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Abstract

We study properties of a simple random walk on the random digraph Dn,p when
np = d log n, d > 1.

We prove that whp the value πv of the stationary distribution at vertex v is asymp-
totic to deg−(v)/m where deg−(v) is the in-degree of v and m = n(n − 1)p is the
expected number of edges of Dn,p. If d = d(n) → ∞ with n, the stationary distribution
is asymptotically uniform whp.

Using this result we prove that, for d > 1, whp the cover time of Dn,p is asymptotic
to d log(d/(d − 1))n log n. If d = d(n) → ∞ with n, then the cover time is asymptotic
to n log n.

1 Introduction

Let D = (V,E) be a strongly connected digraph with |V | = n, and |E| = m. For the simple
random walk Wv = (Wv(t), t = 0, 1, . . .) on D starting at v ∈ V , let Cv be the expected time
taken to visit every vertex of D. The cover time CD of D is defined as CD = maxv∈V Cv.

For connected undirected graphs, the cover time is well understood, and has been extensively
studied. It is an old result of Aleliunas, Karp, Lipton, Lovász and Rackoff [2] that CG ≤
2m(n− 1). It was shown by Feige [10], [11], that for any connected graph G, the cover time
satisfies (1 − o(1))n log n ≤ CG ≤ (1 + o(1)) 4

27
n3, where log n is the natural logarithm. An

example of a graph achieving the lower bound is the complete graph Kn which has cover
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time determined by the Coupon Collector problem. The lollipop graph consisting of a path
of length n/3 joined to a clique of size 2n/3 has cover time asymptotic to the upper bound of
(4/27)n3.

For directed graphs cover time is less well understood, and there are strongly connected
digraphs with cover time exponential in n. An example of this is the digraph consisting of
a directed cycle (1, 2, ..., n, 1), and edges (j, 1), from vertices j = 2, ..., n − 1. Starting from
vertex 1, the expected time for a random walk to reach vertex n is Ω(2n).

In earlier papers, we investigated the cover time of various classes of (undirected) random
graphs, and derived precise results for their cover times. The main results can be summarized
as follows:

• [4] If p = d log n/n and d > 1 then whp CGn,p ∼ d log
(

d
d−1

)
n log n.

• [7, 8] Let d > 1 and let x denote the solution in (0, 1) of x = 1 − e−dx. Let Xg be the

giant component of Gn,p, p = d/n. Then whp CXg ∼ dx(2−x)
4(dx−log d)

n(log n)2.

• [5] If r ≥ 3 is a constant and Gn,r denotes a random r-regular graph on vertex set [n]
with r ≥ 3 then whp CGn,r ∼ r−1

r−2
n log n.

• [6] If m ≥ 2 is constant and Gm denotes a preferential attachment graph of average
degree 2m then whp CGm ∼ 2m

m−1
n log n.

• [9] If k ≥ 3 and Gr,k is a random geometric graph in ℜk of ball size r such that the
expected degree of a vertex is asymptotic to d log n, thenwhp CGr,k

∼ d log
(

d
d−1

)
n log n.

A few remarks on notation: We use the notation a(n) ∼ b(n) to mean that a(n)/b(n) → 1 as
n → ∞. Some inequalities in this paper only hold for large n. We assume henceforth that n
is sufficiently large for all claimed inequalities to hold. All whp statements in this paper are
relative to the class of random digraphs Dn,p under discussion, and not the random walk.

In this paper we turn our attention to the cover time of random directed graphs. Let Dn,p be
the random digraph with vertex set V = [n] where each possible directed edge (i, j), i 6= j is
independently included with probability p. It is known that if np = d log n = log n+ γ where
γ = (d − 1) log n → ∞ then Dn,p is strongly connected whp. If γ as defined tends to −∞
then whp Dn,p is not strongly connected. As we do not have a direct reference to this result,
we next give a brief proof of this. It is easy to show that if np = log n−γ where γ → ∞, there
are vertices of in-degree zero whp. On the other hand, if np = log n + γ where γ → ∞ then
[12] shows that the random digraph is Hamiltonian and hence strongly connected. Strong
connectivity for np = log n+ γ where γ → ∞ also follows directly from the proof of (62).

We determine the cover time of Dn,p for values of p at or above the threshold for strong
connectivity.
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Theorem 1. Let np = d log n where d = d(n) is such that γ = np− log n → ∞. Then whp

CDn,p ∼ d log

(
d

d− 1

)
n log n.

Note that if d = d(n) → ∞ with n, then we have CDn,p ∼ n log n.

Here X ∼ Y whp if there are functions ǫ1, ǫ2 of n, ǫ1, ǫ2 = o(1) as n → ∞, such that with
probability 1− ǫ1 we have X = (1− ǫ2)Y .

The method we use to find the cover time of Dn,p requires us to know the stationary dis-
tribution of the random walk. For an undirected graph G, the stationary distribution is
πv = deg(v)/2m, where deg(v) denotes the degree of vertex v, and m is the number of edges
in G. For a digraph D, let deg−(v) denote the in-degree of vertex v, deg+(v) denote the out-
degree, and let m be the number of edges in D. For strongly connected digraphs in which each
vertex v has in-degree equal to out-degree (deg−(v) = deg+(v)), then πv = deg−(v)/m. For
general digraphs, however, there is no simple formula for the stationary distribution. Indeed,
there may not be a unique stationary measure. The main technical task of this paper is to
find good estimates for πv in the case of Dn,p. Along the way, this implies uniqueness of the
stationary measure whp.

We summarize our result concerning the stationary distribution in Theorem 2 below. For a
given vertex v, define a quantity ς∗(v), which in essence depends on the in-neighbour w of v
with minimum out-degree:

ς∗(v) = max
w∈N−(v)

{
deg−(w)

deg+(w)

}
. (1)

Theorem 2. Let np = d log n where d = d(n) is such that np−log n → ∞. Let m = n(n−1)p.
Then whp, the stationary distribution π is unique and for all v ∈ V ,

πv ∼
deg−(v) + ς∗(v)

m
.

If ς∗(v) = o(deg−(v)) for vertex v, the ς∗(v) term can be absorbed into the error term of πv,
in which case πv ∼ deg−(v)/m, where m ∼ n2p. We note the following special cases.

Remark 1. We prove in Lemma 14 that whp ς∗(v) = o(deg−(v)) for all but o(n1/4) vertices
v.

Remark 2. When d = 1+δ, δ > 0 constant then whp the maximum in-degree is O(log n) and
the minimum out-degree is Ω(log n). In which case, πv ∼ deg−(v)/m for all vertices v ∈ V .

Remark 3. It can be shown that if np − log n = ω(log log n) then whp ς∗(v) = o(deg−(v))
for all vertices v.

Remark 4. If d = d(n) → ∞ with n, whp the stationary distribution of Dn,p is πv ∼ 1/n.
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2 Outline of the paper

At the heart of our approach to the cover time is the following claim: Suppose that T is a
“mixing time” for a simple random walk Wu, and Av(t) is the event that the walk Wu does
not visit v in steps T, T + 1, . . . , t. Then, essentially,

Pr(Av(t)) ∼ e−tπv/Rv . (2)

Here Rv is the expected number of visits/returns to v made within T time steps, by a walk
Wv, starting from v. The fact that Rv ≥ 1 follows because the walk starts from v at step
t = 0, and this is counted as a visit. The proof of (2) is the content of Lemma 3; an established
lemma that we have used to prove previous results on this topic. The definition of mixing
time T used in Lemma 3 is based on maximum point-wise distance and is given in (4)-(5).
Because the walk is on a digraph, we estimate a mixing time T = o(log2 n) directly, and this
is the topic of Section 7.1. Indeed the proof of Theorem 2 is itself based on an estimate of
convergence of the walk to stationarity.

Given (2) we can estimate the cover time from above via

Cu ≤ t+ 1 +
∑

v

∑

s≥t

Pr(Av(s)).

This is (95) and we have used this inequality previously. Here Cu is the expected time for
Wu to visit every vertex. It is valid for arbitrary t and we get our upper bound for CD by
choosing t large enough so that the double sum is o(t).

We estimate the cover time from below by using the Chebyshev inequality. We choose a set
of vertices V ∗∗ that are candidates for taking a long time to visit and estimate the expected
size of the set V † of vertices in V ∗∗ that have not been visited within our estimate of the
cover time. We show that E|V †| → ∞. To apply the Chebyshev inequality, we estimate the
probability that a given pair of vertices v, w ∈ V ∗∗ are unvisited by contracting them to a
single vertex γ, and then using (2) to show that Pr(Aγ(t)) ∼ Pr(Av(t))Pr(Aw(t)).

The main problem for digraphs is that we do not know πv and much of the paper is devoted
to proving that, essentially, whp,

πv ∼
deg−(v) + ς∗(v)

m
for all v ∈ V. (3)

Our proof of this leads easily to a claim that whp T = O(log2 n) and we will then find that
it is easy to prove that Rv = 1 + o(1) for all v ∈ V .

We approximate the stationary distribution π using the expression π = πP k, where P is the
transition matrix. For suitable choices of k we find we can bound

P (k)
x (y) = Pr(Wx(k) = y)
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from above and below by values independent of x and obtain, essentially,

P (k)
x (y) ∼ deg−(y) + ς∗(y)

m

an expression independent of x. Equation (3) follows easily from this.

To estimate P
(k)
x (y) from below we proceed as follows: We let k = 2ℓ = 2

3
lognp n. We consider

two Breadth First Search trees of depth ℓ. T low
x branches out from x to depth ℓ and T low

y

branches into y from depth ℓ. Almost all of the walk measure associated with walks of length
2ℓ + 1 from x to y will go from x level by level to the boundary of T low

x , jump across to the
boundary of T low

y and then go level by level to y. We analyse such walks and produce a lower
bound.

To estimate P
(k)
x (y) from above we change the depths of the out-tree from x and the in-tree to

y. This eliminates some complexities. In computing the lower bound, we ignored some paths
that take more circuitous routes from x to y and we have to show that these do not add much
in walk measure.

The structure of the paper is now as follows: Section 3 describes Lemma 3 that we have often
used before in the analysis of the cover time. Section 4 establishes many structural properties
of Dn,p. In Section 5 we prove the lower and upper bounds given in Theorem 2. These bounds
hold for any digraph with the high probability structures elicited in Section 4. Sections 4
and 5, which form the main body of this paper, are first proved under the assumption that
2 ≤ d ≤ nδ, for some small δ > 0, an assumption we refer to as Assumption 1. In Section
6, we extend the proof of Theorem 2 by removing Assumption 1. Section 7 is short and
establishes that the conditions of Lemma 3 hold. To do this, we use a bound on the mixing
time, based on results obtained in Sections 5, 6. Finally, in Section 8 we establish the cover
time whp, as given in Theorem 1.

3 Main Lemma

In this section D denotes a fixed strongly connected digraph with n vertices. A random walk
Wu is started from a vertex u. Let Wu(t) be the vertex reached at step t, let P be the matrix

of transition probabilities of the walk and let P
(t)
u (v) = Pr(Wu(t) = v). We assume that the

random walk Wu on D is ergodic with stationary distribution π.

