphically that G
is in class 1.

It remains only to describe how to find our set S of matchings. Clearly
the graph induced by the set H of vertices of maximum degree in G can be
h-edge-coloured, where h=|H|. This produces a set of 4 matchings
M, .., M,. In fact, we shall choose these matchings in an “inequitable”
manner, so that the early matchings are large and the later matchings
small. Finally, we shall form § by extending these matchings M, to a set of
disjoint matchings each covering most of G.

Before describing the algorithm in more detail, we describe a class of
graphs on which it will always succeed. The graphs in which we are
interested have two basic properties which allow us to extend our
matchings as required. These are (i) the edges are distributed reasonably
evenly throughout the graph, and (ii) the number of vertices of any given
degree is not too large.

DeFINITION.  For 0<p<1,0<c<1, and O<e<min{p, 1 —p} we say
that a graph G of order n is (p, c, &)-uniform if

() ASVG) dIzen= |2yl
p('7")
141, B| 3 en = [LE: B 1‘<s,

pIAlIB]

(iii) the number of vertices of any given degree is at most cn.
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Here E(A) denotes the set of edges in G with both end vertices in A4, and
E(A, B) denotes the set of edges in G with one end in 4 and the other in B.

LEMMA 1. Let G be a (p,c, €)-uniform graph of order n. Then, for n
sufficiently large,

at most ¢n vertices have degree at most [ (p—2¢e) n’] (1a)
and
4G)=2(p—2e)n+1. (1b)

Proof. We can assume that ¢ < p/2. If (1a) fails let 4 be a set of s=[en’]
vertices of degree <(p—2¢)n and B= V(G)\ A. Now

|E(4)] = (p—¢) (;) by (i),

and

| E(4, B)| = (p—¢)s(n—s) by (ii).
However,

|E(4, B)| <[ (p—2¢e)nTs—2|E(A4),
and hence

M(p—2e)n]s—2p—s) (;)>(p—s)s(n—s),

which is impossible for n> (1 + p)/e— 1. Equation (1b) follows directly
from (1a).

We next show that the random graph G, , is almost always (p, c, ¢)-
uniform.

LEMMA 2. For fixed p, c, ¢,

P(G, , is not (p, ¢, &)-uniform) = O(n =1 oD en/2y

np
Proof. We consider in order the three parts of the definition of (p, c, €)-
uniform.

(i) For A<V,, |E(A)| is distributed as the binomial random
variable B(('4!), p). Hence, using the Chernoff bound [3] we have

P((i) fails) <2 Z o~ (6N A=)l Alp
A:|Al=2€en

=0(e~"""),
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(ii) Since |E(A, B)| is distributed as B(|A4||B|,p), a similar
calculation gives P((ii) fails) = O(e ~""7/).

(iii) Let a, = max{(})p*(1—p)" *:0< k <n}. Then a,~
(2rp(1 — p) n)~'72 (see Feller [7]). Let k=[cn7 and d satisfy 1 <k <n and
0<d<n—1. Use d(v) to denote the degree of a vertex v. Then

P((1)= - =d(k)=d)= [] P(d(i)=d]d(1)= - =d(i—1)=d)

i=1

<[ au-s

i=1

Hence

k
P((iii) fails) < n2" T] a,_;=O(n=" —cen2),

i=1

We introduced (p, ¢, ¢)-uniform graphs because our edge-colouring
algorithm will be guaranteed to work on such graphs. We now turn to the
algorithm itself. We shall use the following two well-known results in
describing the algorithm for finding the set S of matchings and verifying
that the algorithm works.

TuTtte’s THEOREM [11]. A graph G has no perfect matching if and only
if there is a set W of vertices in G such that the number of odd components of
G\ W is at least | W| + 1. If G has even order then the | W|+ 1 here may be
replaced by | W| + 2 (as was used, for example, in Erdos and Rényi [5]).

EDMONDS’S ALGORITHM [4]). There is a polynomial time (O(n?))
algorithm which finds a perfect matching in any graph which has one.

We now present in detail the procedure followed in finding the set S of
matchings.