Let
d(t) = max

u,x∈V
|P (t)

u (x)− πx|, (4)

and let T be a positive integer such that for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3. (5)
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Consider the walk Wv, starting at vertex v. Let rt = rt(v) =Pr(Wv(t) = v) be the probability
that this walk returns to v at step t = 0, 1, ... . Let

RT (z) =
T−1∑

j=0

rjz
j (6)

and let
Rv = RT (1).

The following lemma is used in Section 8 to prove Theorem 1. A proof of Lemma 3 can be
found in [7].

Lemma 3. Fix vertices u, v ∈ V and for t ≥ T let Av(t) be the event that Wu does not visit
v in steps T, T + 1, . . . , t. Suppose that

(a) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(b) T 2πv = o(1) and Tπv = Ω(n−2).

There exists an absolute constant K > 0 and functions θ1, θ2 = O(Tπv) such that if

λ =
1

KT
. (7)

and
pv =

πv

Rv(1 + θ1)
, (8)

then we have that for t ≥ T ,

Pr(Av(t)) =
1 + θ2

(1 + pv)t
+O(T 2πve

−λt/2). (9)

4 Structural Properties of Dn,p

In this section we gather together some properties of the degree sequence of Dn,p which hold
whp. We stress that throughout this section the probability space is the space Dn,p, and not
the space of walks on a given digraph. These properties are needed for the proof of Theorem
2.
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We will make an assumption (Assumption 1) about the average degree which will allow us
to split the proofs in this section into two parts, the first part assuming that Assumption 1
holds, later relaxing this assumption in Section 4.4.

Once we complete this section, we next concentrate on estimating the stationary distribution
of a digraph with the given properties when Assumption 1 of (22) holds. This is done in
Section 5. We then remove Assumption 1 in Section 6.2. For large p outside Assumption 1,
a direct proof of the stationary distribution is quite simple, and given separately in Section
6.1.

4.1 Bounds on the Degree Sequence

Chernoff Bounds The following inequalities are used extensively throughout this paper.
Let Z = Z1 + Z2 + · · ·ZN be the sum of the independent random variables 0 ≤ Zi ≤ 1, i =
1, 2, . . . , N with E(Z1 + Z2 + · · ·+ ZN) = Nµ. Then for ǫ ∈ (0, 1) and any t, α > 0,

Pr(|Z −Nµ| ≥ ǫNµ) ≤ 2e−ǫ2Nµ/3, (10)

Pr(Z ≥ Nµ+ t) ≤ e−2t2/N , (11)

Pr(Z ≥ αNµ) ≤ (e/α)αNµ. (12)

For proofs see for example Appendix A of Alon and Spencer [3].

The next lemma gives some properties of the degree sequence of Dn,p. The lemma can be
proved by the use of the first and second moment methods (see [4] for very similar calculations).
The majority of the properties in Lemma 4(i) are used in Section 8.

Let np = d log n and let
∆0 = C0np where C0 = 30. (13)

Lemma 4.

(i) First assume that np = d log n where 1 < d = O(1) and (d − 1) log n → ∞. Let D(k)
denote the number of vertices v with deg−(v) = k, and let D(k) = ED(k). Thus

D(k) = n

(
n− 1

k

)
pk(1− p)n−1−k.

Note that

D(k) ≤ 2

nd−1

(nep
k

)k
. (14)
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Let

K0 = {k ∈ [1,∆0] : D(k) ≤ (log n)−2}.
K1 = {1 ≤ k ≤ 15 : (log n)−2 ≤ D(k) ≤ log log n}.
K2 = {k ∈ [16,∆0] : (log n)−2 ≤ D(k) ≤ (log n)2}.
K3 = [1,∆0] \ (K0 ∪K1 ∪K2).

For k ≤ ∆0, the degree sequence has the following properties.

(a) If d− 1 ≥ (log n)−1/3 then

K1 = ∅, min{k ∈ K2} ≥ (log n)1/2, |K2| = O(log log n).

(b) The following conditions hold whp:

For all k ∈ K0, D(k) = 0,

For all k ∈ K1, D(k) ≤ (log log n)2, (15)

For all k ∈ K2, D(k) ≤ (log n)4, (16)

For all k ∈ K3,
D(k)

2
≤ D(k) ≤ 2D(k). (17)

(ii) Suppose that 1 < d ≤ nδ where δ is a small positive constant. Let k∗ = ⌈(d− 1) log n⌉.
Let

V ∗ =
{
v ∈ V : deg−(v) = k∗ and deg+(v) = k† = ⌈d log n⌉

}

and let γd = (d− 1) log
(

d
d−1

)
. Then whp

|V ∗| ≥ nγd

10d log n
.

(iii) Let D be the event
{
∃v ∈ V : deg+(v) ≥ ∆0 or deg−(v) ≥ ∆0

}
, (18)

then
Pr(D) ≤ n−10e−10np. (19)

(iv) The number of edges |E(Dn,p)| ∼ m = n(n− 1)p whp.

(v) deg±(v) ∼ np for all v ∈ V whp if d → ∞.

Proof We will only give an outline proof of (ii) as the other claims have (essentially)
been proved in [4]. We have

E(|V ∗|) = n

(
n− 1

k∗

)(
n− 1

k†

)
pk

∗+k†(1− p)2n−2−k∗−k† .
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Using,
(
n
k

)
≥ 1

3k1/2

(
ne
k

)k
, which is obtainable from Robbins’ refinement of Stirling’s approxi-

mation, we see that

E(|V ∗|) ≥ (1− o(1))
1

9(d− 1)1/2d1/2 log n

(
d

d− 1

)(d−1) logn

. (20)

A separate calculation shows that

E(|V ∗|2) = E(|V ∗|) + (E(|V ∗|))2
(
1 +O

(
k∗k†

n2p

))
,

where (k∗k†)/(n2p) = O(p/n). Thus provided we verify that E(|V ∗|) tends to ∞, the Cheby-
shev inequality will show that |V ∗| is concentrated around its mean.

If d > 2 then

(
d

d− 1

)(d−1) logn

≥ exp

{
(d− 1) log n

(
1

d− 1
− 1

2(d− 1)2

)}
≥ n1/2.

Now d ≤ nδ and so E(|V ∗|) → ∞ follows from (20). If d = 1 + ǫ ≤ 2 and ǫ is bounded

away from zero then so is
(

d
d−1

)d−1
and so E(|V ∗|) = nΩ(1). So now suppose that ǫ = ω

logn

where ω = ω(n) → ∞ and ω = o(log n). Then,
(

d
d−1

)(d−1) logn ≥
(
logn
ω

)ω
. If ω ≥ log1/2 n then

(
d

d−1

)(d−1) logn ≥ elog
1/2 n and if ω ≤ log1/2 n then

(
d

d−1

)(d−1) logn ≥ logω/2 n. In either case

E(|V ∗|) ≥ logθ n where θ = θ(n) → ∞. (21)

2

4.1.1 Assumption 1: a convenient restriction

We will first carry out the main body of the proof under the following assumption:

Assumption 1 : 2 ≤ d ≤ nδ. (22)

Here δ is some small fixed positive constant, much less than one. We use the notation 0 <
δ ≪ 1 to express this condition. We note that our choice of the value d ≥ 2 is somewhat
arbitrary, and any constant larger than 1 would suffice. We wait until Section 6 to remove
Assumption 1. The proof for d > nδ is much simpler and is given separately in Section 6.1.
The proof for 1 < d ≤ 2 is given in Section 6.2.

Under Assumption 1, for d = O(1), and with C0np = ∆0 given by (13), there is a constant
c0 > 0 and interval

I = [c0np, C0np], (23)
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such that if ν ∈ [3n/4, n] then there exists γ = γ(c0, C0) > 0 such that

Pr(Bin(ν, p) ∈ I) = 1− o(n−1−γ). (24)

When d → ∞ we can take c0 = 0.999 and C0 = 1.001.

Let E+
S (resp. E−

S ) be the event that the in-degree (resp. out-degree) of all vertices in S ⊆ V
are in the interval I. Thus e.g.

E+
S =

{
Dn,p : ∀v ∈ S ⊆ V, deg+(v) ∈ [c0np,∆0]

}
. (25)

Let ES = E+
S ∩ E−

S . Then for any S ⊆ V we have

Pr(ES) = 1−O(n−γ). (26)

4.2 Properties needed for a lower bound on the stationary distri-
bution

The calculations in this section are made under Assumption 1.

Fix vertices x, y where x = y is allowed. Most short random walks from vertex x to vertex
y take the form of a simple directed path, or cycle if x = y. We can count such paths (or
cycles) with the help of a breadth first out-tree T low

x rooted at x, and a breadth first in-tree
T low
y rooted at y. We build these trees to depth ℓ, where

ℓ =

⌊
2

3
lognp n

⌋
. (27)

For a vertex v let N−(v) be the set of in-neighbours of v and for a set S, let N−(S) =⋃
v∈S N

−(v). Define N+(v), N+(S) similarly with respect to out-neighbours.

Construction of in-tree T low
y .

For fixed y ∈ V , we build a tree Ty = T low
y rooted at y, by branching backwards in a breadth-

first fashion.

Define Y0 = {y}, and define Y1, . . . , Yℓ as Yi+1 = N−(Yi) \ (Y0 ∪ · · · ∪ Yi) for 0 ≤ i < ℓ. If
w ∈ Yi+1 is the out-neighbour of more than one vertex of Yi, we only keep the edge (w, z)
with the label of z as small as possible. Let Y =

⋃ℓ
i=0 Yi and let T low

y denote the BFS tree
Ty(ℓ) constructed by branching back in this manner. For convenience, let Y≤i = ∪j≤iYj.

Because we need to state the distribution of edges of T low
y rather precisely, we will refine our

description of the construction of the tree somewhat. The reason for this is as follows. It may
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be that, in the fully exposed digraph, a vertex w ∈ Yi+1 has more than one edge pointing to
Yi. However, our construction of T low

y avoids learning this fact.

Let Ty(i) be the tree consisting of the first i levels of the breadth first tree Ty(ℓ). Given
Ty(i) we construct Ty(i + 1) by adding the in-neighbours of Yi in V \ Y≤i. For v ∈ Yi, let
N−

T (v) be the subset of Yi+1 ∩ N−(v) whose edges in the tree Ty(i + 1) point to v. The
set N−

T (v) is constructed as follows. We process the vertices of Yi in increasing order of
vertex label. Let this order be (v1, v2, ..., v|Yi|). Thus N−

T (v1) = N−(v1) \ Y≤i, and in general
N−

T (vk) = N−(vk) \ (Y≤i ∪N−(v1, ..., vk−1)).

Let deg−T (v) = |N−
T (v)| denote the in-degree of v ∈ Y in T low

y . If deg−T (v) > 0 for all v ∈ Y≤ℓ−1,
we say the construction of T low

y succeeds. The construction will fail if, for some i and some
v = vk in Yi all in-neighbours of v lie in Y≤i ∪N−(v1, ..., vk−1).

If v ∈ Yi and w ∈ Yi+1 and (w, v) is an edge of Ty(i+1), then v = vk is the first out-neighbour
of w in Yi in the order (v1, ..., vk). Note that we do not know anything about the edges (if any)
between w and (vk+1, ..., v|Yi|), because w was removed in our construction. We also remark,
that as w ∈ Yi+1, there are no edges from w to Y≤i−1, and thus no edges between w and
Y≤i−1 ∪ {v1, ..., vk−1}.

Associated with this construction of Ty = T low
y is a set of parameters and random variables.

• For vj ∈ Yi, let σ(vj) = |V \ [Y≤i ∪ N−
T (v1, ..., vj−1)]|. Thus σ(vj) is the number of

vertices not in Ty after all in-neighbours of v1, ..., vj−1 have been added to Ty.

• Let B(vj) = |N−
T (vj)| = deg−T (vj), the in-degree of vj in Ty. Thus B(vj) ∼ Bin(σ(vj), p).

• Let σ′(vj) = |V \ [Y≤i−1 ∪ {v1, ..., vj−1}|.

• Let D ∼ 1+Bin(σ′(vj), p), and let D(j, k), k = 1, ..., B(vj) be independent copies of D.

The interpretation of the random variable D(j, k) is as follows. If wk ∈ N−
T (vj) then D(j, k) is

the out-degree of wk in Dn,p. The 1+ term in the definition of D comes from (wk, vj) being
the first edge from wk to Yi.

Construction of out-tree T low
x . Given the set of vertices Y of T low

y , we define X0 =
{x} , X1, . . . , Xℓ where Xi+1 = N+(Xi) \ (Y ∪X0 ∪ · · · ∪Xi) for 0 ≤ i < ℓ. If w ∈ Xi+1 is the
out-neighbour of more than one vertex of Xi, we only keep the edge (z, w) with the label of z
as small as possible, as in the construction of T low

y . Let X =
⋃ℓ

i=0 Xi and let T low
x denote the

BFS tree constructed in this manner. Let deg+T (v) = |N+
T (v)| denote the out-degree of v ∈ X

in T low
x . Similarly to the construction of T low

y , the value of deg+T (v) is given by a random

variable B(v) ∼ Bin(σ(v), p). If deg+X(v) > 0 for all v ∈ X≤ℓ−1, we say the construction
of T low

x succeeds. The construction would fail if some vertex v ∈ Xi, i ≤ ℓ − 1 only had
out-neighbours in X≤i.
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We gather together a few facts about T low
x , T low

y that we need for the proofs of this section.
We say that a sequence of events An, n ≥ 0 hold ‘quite surely’(qs) if Pr(An) = 1 − O(n−K)
for every constant K > 0.

Lemma 5. Let γ > 0 be as defined in (23)-(24), then

(i) With probability 1−O(n−γ), the construction of T low
x , T low

y succeeds for all x, y ∈ V .

(ii) With probability 1−O(n−γ),
For all x, and for all v ∈ X≤ℓ−1, deg

+
T (v) ∈ [c0np(1− o(1)), C0np],

For all y and for all v ∈ Y≤ℓ−1, deg
−
T (v) ∈ [c0np(1− o(1)), C0np].

(iii) Given E+
x , E−

y , then for i ≤ ℓ, |Xi| ∼ deg+(x)(np)i−1, |Yi| ∼ deg−(y)(np)i−1 qs.

Proof We give proofs for T low
x , the proofs for T low

y are similar.

Part (i), (ii). Let X = {x0 = x, x1, . . . , xN} where xi is the i-th vertex added to T low
x . For

xj ∈ X, let f(xj) = |N+(xj) ∩ (Y ∪ {x0, x1, . . . , xj−1})|. Thus deg+(v) = deg+T (v) + f(v).

We can bound f(v) stochastically by the binomial Bin(NX , p) where NX = |Y |+ |X|. This is
true even after constructing T low

x , T low
y , because the out-edges of v counted by f(v) have not

been exposed. Assuming ¬D, see (19), we have

NX ≤ 2
ℓ∑

i=1

∆i
0 = n2/3+o(1).

Using the Chernoff bound (12), we have with ω = log1/2 n that

Pr
(
f(v) ≥ np

ω

)
≤ Pr

(
Bin(n2/3+o(1), p) ≥ np

ω

)
= O(n−10). (28)

The event
⋃

x∈v E+
X≤ℓ−1

⊆ E+
V and the latter holds with probability 1−O(n−γ). Thus given (28),

and E+
V we have deg+T (v) > 0 for v ∈ X≤ℓ−1 for all x ∈ V . In summary, whp the construction

of T low
x succeeds for all x ∈ V , and deg+T (v) ∈ [c0np(1 − o(1)), C0np] for all v ∈ X≤ℓ−1 in all

trees T low
x , x ∈ V .

Part (iii). By construction T low
x was made after T low

y , so |Xi| depends on T low
x and T low

y .

Assume E+
x =

{
deg+(x) ∈ I = [c0np, C0np]

}
, and that |Y | ≤ n2/3+o(1). Strictly speaking we

should verify that |Y | ≤ n2/3+o(1) before considering T low
x . On the other hand, the proof we give

here also applies to T low
y . For i ≥ 1, |Xi+1| is distributed as Bin(n− o(n), 1− (1−p)|Xi|). The

number of trials n− o(n) is based on the inductive assumption that |Xj+1| = (1+ o(1))n|Xj|p
and that |X≤j|p = o(1). That these assumptions hold qsfollows from the Chernoff bounds.
We thus have qsthat

|Xℓ| ∼ deg+(x)(np)ℓ−1. (29)

12



2

For u ∈ Xi let Pu denote the path of length i from x to u in T low
x and

αi,u =
∏

w∈Pu
w 6=u

1

deg+(w)
.

In the event that the construction of T low
x fails to complete to depth ℓ, let

∑
u∈Xℓ

αℓ,u = 0.

Similarly, for v ∈ Yi let Qv denote the path from v to y in T low
y and

βi,v =
∏

w∈Qv
w 6=y

1

deg+(w)
. (30)

In the event that the construction of T low
y fails to complete to depth ℓ, let

∑
v∈Yℓ

βℓ,v = 0.

Let

Z(x, y) = Z low(x, y) =
∑

u∈Xℓ
v∈Yℓ

αℓ,uβℓ,v
1uv

deg+(u)
(31)

where 1uv is the indicator for the existence of the edge (u, v) and we take 1uv
deg+(u)

= 0 if

deg+(u) = 0. Note that Z(x, y) = 0 if we fail to construct T low
x or T low

y .

Remark 5. The importance of the quantity Z(x, y) lies in the fact that it is a lower bound
on the probability that Wx(2ℓ+ 1) = y.

The aim of the next few lemmas is to prove the following statement. Let I(y, ǫ) denote the
interval [(1− ǫ)deg−(y)/m, (1 + ǫ)deg−(y)/m], for some ǫ = o(1). Let m = n(n− 1)p, then

Pr (∃x,y∈V such that Z(x, y) 6∈ I(y, ǫ)) = O(n−γ). (32)

The first two lemmas give whp bounds for
∑

u∈Xℓ
αℓ,u,

∑
v∈Yℓ

βℓ,v respectively, to be used in
the third lemma and its corollary.

Lemma 6. Let

A1(x, y) =

{
1− ǫX ≤

∑

u∈Xℓ

αℓ,u ≤ 1

}
, (33)

and let ǫX = 2/(c
√
log n) for some c > 0, then

Pr
(
¬A1(x, y) ∩ E+

x

)
= o(n−10). (34)

Proof

13



For u ∈ Xℓ let xPu = (u0 = x, u1, . . . , uℓ = u) denote the path from x to u in T low
x . For

the random walk on the digraph T low
x , starting at x; Xℓ is reached with probability Φ = 1 in

exactly ℓ steps, after which the walk halts. Thus

1 = Φ =
∑

u∈Xℓ

∏

v∈Pu
v 6=u

1

deg+T (v)
≥
∑

u∈Xℓ

αℓ,u. (35)

We assume that the construction of T low
x succeeds, and that deg+T (v) > 0 for v ∈ X≤ℓ−1, as

established in Lemma 5. In the notation of that lemma, deg+(v) = deg+T (v) + f(v). Now

Φ =
∑

u∈Xℓ

∏

v∈Pu

1

deg+(v)− f(v)

=
∑

u∈Xℓ

(
∏

v∈Pu

1

deg+(v)

)(
∏

v∈Pu

1

1− f(v)/deg+(v)

)

=
∑

u∈Xℓ

αℓ,u

(
∏

v∈Pu

1

1− f(v)/deg+(v)

)
.

Now if ∏

v∈Pu

1

1− f(v)/deg+(v)
≤ 1 + h ∀u ∈ Xℓ, (36)

then
∑

u∈Xℓ
αℓ,u = 1−o(1) provided h = o(1). We next prove we can choose h = O(1/

√
log n),

which determines our value of ǫX .

Similar to the proof of (28) of Lemma 5 we have, with ω =
√
log n that

Pr

(
∑

v∈xPu

f(v) ≥ np

ω

)
≤ Pr

(
Bin(n2/3+o(1), p) ≥ np

ω

)
= O(n−10). (37)

Using (28), and (37) it follows that

∑

v∈Pu

f(v)

deg+(v)− f(v)
≤ 1

c0ω − 1
.

For 0 < x < 1, (1− x)−1 ≤ ex/(1−x), and so

∏

v∈Pu

1

1− f(v)/deg+d(v)
≤ exp

(
∑

v∈Pu

(
f(v)

deg+(v)− f(v)

))

≤ exp

(
1

c0ω − 1

)
≤ 1 +

2

c0ω
, (38)

provided 1/(c0ω − 1) < 1/2. There are at most n trees and n paths per tree and so (36),
with ǫX = h = 2/(c

√
log n), follows from (38). This completes the proof of (34). 2
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The next step is to obtain an estimate of
∑

v∈Yℓ
βℓ,v. The proof is inductive, moving down the

tree Ty level by level. For brevity we write d+(u) = deg+(u), d−T (u) = deg−T (u) etc.

Let the random variable W (y, i) be defined by

W (y, i) =
∑

u∈N−(y)

∑

v∈Yi

∏

z∈vPu

1

d+(z)
,

where for v ∈ Yi the notation means that the the unique path vPuy from v to y in Ty passes
through u, and that vPu is written as v = zi, . . . , zj , . . . , z1 = u in the product term.

Note that
W (y, ℓ) =

∑

v∈Yℓ

βℓ,v.

Define W ∗(y, i) by

W ∗(y, i) =
∑

u∈N−(y)

∑

v∈Yi

d−T (v)
∏

z∈vPu

1

d+(z)
,

where for v ∈ Yℓ we define d−T (v) = 1 so that W (y, ℓ) = W ∗(y, ℓ). Note that

W ∗(y, 1) =
∑

u∈N−(y)

d−T (u)

d+(u)
.

We prove the following lemma for a more general value of ℓ, as it is also used in our proof of
the upper bound.

Lemma 7. Let

µ(y) =
1

np

∑

u∈N−(y)

d−T (u)

d+(u)
.

Let

A2(y) =

{
Dn,p :

∑

v∈Yℓ

βℓ,v ∈ [(1− ǫ)µ(y), (1 + ǫ)µ(y)]

}
. (39)

Let ǫ = B/
√
log n for some sufficiently large constant B, and let ℓ = η lognp n where 0 < η ≤

2/3. Then under Assumption 1,

Pr(∃y ∈ V such that ¬A2(y)) = O(n−γ).