The algorithm
Input
A graph G of order n plus parameters p, &.
begin
Step 1
{colours the edges induced by the vertices of maximum degree.}
H :=the set of vertices of maximum degree in G;
h:=|H|;
Edge-colour the subgraph induced by H using at most h colours, that is
partition the edges contained in H into (possibly empty) matchings
M, M, ., M,
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Furthermore we may assume {see Lemma5} that this is done
inequitably in the sense that

iz(p+e)h=|M;<6n, where@=¢/min{p+e 1—p—e}; (2)

Step 2
{extend M,, M,, .., M, to cover all but a few vertices of low degree. }
begin

Go = G;
fori=1to hdo
begin

Form G; from G;_, by deleting the set L, S, of vertices, where L, is
the set of vertices covered by M, and S, is the set of vertices of
degree less than pn—(i—1)—2en in G,_,. If necessary delete a
vertex of V(G;_)\(L;u S;) of minimum degree in G,_, in order to
make | V(G})| even;

Construct a perfect matching M of G} (or fail);

MY =M,UM;G,:=G,_ \M},

end
end;
Step 3
{tidying up}
Edge-colour G, with 4(G,) colours (or fail);
together with the 4 matchings M}, i=1, 2, ..., , this 4(G)-colours G.
end

3. ANALYSIS OF THE ALGORITHM

We claim that the algorithm will succeed if

each G| has a perfect matching, (3a)
and

H is the set of vertices of maximum degree of G,. (3b)

For if (3) holds then the set of vertices of maximum degree in G, forms a
stable set in G, and so G,, can be 4(G,)-edge-coloured. We will also have
4(G)=h+ 4(G,) and so the algorithm will indeed succeed.

LEmMA 3. Let O0<p<1, O0<c<min{p/2, 4} be constants. If >0 is a
sufficiently small constant, n is sufficiently large, and G is a (p, c, &)-uniform
graph of order n then the algorithm succeeds in A-edge-colouring G.
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Proof. The main effort is to prove (3a). Once this is done, (3b) will
follow easily.

Proof of (3a). Let M,, M,, .., M, be an inequitable colouring of (the
subgraph of G induced by) H-see Lemma 5 below.

Note first that if ve S; then dg(v) < (p — 2¢) n. Thus if S is the union of
the sets S; then by Lemma 1 we have |S|<en and SN H=¢, if n is
sufficiently large.

Suppose that the graph G; does not have a perfect matching. If an extra
vertex v; say was deleted when forming G; let R,= {v,;}, and otherwise let
R,=¢. Let w=| W|, where W is as in Tutte’s theorem. Let C,, C,, ..., C;,
k=zw+2, be the components of the graph G\ W, where |C,|<
|Col €---<|Ci|l. We now have a partition L,, S;, R;, W, C,,..., C, of the
vertex set V, of G. Then clearly

(w+2)IC <k |Cil<n 4)

By considering the degree, in G,;_,, of any vertex of C, we deduce that
wH+|C|+|L;|+|S;|Z2pn—(i—1)—2en
and hence

w+|C|2(p—3e)n—(i+|L)

But inequitability implies that
i+|L;|<(p+1+€e)h+20n
and so
w+|C,\|=2(p—3e)n—hp—h—¢eh—20n
=2(p—3¢—p/3—p/2—c—20)n since h<cn
= pn/1 for ¢ sufficientlly small. (5)

The proof now splits into two cases.

Case 1: w<pn/l4.

The inequalities (4) and (5) now imply that w<14/p and hence
| C,| = pn/8 = en for n sufficiently large and ¢ sufficiently small. Now let us
consider vertex degrees in the graph G,_,. For a vertex v and set U of
vertices in G;_, let d(v, U) denote the number of edges in G,_, between v
and U\{v}. Then
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Y dg_(x)= Y dx, W)+ ¥ d(x,C)+ ¥, d(x L)

xe(Cy xeCy xeC xeC

+ Y dix, S)+ Y dx R)

xeCy xeCy

14
<;|C1|+(P+5)|C||2

+(p+e)ILi|+en)IC | +en|Ci|+]|C,|
using uniformity and using |L;| +é&n to account for small L;. Hence for

large enough n

|Cil((p—26)n—(i—1))<|C,[(p(ICy | +1L;|) + 3en)
and so
pICi|Zzpn—i—p|L;| - Sen,
that is,
|CilZn—ilp—|L;| —(S¢/p) n. (6)

Subcase (a): i=(p+e)h Now i<cn and by inequitability |L;] <
20n; and so by (6)

|Ci 1= (1—c/p) n—(5¢/p+20) n.
But this contradicts (4) for e sufficiently small, since 1 —c/p > 1.
Subcase (b): i<(p+¢)h Now i<pcn+én, and so by (6)
|CilZ(1—c)n—]|L;| —(6¢/p)n.
Since ¢ < 1/3, for ¢ sufficiently small this gives
|Cy]122n/3—|L,].
But £ =2, and so
4n/3 -2 |L,|<|C\|+|Cyl€<n—|L,|.
This yields | L;| = n/3, which contradicts | L;| < A.
Case 2: w>pn/14.