Proof

The lemma is proved inductively assuming E−
y and E+

Y \{y}. We prove the induction for 2 ≤
i ≤ ℓ, where by assumption (np)ℓ = O(n0.67).
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Let E
[d

+
(i)]

W (y, i) be the expectation of W (y, i) over (d+(v), v ∈ Yi), conditional on all other

degrees d+(u) > 0, d−T (u), u ∈ Y≤i−1 being fixed such that |Y≤i−1| ∼ d−(y)(np)i−1 ≤ n0.67

which is true qs from Lemma 5.

For v ∈ Yi, d
+(v) is distributed as D(v) ∼ 1 + Bin(σ′(v), p), for some σ′(v) ∈ I0 = [n −

O(n0.67), n]. Given the values σ′(v) for v ∈ Yi, the D(v) are independent random variables.

For v ∈ Yi, let vPu be written vwPu, where (v, w) ∈ Ty. Then

E
[d

+
(i)]

(
∏

z∈vPu

1

d+(z)

)
= E

(
1

d+(v)

)( ∏

z∈wPu

1

d+(z)

)
,

where given E+
Y \{y}, and δ = max(n−0.33, n−γ),

E

(
1

D(v)

)
= (1 +O(δ))

1

np
.

This follows from the identity

N∑

j=0

1

j + 1

(
N

j

)
pjqN−jxj+1 =

1

(N + 1)p
(q + px)N+1,

obtained by integrating (q + px)N ; and from Pr(¬E+
v ) = O(n−1−γ). Thus

E
[d

+
(i)]

W (y, i) = (1 +O(δ))
1

np

∑

w∈Yi−1

∑

v∈N−
T (w)

(
∏

z∈wPu

1

d+(z)

)

= (1 +O(δ))
1

np

∑

w∈Yi−1

d−T (w)

(
∏

z∈wPu

1

d+(z)

)

= (1 +O(δ))
1

np
W ∗(y, i− 1).

To obtain a concentration result, let U(i) = W (y, i) · ((1 − o(1))c0np)
i, we can write U(i) =∑

v∈Yi
Uv, where Uv are independent random variables. Assuming E+

Y \{y} and that Lemma

5(ii) holds we have (c0(1− o(1))/C0)
i ≤ Uv ≤ 1.

Let ǫi =
√
3K log n/(EU) for some large constant K. Then

Pr(|U(i)− EU | ≥ ǫEU) ≤ 2e−
ǫ2

3
EU = O(n−K),

and so
Pr(|W (y, i)− EW | ≥ ǫEW ) = O(n−K).
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Note that EU ≥ |Yi|(c0(1 − o(1))/C0)
i ≥ (c0/2)(c0np/2C0)

i. Thus ǫi ≤ 1/
√

(A log n)i−1 for
some A > 0 constant. For i ≥ 2, ǫi = O(1/

√
log n), and thus ǫi = o(1).

In summary, with probability 1−O(n−K),

W (y, i) = (1 +O(δ) +O(ǫi))
1

np
W ∗(y, i− 1).

Continuing in this vein, let E
[d

−

T (i−1)]
W ∗(y, i − 1) be the expectation of W ∗(y, i − 1) over

(d−T (v), v ∈ Yi−1), conditional on all other degrees (d+(u), d−T (u), u ∈ Y≤i−2) being fixed. For
v ∈ Yi−1, d

−
T (v) is distributed as B(v) ∼ Bin(σ(v), p) conditional on E−

Y \Yℓ
. Let 1X denote the

indicator for an event X , then

EB(v) = E(B(v) · 1E−
Y \Yℓ

) + E(B(v) · 1¬E−
Y \Yℓ

),

and, splitting the second event on D gives

E(B(v) · 1¬E−
Y \Yℓ

) = O(∆0n
−γ) +O(nn−10).

Thus, given E−
Y \Yℓ

we have Ed−T (v) = (1 +O(δ))np.

Thus

E
[d

−

T (i−1)]

(
d−T (v)

∏

z∈vPu

1

d+(z)

)
= (Ed−T (v))

(
∏

z∈vPu

1

d+(z)

)
,

and
E

[d
−

T (i−1)]
W ∗(y, i− 1) = (1 +O(δ))np W (y, i− 1).

Using Lemma 5 (ii) and arguments similar to above, for i ≥ 3 with probability 1−O(n−K)

W ∗(y, i− 1) = (1 +O(δ) +O(ǫi−1))np W (y, i− 1)

completing the induction for i ≥ 3.

The final step is to use

W (y, 2) = (1 +O(δ) +O(ǫ2))
1

np
W ∗(y, 1),

and thus whp

W (y, ℓ) =
ℓ∏

i=2

(1 +O(δ) +O(ǫi))
2 1

np
W ∗(y, 1)

=

(
1 +O

(
1√
log n

))
1

np

∑

u∈N−(y)

d−T (u)

d+(u)
.
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Thus from (24)

Pr(∃y ∈ V such that ¬A2(y)) = O(Pr(∃v ∈ V : deg±(v) 6∈ I)) = O(n−γ).

2

Corollary 8. Provided Assumption 1 holds, let

A2(y) =

{
∑

v∈Yℓ

βℓ,v ∈
[
(1− ǫ)

deg−(y)

np
, (1 + ǫ)

deg−(y)

np

]}
, (40)

where ǫ = B/
√
log n, then

Pr (∃y ∈ V such that ¬A2(y)) = O(n−γ). (41)

Proof Referring to (39), under Assumption 1 and ¬D, then d−T (u) = deg−(u)(1 − o(1))
simultaneously for all u ∈ N−(y) with probability 1 − O(n−1−γ). Let ζ = 1/ log log log n. A
vertex is normal if at most ζ0 = ⌈4/(ζ3d)⌉ of its in-neighbours have out-degrees which are not
in the range [(1 − ζ)np, (1 + ζ)np], and similarly for in-degrees. Let N (y) be the event y is
normal. We observe that

Pr(¬N (y) | E−
y ) ≤ 2

C0np∑

s=c0np

(
s

ζ0

)
(2e−ζ2np/3)ζ0 = O(n−Ω(log log logn)),

where E−
y is given by (25), and thus (see (24))

Pr(¬(N (y)∩E−
y )) = O(n−1−γ). (42)

Now if y is normal then

deg−(y)
1− ζ

1 + ζ
−O(ζ0) ≤

∑

u∈N−(y)

deg−(u)

deg+(u)
≤ deg−(y)

1 + ζ

1− ζ
+O(ζ0).

2

Recall the definition of Z(x, y),

Z(x, y) =
∑

u∈Xℓ
v∈Yℓ

αℓ,uβℓ,v
1uv

deg+(u)
, (43)

where 1uv is the indicator for the existence of the edge (u, v) and we take 1uv
deg+(u)

= 0 if

deg+(u) = 0. The next lemma gives a high probability bound for Z(x, y).
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Lemma 9. Let

A3(x, y) =

{
Z(x, y) ∈

[
(1− ǫZ)

deg−(y)

m
, (1 + ǫZ)

deg−(y)

m

}]
,

where ǫZ = B/(
√
log n), for some constant B > 0. Then given Assumption 1,

Pr(∃x, y : ¬A3(x, y)) = O(n−γ). (44)

Proof

Let
B = B(x, y) = (E+

X\Xℓ
∩ E−

Y \Yℓ
∩ A1(x, y) ∩ A2(y) ∩ L),

where E is given by (25), A1,A2 by (33), (40), and L is the event that Lemma 5 holds.

Let u ∈ Xℓ and let w ∈ Y \ Yℓ. As Xℓ ∩ Y = ∅, we know that u is not an in-neighbour of
w. Other out-edges of u are unconditioned by the construction of T low

x , T low
y . Given Y \ Yℓ ≤

n2/3+o(1), the distribution of deg+(u) is Bin(ν, p) for some n− n0.67 ≤ ν ≤ n− 1. Thus

E

(
1uv

deg+(u)

∣∣∣∣ B
)

=
ν∑

k=1

(
ν

k

)
pk(1− p)ν−k k

ν

1

k
=

1

n

(
1 +O(n−0.33)

)
. (45)

Here k/ν is the conditional probability that edge (u, v) is present, given that u has k out-
neighbours.

We use the notation PrC(·) = Pr(· | C) etc, for any event C. From (33), (40), (45),

EB(Z) = (1 +O(ǫZ))
deg−(y)

m
. (46)

Conditional on B, |Yℓ| ≤ n2/3+o(1) by construction, and as the edges from u to Yℓ are unexposed,

PrB
(
|N+(u) ∩ Yℓ| ≥ 1000

)
≤ Pr(Bin(n2/3+o(1), p) ≥ 1000) ≤ n−10. (47)

Let
F = F(x, y) =

{
|N+(u) ∩ Yℓ| < 1000, ∀u ∈ Xℓ

}
,

and let G(x, y) = B(x, y)∩F(x, y)∩E+
Xℓ
. The quantity of interest to us is the value of Z(x, y)

conditional on G(x, y). We first obtain EG(Z) from EB(Z) using

EB(Z) = EB(Z · 1F(x,y)∩E+

Xℓ

) + EB(Z · 1¬[F(x,y)∩E+

Xℓ
]). (48)

The event ¬[F(x, y) ∩ E+
Xℓ
] ⊆

[
F(x, y) ∩ ¬E+

Xℓ

]
∪ [¬F(x, y)]. Using (43), we obtain

EB(Z · 1¬[F(x,y)∩E+

Xℓ
])

= O(EB(Z)n
−γ) +O

(
1000

(c0np)2ℓ

)
|Xℓ|

(
O(n−(1+γ)) +O(n−10)

)
+O(|Xℓ||Yℓ|)O(n−10) (49)

= EB(Z) O(n−γ).
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To see this, partition the vertices of Xℓ into sets R, S, where vertices in R have out-degree
in [c0np, C0np], and vertices of S do not. The first term in (49) is the contribution to the
first term in the RHS of (48) from the vertices in R, multiplied by the probability of ¬EXℓ

.
Assuming F(x, y) holds, the second term in the RHS of (49) is the contribution to the first
term in the RHS of (48) from the vertices in S. The last term in the RHS of (49) is the
contribution to the first term in the RHS of (48) in the case where ¬F(x, y) holds.

Thus

EG(Z) =
E(Z · 1B · 1F(x,y)∩E+

Xℓ

)

Pr(G) =
EB(Z.1F(x,y)∩E+

Xℓ

)Pr(B)
Pr(G) ,

and so

EG(Z) = EB(Z)(1 +O(n−γ)) = (1 +O(ǫZ))
deg−(y)

np

1

n
. (50)

We now examine the concentration of (Z | G). Let A = 1000/((1− o(1))c0np)
2ℓ+1. It follows

from Lemma 5(ii) that given G we have Zu ≤ A. Let Ẑu = Zu/A, then for u ∈ Xℓ, the Ẑu are

independent random variables, and 0 ≤ Ẑu ≤ 1. Let Ẑ =
∑

u∈Xℓ
Ẑu and let µ̂ = EG(Ẑ). Thus

µ̂ = n1/3+o(1). (51)

It follows from (10) that if 0 ≤ θ ≤ 1,

PrG(|Ẑ − µ̂| ≥ θµ̂) ≤ 2e−θ2µ̂/3.

With θ = 4(np/µ̂)1/2 we find that,

PrG(|Ẑ − µ̂| ≥ 4(npµ̂)1/2) = o(n−4),

and hence that
PrG(|Z − EGZ| ≥ 4A(npµ̂)1/2) = o(n−4).

Using (51) we have 4A(np µ̂)1/2 = O(n−7/6+o(1)), and so

PrG

(
|Z − EG(Z)| = O

(
1

n7/6+o(1)

))
= 1− o(n−4).

We see from (50) that EG(Z) = (1 +O(ǫZ))
deg−(y)

m
. Thus

PrG

(
Z(x, y) 6= (1 +O(ǫZ))

deg−(y)

m

)
= o(n−4). (52)

Using (26), (34), (41) and (47),

Pr

(
⋃

x,y

¬G(x, y)
)

≤ Pr(¬EV ) +Pr(¬L) +Pr

(
⋃

x,y

¬F(x, y)

)
+Pr

(
⋃

x,y

¬A1(x, y)

)
+Pr

(
⋃

y

¬A2(y)

)

= O(n−γ). (53)
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Thus finally, from (52) and (53)

Pr(∃x, y : ¬A3(x, y)) = O(n−γ). (54)

2

4.3 Properties needed for an upper bound on the stationary dis-
tribution

We remind the reader that np = d log n where d ≤ nδ, where δ is some small positive constant.
Let

Λ = lognp n.

We will use the following values of ℓ in our proofs:

ℓ0 = (1 + η)Λ, ℓ1 = (1− 10η)Λ, ℓ2 = 11ηΛ.

We first show that small sets of vertices are sparse whp.

Lemma 10. Let ζ be a positive constant satisfying 2δ < ζ < 1/2, and let s0 = (1 − 2ζ)Λ.
Whp for all S ⊆ V, |S| ≤ s0, the set S contains at most |S| edges.

Proof The expected number of sets S with more than |S| edges can be bounded by

s0∑

s=3

(
n

s

)(
s2

s+ 1

)
ps+1 ≤

s0∑

s=3

(e2np)ssep

≤ exp (−ζ log n+ log np) = o(n−ζ/2).

2

For the upper bound we need to slightly alter our definition of breadth-first trees and call
them T up

x , T up
y . This time we grow T up

x to a depth ℓ1 and T up
y to a relatively small depth ℓ2.

With this choice, Lemma 10 implies that Y will contain no more than |Y | edges whp. This
reduces the complexity of the argument. We fix x, y and grow T up

x from x to a depth ℓ1, and
T up
y into y to a depth ℓ2. The definition of T up

x is slightly different from T low, but we retain
some of the notation.

Construction of T up
x . We build a tree T up

x , much as in Section 4.2, by growing a breadth-first
out-tree from x to depth ℓ. The difference is that we construct T up

x before T up
y , so that T up

x

is not disjoint from Y . As before, let X0 = {x}, and Xi, i ≥ 1 be the i-th level set of the
tree. Let T up

x (i) denote the BFS tree up to and including level i, and let T up
x = T up

x (ℓ1). Let
X≤i = ∪j≤iXj , and let X = X≤ℓ1 . In Section 5.2 below we will need to consider a larger set
X≤ℓ3 where ℓ3 = (1− η/10)Λ.
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Construction of T up
y . Our upper bound construction of T up

y is the same as for the lower
bound, except that we only grow it to depth ℓ2.

Our aim is to prove an upper bound similar to the lower bound proved in Lemma 9. For
u ∈ Xℓ1 we let

αℓ1,u = Pr(Wx(ℓ1) = u)

where ∑

u∈X

αℓ1,u ≤ 1. (55)

The LHS of (55) is one, except when we fail to construct T up
y to level ℓ2.

This is the only place where we write a structural property of Dn,p in terms of a walk proba-
bility. This is of course valid, since αℓ1,u is the sum over walks of length ℓ1 from x to u of the
product of reciprocals of out-degrees. Fortunately, all we need is (55).

We also define the βi,v as we did in (30) and now we let

Z(x, y) = Zup(x, y) =
∑

u∈X
v∈Yℓ2

\X

αℓ1,uβℓ2,v
1uv

deg+(u)
. (56)

The next lemma follows from Corollary 8.

Lemma 11. Let ℓ be as in (27). If 2 ≤ k ≤ ℓ then for some ǫY = o(1) we have

Pr

(
∑

v∈Yk

βk,v ≥ (1 + ǫY )
deg−(y)

np

)
= o(n−1−γ/2)

where γ is as in (24).

It follows by an argument similar to that for Lemma 9 that

Lemma 12. For some ǫY = o(1) we have that

Pr

(
∃x, y : Z(x, y) ≥ (1 + ǫY )

deg−(y)

m

)
= O(n−γ/2). (57)

In computing the expectation of Z, some of the vertices in X of T up
x may be inspected in our

construction of T up
y , or of T up

x up to level ℓ1. Thus E(1uv/deg
+(u)) ≤ (1/n)(1 + o(1)), (see

(45)).

Remark 6. The upper bound for Z(x, y) obtained above is parameterized by ℓ0 = (1 + η)Λ.
Provided η > 0 constant, so that Lemma 12 holds, we can apply this argument simultaneously
for nγ/3 different values of η.

22



We next prove a lemma about non-tree edges inside X, and edges from X to Y \ Yℓ2 .

Lemma 13.

(a) Let ℓ3 = (1− η/10)Λ and

La(ℓ3) = {∀ z ∈ X≤ℓ3 : z has ≤ 100/η in-neighbours in X≤ℓ3} .

Then Pr(¬La(ℓ3)) = O(n−9).

(b) Let X◦
ℓ = {v ∈ Xℓ : N

+(v) ∩X≤ℓ 6= ∅} and

Lb(ℓ) =
{
|X◦

ℓ | ≤ 18∆0
2ℓp+ log2 n

}
.

Then Pr(¬Lb(ℓ)) = O(n−10) for ℓ ≤ ℓ3.

(c) Let

t0 =

⌈
KΛ

log np

⌉
where K = 2 log(100C0/ηc0). (58)

Fix t ≤ t0 and i > 2ηΛ and let

S◦
i,t = {z ∈ X : z is reachable from X◦

i in at most t steps} .

Then let A◦ = A◦(x, y, t) be the number of edges from S◦
i,t ∩X to Yℓ2−t. Then,

Pr(∃x, y, t : A◦ ≥ log n) = O(n−10).

(d) Let A = A(x, y, t) be the number of edges between Xℓ1 and Yℓ2−t\X, where t0 < t ≤ ℓ2−1.

Pr(∃x, y, t : A ≥ 9|Xℓ1 ||Yℓ2−t|p+ log2 n) = o(n−10).

Proof
(a) Let z ∈ X(ℓ3). Let ζ be the number of in-neighbours of z in X≤ℓ3 . In the construction of
T up
x (ℓ3), we only exposed one in-neighbour of z. Thus ζ is distributed as 1+Bin(|X≤ℓ3 |, p) ≤

1 + Bin(∆ℓ3
0 , p) + nPr(D). We apply (12) and (19) to deal with the binomial. Hence if

r + 1 = 100/η,

Pr(ζ ≥ r + 1) ≤ ∆rℓ3
0 pr + n−10e−10np ≤ 2nr(δ−η/10) + n−10e−10np = O(n−9).

Part (a) of the lemma follows.

(b) For v ∈ Xℓ the out edges of v are unconditioned during the construction of T up
x (ℓ). The

number of out edges of v to X≤ℓ is Bin(|X≤ℓ|, p). Unless D occurs, |X≤ℓ| ≤ 2∆0
ℓ and

Pr(|N+(v) ∩X≤ℓ| > 0 | ¬D) ≤ 1− (1− p)2∆0
ℓ ≤ 2∆0

ℓp,

23



and
E(|X◦

ℓ | | ¬D) ≤ 2∆0
2ℓp.

By (12)
Pr(|X◦

ℓ | ≥ 18∆0
2ℓp+ log2 n) = O(n−10) +Pr(D) = O(n−10).

(c) Let S(u, t′) be the set of vertices in X that a walk starting from u ∈ Xi can reach in
ℓ1 − i+ t− t′ steps. Thus unless D occurs, |S(u, t′)| ≤ ∆0

ℓ1−i+t−t′ . So, given ¬D,

|S◦
i,t| ≤ 2|X◦

i |∆0
ℓ1−i+t. (59)

We can assume that, after constructing T up
x we construct T up

y to level Yℓ2−t, and then inspect
the edges from S◦

i,t to Yℓ2−t \X. These edges are unconditioned at this point and their number
A is stochastically dominated by Bin(|S◦

i,t| |Yℓ2−t|, p) . Given Lb(i) of part (b) of this lemma,

|X◦
i | ≤ 18∆0

2ip+ log2 n. (60)

Let i = aΛ, where 2η ≤ a ≤ 1− 10η.

Case 2η ≤ a ≤ (1 + ǫ)/2 for some small ǫ > 0 constant.
Using (59), (60) and |Yℓ2−t| ≤ ∆0

ℓ2−t gives

EA◦ ≤ (18∆0
2ip+ log2 n)2∆0

ℓ1−i+t∆0
ℓ2−tp+ n2(Pr(D) +Pr(Lb(i)))

≤ 36Cℓ0+ℓ1
0 p2 (np)ℓ0+i + 2Cℓ0

0 (log2 n) p (np)ℓ0−i +O(n−9)

≤ 36Cℓ0+ℓ1
0 (np)2n−1

2+η+ǫ + 2Cℓ0
0 log2 n(np)n−η +O(n−9)

= O(n−η/2).

Case (1 + ǫ)/2 ≤ a ≤ 1− 10η.
For i ≥ (1 + ǫ)/2Λ, |X◦

i | ≤ 20∆0
2ip. Thus

EA◦ ≤ 20∆0
2ip · 2∆0

ℓ1−i+t∆0
ℓ2−tp+ n2(Pr(D) +Pr(Lb(i)))

≤ 40Cℓ0+ℓ1
0 p2 (np)ℓ0+i +O(n−9)

≤ 40Cℓ0+ℓ1
0 (np)2n−9η +O(n−9)

= O(n−η/2).

In either case, with probability 1− o(n−10), A ≤ log n.

(d) After growing T up
x to level ℓ1, we grow T up

y to level ℓ2 − t. Then A(t) has a binomial
distribution and EA(t) ≤ |Xℓ1 ||Yℓ2−t|p. The result follows from the Chernoff inequality. 2

4.4 Small average degree: 1 + o(1) ≤ d ≤ 2

This section contains further lemmas needed for the case 1 + o(1) ≤ d ≤ 2.
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We will assume now that
1 + o(1) ≤ d ≤ 2.

Let a vertex be small if it has in-degree or out-degree at most np/20 and large otherwise. Let
weak distance refer to distance in the underlying undirected graph of Dn,p.

Lemma 14.

(a) Whp there are fewer than n1/5 small vertices.

(b) If np ≥ 2 log n then whp there are no small vertices.

(c) Whp every pair of small vertices are at weak distance at least

ℓ10 =
log n

10 log log n

apart.