Let F=) {C;:|C;|<28/p}. Since kzw+2>pn/14, clearly |F|>
pn/28 = en for ¢ sufficiently small. Now
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Y dg,_(x)= Y dx, F)+ Y d(x, W)+ Y dx, L))

xeF xeF xeF X€F

+ Z d(x, S,)+ Z d(x) RI)

xeF xeF

28
<?|F|+(p+8)l Wl |F|

+(p+e)FI(|L;| +en)+en|F|+|F|.
Hence for n sufficiently large
| FI((p—2e)n—(i=1))<|Fl(p(| W| +|L;|) + 3en)
and so
pwzpn—i—p|L;|—5en,
that is,
w2n—ifp—|L,| —(5¢/p)n. (7)
This inequality is similar to (6) and will be used in a similar way.

Subcase (a): iz (p+e)h. Now i<cn and by inequitability
| L;| <20n; and so by (7)

w2 (1—c/p)n—(5¢/p+20)n
=n/2 for ¢ sufficiently small.
But clearly w < n/2, a contradiction.
Subcase (b): i< (p+¢)h Now i<pcn+éen, and so by (7)
w2 (l—c)n—|L;| — (6¢/p)n.
But since ¢ < j we have w>2n/3—|L,| for ¢ sufficiently small. This yields
k>w22n/3—|L;| =n/3,

and also
nzw+k+|L;|22n/3+k,

a contradiction.

Proof of (3b). We note first that if ve H then for each i=1,2, .., A,
dg(v)=4—i, where 4=4(G). We saw earlier that |S|<en. Thus G will
contain a set T of at least n(1 — 2c — ¢) vertices of degree at most 4 —2 in
G, which are not in S. Note that | T| = h for ¢ sufficiently small.
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Suppose that (3b) fails. Then for some index i, 1 <i< A, there must be a
vertex v with dg;,_ (v) = 4 — i which is missed by the matching M}*. Now for
each vertex w in §; we have dg,_ (w)<pn—(i—1)—2en< 4 —i. Hence v
must be the one vertex in R;. But this is not possible, since the number of
vertices w in T with dg,_ (w)<d4 —i is at least

U R

j<i

| T|— 2|T|-(i—-1)>0,

and so some vertex in T would be chosen for R; before v.

There is now only one step in our algorithm for edge-colouring which we
have not described in detail. That is our method for inequitably colouring
H if it is suitably large.

LEMMA 4. Consider a graph H with order h. Given d with 0<d<h set
B={x|dy(x)>d} and let b=|B|. If b<d and b<h—d then H can be
h-edge-coloured using matchings M, ..., M, such that for i>d, |M,| <b.

Proof. By Vizing’s theorem [12] we may assume that B # ¢. For each x
in B choose a set E, of dy(x)—(d—1) edges from x to H\B. Let
F=\J {E,: xe B}. Let the graph H, be obtained from H by deleting the
edges in F, and let the graph H, contain only the edges in F (and the same
vertices as H). Then 4A(H,)=d—1, and so H, can be d-edge-coloured
using matchings M, to M,. The graph H, is bipartite with stable sets B
and H\ B (where we are using H to denote also the vertex set of the graph
H). The maximum degree in H, of a vertex in B is at most
h—1—(d—1)=h—d The maximum degree in H, of a vertex in H\ B is at
most b, which by assumption is at most A —d. Thus, 4(H,)<h—d, and so
H, can (h— d)-edge-coloured using matchings M, , .., M, (since H, is
bipartite). Note that each of the matchings M, ,, .., M, uses at most b
edges, as required.

LeEMMA 5. If a graph G of order n is (p, c, €)-uniform and n is sufficiently
large then the subgraph H can be inequitably edge-coloured.