(d) Whp there does not exist a vertex v with max
{
deg+(v), deg−(v)

}
≤ log n/20.

(e) Let ς∗(v) be given by (1). Whp for all vertices y,

∑

u∈N−(y)

deg−(u)

deg+(u)
= (1 + o(1))(deg−(y) + ς∗(y)).

Proof
(a) The expected number of small vertices is at most

n

log n/20∑

k=0

(
n− 1

k

)
pkqn−1−k = O(n.1998). (61)

Part (a) now follows from the Markov inequality.

(b) For np ≥ 2 log n the RHS of (61) is o(1).

(c) The expected number of pairs of small vertices at distance ℓ10 or less is at most

n2

ℓ10∑

k=0

2knkpk+1


2

log n/20∑

l=0

(
n− 1

l

)
plqn−1−l




2

=

O(nℓ10(2d log n)
ℓ10+1(20ed)logn/10n−2d) = O(n · n1/10+o(1) · n1/2 · n−2) = o(1).

(d) The expected number of vertices with small out- and in-degree is O(n1−2×.8002) = o(1).
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(e) For 1 ≤ k ≤ ∆0 let

λk =

{
1 1 ≤ k ≤ logn

(log log n)4

(log log n)4 log n
(log logn)4

≤ k ≤ ∆0

.

Let ǫ = 1
log logn

. The probability that there exists a vertex of in-degree k ∈ [1,∆0] with λk

in-neighbours of in or out-degree outside (1± ǫ)np, is bounded by

∆0∑

k=1

n

(
n− 1

k

)
pkqn−1−k

(
k

λk

)
(4e−ǫ2np/3)λk ≤

∆0∑

k=1

2n1−d
(nep

k
· 2 · n−ǫ2dλk/(4k)

)k
= o(1).

Now assume that there are fewer than λk neighbours of v of in or out-degree outside (1±ǫ)np.
Assuming at most one neighbour w of y is small,

∑

u∈N−(y)\{w}

deg−(u)

deg+(u)
=

{
(1 +O(ǫ))k 1 ≤ k ≤ logn

(log logn)4

(1 +O(ǫ))(k − λk) +O(λk)
log n

(log logn)4
≤ k ≤ ∆0

.

This completes the proof of the lemma. 2

Let weak distance refer to distance in the underlying graph of Dn,p, and let a cycle in the
underlying graph be called a weak cycle.

Lemma 15. Whp there does not exist a small vertex that is within weak distance ℓ10 of a
weak cycle C of length at most ℓ10.

Proof Let v, C be such a pair. Let |C| = i and j be the weak distance of v from C. The
probability that such a pair exists is at most

ℓ10∑

i=3

(2np)ii

ℓ10∑

j=0

(2np)j
log n/20∑

l=0

2

(
n− 1

l

)
plqn−1−l

= O(n1/10+o(1) · n1/10+o(1) · n−4/5+o(1)) = o(1).

2

5 Analysis of the random walk: Estimating the station-

ary distribution

In this section we keep Assumption 1 and assume that we are dealing with a digraph which
has all of the high probability properties of Section 4.3.
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5.1 Lower Bound on the stationary distribution

We use the properties described in Section 4.2. We derive a lower bound on P 2ℓ+1
x (y). For

this lower bound we only consider (x, y)-paths of length 2ℓ+1 consisting of a T low
x path from

x to Xℓ followed by an edge from Xℓ to Yℓ and then a T low
y path to y. The probability of

following such a path is Z(x, y), see (31). Lemma 9 implies that

P (2ℓ+1)
x (y) ≥ (1− o(1))

deg−(y)

m
for all v ∈ V. (62)

Lemma 16. For all y ∈ V ,

πy ≥ (1− o(1))
deg−(y)

m
.

Proof It follows from (62) that for any y ∈ V ,

πy =
∑

x∈V

πxP
(2ℓ+1)
x (y) ≥ (1− o(1))

deg−(y)

m

∑

x∈V

πx = (1− o(1))
deg−(y)

m
. (63)

2

5.2 Upper Bound on the stationary distribution

Lemma 16 above proves that the expression in Theorem 2 is a lower bound on the stationary

distribution. As
∑

πy = 1, this can be used to derive an upper bound of πy ≤ (1+o(1))deg
−(y)
m

which holds for all but o(n) vertices y. In this section we extend this upper bound to all
y ∈ V .

We use the properties described in Section 4.3. We now consider the probability of various
types of walks of length ℓ0 + 1 from x to y. Some of these walks are simple directed paths in
BFS trees constructed in a similar way to the lower bound, and some use back edges of these
BFS trees, or contain cycles etc. We will upper bound P ℓ0+1

x (y) as a sum

P ℓ0+1
x (y) ≤ Zℓ0+1

x (y) + Sℓ0+1
x (y) +Qℓ0+1

x (y) +Rℓ0+1
x (y), (64)

where the definitions of the probabilities on the right hand side are described below.

Zℓ0+1
x

(y). This is the probability that Wx(ℓ0 + 1) = y and the (ℓ1 + 1)th edge (u, v) is such
that u ∈ X and v ∈ Yℓ2 \X, and the last ℓ2 steps of the walk use edges of the tree T up

y .
These are the simplest walks to describe. They go through T up

x for ℓ1 steps and then
level by level through T up

y . They make up almost all of the walk probability.
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Sℓ0+1
x

(y). This is the probability that Wx(ℓ0 + 1) = y goes from x to y without leaving X.
This includes any special cases such as, for example, a walk xyxy...xy based on the
existence of a cycle (x, y), (y, x) in the digraph.

Qℓ0+1
x

(y). This is the probability that Wx(ℓ0 + 1) = y and the (ℓ1 + 1)th edge (u, v) is such
that v ∈ Yℓ2 ∩X and the last ℓ2 steps of the walk use edges of the tree T up

y . We exclude
walks within X that are counted in Sℓ0+1

x
(y).

Rℓ0+1
x

(y). This is the probability that Wx(ℓ0 + 1) = y and during the last ℓ2 steps, the walk
uses some edge which is a back or cross edge with respect to the tree T up

y .

Upper bound for Zℓ0+1
x (y).

It follows from (57) that

Zℓ0+1
x (y) ≤ (1 + o(1))

deg−y

m
. (65)

Upper bound for Sℓ0+1
x (y).

Let Wx be a walk of length t in X, and let Wx(t) = v. Let d−max = maxw∈X |N−(w) ∩ X|.
Tracing back from v for t steps, the number of walks length t in X terminating at v is at most
(d−max)

t; so this serves as an upper bound on the number of walks from x to v of this length.
By Lemma 13(a), we may assume that d−max ≤ 100/η.

Applying this description, there can be at most (100/η)ℓ0+1 walks of length ℓ0 + 1 from x to
y, which do not exit from X. We conclude that

Sℓ0+1
x (y) ≤

(
(100/η)

c0np

)ℓ0+1

= o

(
1

n1+η/2

)
. (66)

Upper bound for Qℓ0+1
x (y).

We say that a walk Wx delays for t steps, if Wx exits X for the first time at step ℓ1 + t. A
walk delays at level i, if the walk takes a cross edge (to the same level i) or a back edge (to a
level j < i) i.e. a non-tree edge e = (u, v) contained in X that is not part of T up

x .

Lemma 17. Let t0 =
⌈

KΛ
lognp

⌉
where K = 2 log(100C0/ηc0), then

Pr(Wx(ℓ0 + 1) = y and Wx delays for t0 or more steps) = o(1/n).

Proof The only way for a walk to exit from X is via Xℓ1 (recall that edges oriented out
from Xi end in Xi+1). Let Wx be an (x, y)-walk which delays for t steps, and then takes edge
e = (u, v) between Xℓ1 and Yℓ2−t \ X. There are at most (100/η)ℓ1+t walks of length ℓ1 + t
from x to u within X. After reaching vertex v, Wx follows the unique path from v to y in TY .
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Applying Lemma 13(d) we see that the total probability P †(t) of such (x, y)-walks of length
ℓ0 + 1 and delay t is

P †(t) ≤ (100/η)ℓ1+t
(
9|Xℓ1 ||Yℓ2−t|p+ log2 n

)

(c0np)ℓ0+1

≤ (100/η)ℓ1+t
(
9Cℓ0

0 (np)ℓ0−tp+ log2 n
)

(c0np)ℓ0+1

= O

(
1

n

(
(100/η)C0

c0

)ℓ0 ( 1

(np)t
+

log2 n

nη

))
.

So,

P †(≥ t0) =
∑

t≥t0

P †(t) = O

(
AΛ

n

(
1

(np)t0
+

log2 n

nη

))
, (67)

where A = (100C0/ηc0)
1+η.

Now AΛ = no(1). Also AΛ/np = o(1) if log2 np ≥ 2(logA)(log n) in which case the RHS of
(67) is o(1/n), which is what we need to show. So assume now that log2 np ≤ 2(logA)(log n).
This means that Λ → ∞ and then

AΛ

(np)t0
≤
(

A

eK

)Λ

→ 0.

Thus in both cases
P †(≥ t0) = o(1/n). (68)

2

We can now focus on walks with delay t, where 1 ≤ t < t0. A non-tree edge of X is an edge
induced by X which is not an edge of T up

x . For 4i ≤ (1 − ǫ)Λ, Lemma 10 implies that whp
the set U = X≤i contains at most |S| edges. For, if U contained more than |U |+1 edges then
it would contain two distinct cycles C1, C2. In which case, C1, C2 and the shortest undirected
path in U joining them would form a set S which satisfies the conditions of Lemma 10. Thus
there is at most one non-tree edge e = (u, v) contained in X≤(1−ǫ)Λ/4.

Let θ = 2ηΛ. We classify walks into two types.

Type 1 Walks. These have a delay caused by using a non-tree edge of X≤θ, but no delay
arising at any level i > θ. Thus, once the walk finally exits Xθ to Xθ+1 it moves forward
at each step towards Xℓ1 , and then exits to Yℓ2−t \X.

Type 2 Walks. These have a delay arising at some level Xi, i > θ. We do not exclude
previous delays occurring in X≤θ, or subsequent delays at any level.
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Type 1 Walks. We can assume that X≤θ induces exactly one non-tree edge e = (u, v). Let
u ∈ Xi then v ∈ Xj , j ≤ i. There are two cases.

(a) e is a cross edge, or back edge not inducing a directed cycle.

Here the delay is t = i+ 1− j and this is less than t0 by assumption. Then, as we will see,

Pr(Type 1(a) walk) ≤ 1

(c0np)2
1

deg+(w)

∑

w∈N+(v)

Z(ℓ0−i+j+1)
w (y) = O

(
1

n(np)2

)
. (69)

The term 1/(c0np)
2 arises from the walk having to take the out-neighbour of x that leads

to u in T up
x and then having to take the edge (u, v). The next step of the walk is to choose

w ∈ N+(v) and it must then follow a path to y level by level through the two trees. The value
of Zℓ0−i+j+1

w (y) can be obtained as follows. Let ℓ′0 = ℓ0 − (i− j)− 1, then as t < t0 = o(Λ) we
have that ℓ′0 ∼ ℓ0. For w ∈ N+(v) replace ℓ0 by ℓ′0 in (57) above, to obtain Z(w, y) = O(1/n),
see Remark 6. This verifies (69).