Proof. We may assume that h>20n. Let d=(p+e)h, B=
{xe H:d,(x)>d}, and b=|B|. We show first that b <en. Otherwise let
B< B be of size s=[en7]. Proceeding as in Lemmal we find, since
| H\ B| > ¢n,

| E(B, H\B)| <(p+¢)s(h—ys)

| E(B, H\B)| > (p+¢) hs—2(p +¢) (;)

which yields a contradiction.
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It is straightforward to check that b <min{d, h—d} since h>20n, and
so we can apply Lemma 4 to establish Lemma 5.
The proof of Theorem 1 is now complete.

4. LoweRr BounDs

We now turn to the proof of Theorem 2. Clearly a regular graph of odd
order is in class 2. We shall obtain our lower bound on the probability that
a graph is in class 2 by counting regular graphs with degree about np. The
main step in proving the lemma below is to show that for any n-vector
(dy, .., d,) with 3, d;=nr there are no more graphs of order n with each
degree d(i) =d,; than with each d(i)=r.

LeMMA 6. Let p, o be constants, withO<p<1and a> 1. Let r=r(n) be
any integer such that |r—np|<a and rn is even. Then

P(G,, is r-regular) =exp{ —in(log n + O(log log n))}.

Proof. Let k=k(n)=2(pgnlogn)'? Call a graph with n vertices
middling if all its degrees liec in the range (n—1)p+k. By standard
inequalities for binomial probabilities (see, for example, Feller [7] or
Bollobas [2]),

P(G, , is middling) =1—o(1/n).

Also (for given p), there is a constant ¢ >0 such that for all appropriate r
(that is, integer r such that |r—np| <o and rn is even)

P(|E|=nr/2)>c/n.

Hence, if A(n, r) denotes the set of graphs with n vertices which are
middling and have exactly nr/2 edges, then

P(G,,eA(nr))>c'/n for some ¢’ > 0.

For each vector x =(x,, .., x,) of non-negative integers let f(x) be the
number of graphs with vertex set ¥V, = {1, ..,n} and with degree d(i)=x;
for each i=1,..,n Suppose that x,2x,+1. Form x’ by setting
xi=x;—1, x3=x,+1, and x;=x, for i=3, ..., n. We claim that

Sx)<f(x). (8)

To prove this, for each n-vector y of non-negative integers and graph H
on {3,4, .., n} let f(y, H) be the number of graphs with vertex set ¥, and
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with d(i)=y; for each i=1,..,n and such that the subgraph induced on
{3,4,..,n} is H. Thus

fy)=% f(y, H),

where the sum is over all graphs H on {3, 4, .., n}.

Consider a graph H such that f(x, H)>0. Let H have n; vertices j of
degree x;—i for i=0, 1, 2. Then either (i) n, + 2n, = x, + x,, in which case
no graph counted by f(x, H) has vertices 1 and 2 adjacent, or (ii)
ny+2n,=x,+x,—2, in which case each graph counted by f(x, H) has
vertices 1 and 2 adjacent.

Now observe that if a>b>0 then (“%°2)<(¢*%). In case (i), n,=
(x, —n,)+ (x5 —n,), where x, —n, >x,—n,20. Thus

rom=( " <(" ) s,

In case (ii), n;=(x; —1—ny)+(x,—1—n,), where x;, — 1 —n,>x,—1—
n, 0. Thus much as above

f(x,H)=( " )s( = )=f(x’,H).

xl-‘l—nz x’l_l_nz

We have now shown that in either case f(x, H) <f(x’, H), and the claim
(8) follows.
By (8)if 3_7_, x;=nr then f(x)<f(r), where r=(r, r, ..., 7). Thus

P(G,,,is r-regular |G, ,€ A(n, r))
=f(r)/|4(n,r)|
=2k+1)""
Hence
P(G,, , is r-regular)
=P(G,,is r-regular |G, ,€ A(n, r)) P(G, ,€ A(n, 1))
>exp{ —4n(log n +loglog n+ O(1))}.