(b) e is a back edge inducing a directed cycle.

Let xPu be the path from x to u in T up
x (θ). As v is a vertex of xPu, we can write xPu =

xPv, vPu and cycle C = vCv = vPu, (u, v). Let σ ≥ 2 be the length of C. For some w in
vPu the walk is of the form xPv, vPw, (wCw)k, wPz, where wCw is C started at w, the walk
goes round wCw, k times and exits at w to u′ ∈ N+(w) \ C and then moves forward along
wPz to z ∈ Xℓ1 and then onto y. The delay is t = kσ and this is less than t0 by assumption

We claim that

Pr(Type 1(b) walk) ≤
∑

w∈C

∑

k≥1

(c0np)
−kσ 1

deg+(w)− 1

∑

u′∈N+(w)\C

Zℓ0−kσ+1
u′ (y) = O

(
1

n(np)2

)
.

(70)

The term (c0np)
−kσ accounts for having to go round C k times and we can argue that

Zℓ0−kσ+1
u′ (y) = O(1/n) as we did for Type 1(a) walks.

So from (69) and (70) we have that

Pr(Type 1 walk) = O

(
1

n(np)2

)
. (71)

Type 2 Walks. Suppose Wx is a walk which exits X at step ℓ1+ t and is delayed at some level
i > θ by using an edge (u, v). The walk arrives at vertex u ∈ Xi for the first time at some
step i+ t′ and traverses a cross or back edge to v ∈ Xj , j ≤ i.

A contributing walk will have to use one of the A◦(x, y, t) ≤ log n edges described in Lemma
13(c). By Lemma 13(a) there are at most (100/η)ℓ1+t log n from x to u ∈ X◦

i . Once the walk
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reaches w ∈ Yℓ2−t there is (by assumption) a unique path in T up
y from w to y. Let P (i, t) be

the probability of these Type 2 walks, then

P (i, t) ≤ (100/η)ℓ1+t log n

(c0np)ℓ0+1
= O

(
1

n1+η/2

)
. (72)

Thus finally from (68), (71), (72)

Qℓ0+1
x (y) = P †(≥ t0) +Pr(Type 1 walk) +

∑

1≤t≤t0

∑

θ≤i≤ℓi

P (i, t) = O

(
1

n

1

(np)2

)
. (73)

Upper bound for Rℓ0+1
x (y).

Let Y = Y≤ℓ2 be the vertex set of T up
y (ℓ2). We assume that Y induces a unique edge e = (u, v)

which is not in T up
y . Note that the condition that |Y | induces at most |Y | edges holds, even

if we replace ℓ2 with 2ℓ2 based on the construction of TY (2ℓ2) to depth 2ℓ2, by branching
backwards from y. We consider two cases.

(i) e is a cross or forward edge, or back edge not inducing a directed cycle.

We have u ∈ Yi, v ∈ Yj for some i ≤ j ≤ ℓ2. We suppose the (x, y)-walk is of the form
xWu, (u, v), vWy where u 6∈ vWy, so that vWy is a unique path in T up

y .

Case 1: i > (4η/5)Λ.

Let ℓ3 = (1− η/10)Λ. The length of the path (u, v), vWy is j, so the length of the walk xWu
is ℓ0 − j + 1. Let h be the distance from u to X≤ℓ3 in T up

y . Then

h = max {0, ℓ0 − ℓ3 − j + 1} ≤ max {0, ℓ0 − ℓ3 − i+ 1} .

Let w ∈ X≤ℓ3 . By Lemma 13, the number of (x, w)-walks of length ℓ ≤ ℓ3 in X≤ℓ3 passing
through w at step ℓ is bounded by (100/η)ℓ3 . The the number of walks length h from u to
X≤ℓ3 is at most ∆0

h. Thus, the number of (x, y)-walks passing through e = (u, v) is bounded
by (100/η)ℓ3∆0

h. Thus

Rℓ0+1
x (y) = O

(
(100/η)ℓ3∆0

9ηΛ/10

(c0np)ℓ0+1

)
= O(n−1−η/20). (74)

Case 2: 0 < i ≤ (4η/5)Λ.

Let i = aΛ. Let η′ = η(1− a) , ℓ′1 = (1− 10η′)Λ, ℓ′2 = 11η′Λ, and let ℓ′0 = ℓ′1+ ℓ′2. As observed
above, the vertex set U of the tree TU of height ℓ′2 above u induces no extra edges, so we can
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apply the upper bound result for walks of length ℓ′0 + 1 from x to u based on the assumption

R
ℓ′
0
+1

x (u) = 0. Thus

P ℓ′
0
+1

x (u) ≤ (1 + o(1))
deg−(u)

m
.

The probability the walk then follows the path (u, v), vPy is O(1/(np)2). Thus

Rℓ0+1
x (y) = O

(
deg−(u)

m(np)2

)
. (75)

(ii) e is a back edge inducing a directed cycle.

In this case, there is an edge e = (u, v) where u ∈ Yi, v ∈ Yj and j > i. Let vPu denote the
path from v to u in T up

y , and C the cycle vPu, (u, v). There is some k ≥ 1 such that the walk
is P0 = xPu, (uCu)k, uPy. Let σ be the length of C, let τ be the distance from u to y in T up

y ,
and let s = τ + kσ. Let ℓ = ℓ0 − s. Then ℓ + 1 is the length of the walk xPu from x to u
prior to the final s steps.

Either ℓ < (1+4η/5)Λ and the argument in Case 1 (i ≥ 4η/5)Λ) above can be applied, giving
us the bound

Rℓ0+1
x (y) = O

(
(100/η)ℓ3∆0

9ηΛ/10

(c0np)ℓ0+1

)
= O(n−1−η/20). (76)

Or ℓ ≥ (1 + 4η/5)Λ and we adapt Case 2. Let w be the predecessor of u on P0. We can use
Remark 6 as above to obtain P ℓ

x(w) ≤ (1 + o(1))deg−(w)/m. As kσ ≥ 2, τ ≥ 0, (the worst
case is u = y, w ∈ N−(y)), we obtain

Rℓ0+1
x (y) = O

(
deg−(w)

m(np)2

)
. (77)

Thus, using (74), (75), (76), (77) we have

Rℓ0+1
x (y) = O

(
1

n
· 1

(np)2

)
. (78)

We have therefore shown that Sℓ0+1
x (y) +Qℓ0+1

x (y) + Rℓ0+1
x (y) = o(1/n) completing the proof

that

P ℓ0+1
x (y) ≤ (1 + o(1))

deg−(y)

m
(79)

Lemma 18. For all y ∈ V ,

πy = (1 + o(1))
deg−(y)

m
.
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Proof It follows from (62) that for any y ∈ V ,

πy =
∑

x∈V

πxP
(ℓ0+1)
x (y) ≤ (1 + o(1))

deg−(y)

m

∑

x∈V

πx = (1 + o(1))
deg−(y)

m
. (80)

The lemma now follows from Lemma 16. 2

6 Stationary distribution: Removing Assumption 1

6.1 Large average degree case

6.1.1 np ≥ nδ.

We can deal with this case by using a concentration inequality (81) from Kim and Vu [13]:
Let Υ = (W,E) be a hypergraph where e ∈ E implies that |e| ≤ s. Let

Z =
∑

e∈E

we

∏

i∈e

zi

where the we, e ∈ E are positive reals and the zi, i ∈ W are independent random variables
taking values in [0, 1]. For A ⊆ W, |A| ≤ s let

ZA =
∑

e∈E
e⊇A

we

∏

i∈e\A

zi.

Let MA = E(ZA) and Mj(Z) = maxA,|A|≥j MA for j ≥ 0. There exist positive constants a and
b such that for any λ > 0,

Pr(|Z − E(Z)| ≥ aλs
√
M0M1) ≤ b|W |s−1e−λ. (81)

For us, W will be the set of edges of ~Kn the complete digraph on n vertices. zi will be the
indicator variable for the presence of the ith edge of ~Kn. E will be the set of sets of edges in
walks of length s = ⌈2/δ⌉ between two fixed vertices x and y in ~Kn, and we = 1. Z will be
the number of walks of length s that are in Dn,p. In which case we have

E(Z) = (1 + o(1))ns−1ps

Mj ≤ (1 + o(1))ns−j−1ps−j ≤ (1 + o(1))E(Z)/np for j ≥ 1.

So M0 = E(Z) and applying (81) with λ = (log n)2 we see that for any x, y we have

Pr(|Z − E(Z)| = O(E(Z)n−δ/2 logO(1) n)) = 1−O(n−3).

Thus whp

P s
x(y) = (1 + o(1))

ns−1ps

((1− ǫ1)np)s
∼ 1

n
, ∀x, y ∈ V.

We now finish with the arguments of Lemmas 16 and 18. 2
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6.2 Small average degree case

6.2.1 Lower bound on stationary distribution

A vertex is small if it has in-degree or out-degree at most np/20 and large otherwise. In the
proofs of Section 4.2 we assumed x, y were large. We proceed as in Section 5.1 but initially
restrict our analysis to large x, y. Also, with the exception of Y1 we do not include small
vertices when creating the Xi, Yi. Avoiding the ≤ n1/5 small vertices (see Lemma 14(a)) is
easily incorporated because in the proof we have allowed for the avoidance of n2/3+o(1) vertices
from

⋃
i Xi etc. Provided there are no small vertices in N−(y), our previous lower bound

analysis holds. In this way, we show for all large x, y that,

P (2ℓ+1)
x (y) ≥ (1− o(1))

deg−(y)

m
. (82)

If x is small, then it will only have large out-neighbours (see Lemma 14(c)) and so if y is large
then

P (2ℓ+2)
x (y) =

1

deg+(x)

∑

z∈N+(x)

P (2ℓ+1)
z (y) ≥ (1− o(1))

deg−(y)

m
. (83)

A similar argument deals with small y and x arbitrary i.e.

P (2ℓ+2)
x (y) =

∑

z∈N−(y)

P
(2ℓ+1)
x (z)

deg+(z)
≥ (1− o(1))

∑

z∈N−(y)

deg−(z)

m

1

deg+(z)
≥ (1− o(1))

deg−(y)

m
.

(84)
We have used Lemma 14(e) to justify the last inequality.

In the case that some u ∈ N−(y) has small out-degree, then by Lemma 14(c) there is at most
one such u whp. For z ∈ N−(y), we repeat the argument above for each factor P 2ℓ+1

x (z). The
extra term ς∗(y) now arises from deg−(u)/deg+(u) and

P (2ℓ+2)
x (y) =

∑

z∈N−(y)

P
(2ℓ+1)
x (z)

deg+(z)
≥ (1− o(1))

1

m

∑

z∈N−(y)

deg−(z)

deg+(z)
≥ (1− o(1))

deg−(y) + ς∗(y)

m
.

We can now proceed as in (63).