The other inequality is easy. As in the proof of Lemma 2 let a, be the
maximum probability mass of a binomial random variable B(n, p). Then



EDGE-COLOURING RANDOM GRAPHS 147

n—1
P(G, ,is r-regular) < [] a,_;

i=1
<c"(n!)~'?  for some constant ¢ >0
=exp{—in(logn+ 0(1))}.
Theorem 2 now follows easily, for a regular graph with an odd number
of vertices is in class 2 (by counting edges). Thus if n is odd then Theorem 2

follows immediately from Lemma 6. For n even, consider the probability
that the first vertex is isolated and the rest of the graph is regular.

We turn finally to the result of Erdés and Wilson [6]. Our last result
shows that their approach cannot show that the probability that G, , is in
class 2 tends to zero very quickly as #n — co.

LEMMA 7. Fix p, O<p=1—g<1. Let A be the event that a graph has
two vertices of maximum degree, and let B be the event that the vertices of
maximum degree induce a cycle. Then there are constants ¢, ¢’ >0 such that

P, (A)>c(nlogn)~'2,  P(B)>c'n~!'(logn)~"2
Proof. By a standard approximation to the binomial distribution (as in
Lemma 6) there is a constant ¢ >0 such that
P,(d(v,)=d(v;)=pn+h)
> cn~ " exp(—h*/pgn)
for all A, 0 < h< n*?/log n say, such that pn+ h is an integer <n. (Indeed

for n sufficiently large any ¢ < (2apq)~"' will do.)
Hence, if k = k(n) = (2pgn log n)"/? then

P,(d(v\)=d(v)) 2 pn+k)
> c((nflog n)'? — 1) P(d(v,) = d(v;) = pn + k + (n/log n)'" J)

=2¢'n"%*(logn)~"?  for some constant ¢’ > 0.

(This probability is also O(n~%*(log n)~'2).) We are using P, to refer to
the random graph G, ,.
Now by a result of Bollobas [1],

P(d<pnt+k—-2)->1 as n— 0.
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Let d'(v;) denote the number of edges incident with vertex v, ignoring any
edges to vertices v, or v,. Then

Pd,=dy2pn+k>ds,...d,)
2P, (dy=d,zpnt+kandd;,..,d,<pn+k-2)
=P,(di=dyzpn+k)P,_,{Ad<pn+k—2}
=c'n=? (logn)~'?

by the above, for n sufficiently large. Hence

Po(A)> (g) ¢'n= (log n)~""

1/2

2c"(nlogn)~ for n sufficiently large.

We may prove the result for P,(B) in just the same way. There is a
constant ¢ >0 such that
P (d(v,)=d(v,)=d(v;)=pn+ hand v, v,, v; form a triangle)
> cn— 3% exp(—3h*/2pqn)

for all h, 0<h<n*?/log nsay, such that pn+h is an integer <n. Hence
much as above

P.(d(v,)=d(v,)=d(v3) =2 pn+k,and v, v,, v; form a triangle)

>c'n~4(logn)~'?

and we may complete the proof as before.

5. CONCLUDING REMARKS

(a) Let p, denote the proportion of n-vertex graphs in class 2. We
have shown that for any ¢>0

n—(l/2+c)n <pn<n—(l/8—-c)n

for n sufficiently large. It is natural to ask if there is a constant y such that
pp=n"0+eUMn If 5 exists then of course }<y<4 Can we tie it down
further?

(b) If we are really interested in an algorithm to A4-edge-colour
graphs then it is clearly unsatisfactory to have to input as well as the graph
G the extra parameters p and e. It is not hard to remedy this.
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Let algorithm A’ be exactly like A, except that it has input only G and &,
and uses p=]|E(G)|/(3) in place of p. This is the natural way to try to
avoid having to input p. We may show that Theorem 1 holds with
algorithm A replaced by A4’. One way to see this involves tedious “uniform”
versions of Lemmas 2 and 3 and the observation that j is close to p with
very high probability.

Further it is easy to avoid having to input the parameter £ > 0. Either we
can trace through the proofs to yield a specific upper bound for ¢ (for p in
a suitable range for algorithm A’), or we may simply set & = &(n) = 1/w(n),
where w(n)21 is an arbitrarily chosen function such that w(n) —» oo as
n— oo and w(n)=0(n"?) say. For then by the proof of Lemma 2, the
probability that part (i) or (ii) in the definition of (p, ¢, &)-uniform fails is
O(exp(—¢*n®p/7)) = O(exp(—n®?)) for some &> 0.
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