6.2.2 Upper bound on stationary distribution

We first explain how the upper bound proof in Section 5.2 alters if Assumption 1 is removed.
The assumption that the minimum degree was at least c0np was used in the following places:

1. We assumed in Section 4.2 that deg+(x), deg−(y) ≥ c0np. These assumptions can be
circumvented by using Lemma 14(c) with the methods used in the lower bound case.
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2. In (66), (72), (74). In these cases we used (c0np)
ℓ0 as a lower bound on the product of

out-degrees on a path of length λ for some λ ≥ ℓ1. Using Lemmas 14 and 15, we see that
small vertices are at weak distance at least ℓ10 and therefore there can be at most 11
such vertices on any walk length ℓ0 +1. Thus, after dropping Assumption 1, we replace
this lower bound by (c0np)

λ−11, and the proof continues essentially unchanged.

3. In the proof of Lemma 9 we made a re-scaling B = 1000/(c0np)
2ℓ+1. The exponent

2ℓ+ 1 was replaced by ℓ0 + 1 in the proof of (57) in Lemma 12. We now replace ℓ0 + 1
by ℓ0 − 10.

4. In the proof of Lemma 7 we made a re-scaling U(i) = W (y, i) · (c0np)i at each level
3 ≤ i ≤ ℓ. Assume that 2ℓ2 < ℓ10 i.e. η ≤ 1/250 so that there is at most one small
vertex u in Y . If we replace (c0np)

i by (c0np)
i−1 does not affect our concentration

results, provided i ≥ 3. The bounds on Uv are now (c0/np)(c0/C0)
i ≤ Uv ≤ 1, and

ǫi = 1/
√

(A log n)i−2. If the small vertex u ∈ N−(y) then the direct calculations used in
the lower bound hold. If the small vertex u is in levels i = 2, 3 this adds an extra term
of O(deg−(u)/(m(np)i−1)) to our estimate of Zℓ0+1

x (y) in Section 5.2.

5. In (70), (75), (77). It follows from Lemma 15, that if e.g. T up
y contains a non-tree edge,

then no vertex of T up
y is small, and the calculations in the proof are unaltered.

Thus the proof as is works perfectly well if we assume that y is large and if it has no small
in-neighbours and there is no small vertex in Y . We call such a vertex y ordinary.

If y is small then from Lemmas 14 and 15 we can assume that all of its in-neighbours are
ordinary. This is under the assumption that 2ℓ2 < ℓ10 e.g. if η ≤ 1/250. So in this case we
can use Lemma 14(e) and obtain

P (ℓ0+2)
x (y) =

∑

ξ∈N−(y)

P
(ℓ0+1)
x (ξ)

deg+(ξ)
≤ 1 + o(1)

m

∑

ξ∈N−(y)

deg−(ξ)

deg+(ξ)
= (1 + o(1))

deg−(y)

m
.

Suppose now that y is large and that there is a small vertex u ∈ Y . We can assume from
Lemma 15 that Y does not contain any edge not in T up

y . Either u ∈ N−(y) or, if not, from

point 4. of the discussion above, an extra O(deg−(u)/(m(np))) is added to Zℓ0+1
x (y) for the

probability of the (x, y)-walk going via u.

In the case where u ∈ N−(y) then as in the lower bound

P (ℓ0+1)
x (y) ≤ 1 + o(1)

m


deg−(u)

deg+(u)
+

∑

u∈N−(y)\w

deg−(u)

deg+(u)




=
(1 + o(1))

m

(
deg−(y) + ς∗(y)

)
.

We have now completed the proof of the asymptotic steady state without Assumption 1.
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7 Mixing time and the conditions of Lemma 3

7.1 Upper Bound on Mixing time

Let T be a mixing time as defined in (5) and let ℓ = O(lognp n) be given by (27). We prove
that (whp) T satisfies

T = o(ℓ log n) = o((log n)2). (85)

The total variation distance ‖θ1 − θ2‖ between two distributions θ1, θ2 on a set V is defined
as

‖θ1 − θ2‖ =
1

2

∑

v∈V

|θ1(v)− θ2(v)|.

Let P
(t)
x denote the t-step distribution of the walk, started from x and let

d̄(t) = max
x,x′∈V

‖P (t)
x − P

(t)
x′ ‖ (86)

be the maximum over x, x′ of the variation distance between P
(t)
x and P

(t)
x′ . It is proved in

Lemma 20 of Chapter 2 of Aldous and Fill [1] that

d̄(s+ t) ≤ d̄(s)d̄(t) and max
x

‖P (t)
x − πx‖ ≤ d̄(t). (87)

Equation (44) implies that whp

d̄(2ℓ+ 1) = O

(
1√
log n

)
, (88)

and using (87) and (88), we can choose T as in (85) so that d̄(T ) = O(n−K), for any K > 0,
thus satisfying condition (5).

7.2 Conditions of Lemma 3

We see immediately from (85) that Condition (b) of Lemma 3 is satisfied.

We show below that whp for all v ∈ V

RT (1) = 1 + o(1). (89)

Using (89), the proof that Condition (a) of Lemma 3 is satisfied, is as follows. Let λ = 1/KT
as in (7). For |z| ≤ 1 + λ, we have

RT (z) ≥ 1−
T∑

t=1

rt|z|t ≥ 1− (1 + λ)T
T∑

t=1

rt = 1− o(1).
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Thus for v ∈ V , the value of pv in (8) is given by

pv = (1 + o(1))
deg−(v)

m
. (90)

Proof of (89): If d ≥ (log n)2, then the minimum out-degree of Dn,p is Ω(d log n). In which
case we have for any x, y

Pr(Wv(t) = y | Wv(t− 1) = x) = O

(
1

d log n

)
. (91)

The expected number of returns to v ∈ V byWv during T steps, is thereforeO(T/d log n)= o(1).

Now assume that d ≤ (log n)2.

(i) Lemma 10 implies that if H is the subgraph of Dn,p induced by vertices at weak distance
at most Λ/20 from v then H contains at most |V (H)| edges.

(ii) Lemma 14 implies that there is at most one small vertex in H.

(iii) Lemma 15 implies that there is no small vertex within weak distance 10 of a weak cycle
of length ≤ 10.

Assume that conditions (i), (ii), (iii) hold. Let A4 denote the set of vertices u 6= v such that
Dn,p has a path of length at most 4 from u to v. We show next that:

With probability 1−O(1/(np)2), Wv(i) /∈ A4, 1 ≤ i ≤ 4. (92)

For this to happen, there has to be a cycle C of length at most 8 containing v. If such a cycle
exists then all vertices within weak distance 10 of v have degree at least np/20. Furthermore,
the only way that the walk can reach A4 in 4 or less steps is via this cycle. This verifies (92).
Assume then that Wv(i) /∈ A4, 1 ≤ i ≤ 4.

Suppose next that there is a time T1 ≤ T such that Wv(T1) = v. Let
T2 = min {τ ≤ T1 : Wv(t) ∈ A4, τ ≤ t ≤ T1}. It must be the case that d(T2) = 4 where d(t) is
the distance from Wv(t) to v.

If A4 does not contain a small weak cycle then the walk must proceed directly to v in 4 steps.
The probability of this is O(1/(np)3), since at most one vertex on the path of length 4 from
x = W(T2) to v will be of degree at most np/20.

If there is a small weak cycle C then there is an edge e of C whose removal leaves an in-
branching of depth 4 into v. There are now 2 paths that W can follow from x to v. One uses
e and one does not. Each path has a probability of O(1/(np)4) of being followed. Putting this
altogether we see that the expected number of returns to v is O(1/(np)2 + T/(np)3) = o(1).
This completes the proof of (89).
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8 The Cover Time of Dn,p

8.1 Upper Bound on the Cover Time

For np = d log n, d constant, let t0 = (1+ ǫ)
(
d log

(
d

d−1

))
n log n. For np = d log n d = d(n) →

∞ let t0 = (1 + ǫ)n log n. In both cases we assume ǫ → 0 sufficiently slowly to ensure that all
inequalities below are valid.

Let TD(u) be the time taken by the random walk Wu to visit every vertex of D. Let Ut be the
number of vertices of D which have not been visited by Wu at step t. We note the following:

Cu = E(TD(u)) =
∑

t>0

Pr(TD(u) ≥ t), (93)

Pr(TD(u) ≥ t) = Pr(TD(u) > t− 1) = Pr(Ut−1 > 0) ≤ min{1,E(Ut−1)}. (94)

Recall that Av(t) denotes the event that Wu(t) did not visit vertex v in the interval [T, t]. It
follows from (93), (94) that for any t ≥ T ,

Cu ≤ t+ 1 +
∑

s≥t

E(Us) ≤ t+ 1 +
∑

v

∑

s≥t

Pr(Av(s)). (95)

Assume first that d(n) → ∞. If s/T → ∞ then (9) of Lemma 3 together with the value of pv
given by (90), and concentration of in-degrees implies that

Pr(Av(s)) ≤ (1 + o(1)) exp

{
−(1− o(1))s

n

}
+O(e−Ω(s/T )). (96)

Plugging (96) into (95) we get

Cu ≤ t0 + 1 + 2n
∑

s≥t0

(
exp

{
−(1− o(1))s

n

}
+O(e−Ω(s/T ))

)
(97)

≤ t0 + 1 + 3n2 exp

{
−(1− o(1))t0

n

}
+O(nTe−Ω(t0/T ))

= (1 + o(1))t0.

We now assume that d is bounded as n → ∞, and the conditions of Lemma 4 hold. For v ∈ V
we have

Pr(Av(s)) = (1 + o(1)) exp {−(1 + o(1/ log n))πvs}+O(e−Ω(s/T ))

where, by Lemma 16,

πv ≥ (1− o(1))
deg−(v)

m
.
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In place of (97) we use the bounds on the number of vertices of degree k given in Lemma 4,
in terms of the sets Ki, i = 0, 1, 2, 3. Thus

Cu ≤ t0 + 1 + o(1) +
3∑

i=0

Si (98)

where

Si =
∑

k∈Ki

D(k)
∑

s≥t0

exp

{
−(1− o(1))ks

m

}

≤ 2m
∑

k∈Ki

D(k)

k
e−(1−o(1))kt0/m

≤ 2m
∑

k∈Ki

D(k)

k

(
d− 1

d

)(1+ǫ/2)k

.

The main term occurs at i = 3. Using (14), (17), the fact that (nep(d−1))/(kd))k is maximized
at k = np(d− 1)/d, and m = dn log n(1 + o(1)) whp, we see that

S3 ≤ 8m

nd−1

∆0∑

k=c0np

(nep
k

)k (d− 1

d

)(1+ǫ/2)k

≤ 8m ∆0 e
−ǫc0np/2d

= o(t0). (99)

Note that K0 = 0. We next consider the cases i = 1, 2. For i = 1, we refer first to Lemma
4(i-a). If d − 1 ≥ (log n)−1/3 then K1 = ∅. If d − 1 < (log n)−1/3, then D(k) ≤ (log log n)2,
from (15). In this case t0 = O((1/(d− 1)))dn log n. Thus

S1 ≤ m
∑

k∈K1

D(k)

k

(
d− 1

d

)(1+ǫ/2)k

≤ m
15∑

k=1

(log log n)2

k

(
d− 1

d

)(1+ǫ/2)k

= O(t0)(log log n)
2(d− 1)−ǫ/2

= o(t0) (100)

For i = 2, by Lemma 4 if d − 1 < (log n)−1/3 and k ≥ 16, and using (16) we have D(k) ≤
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(log n)4. Thus

S2 ≤ m
∑

k∈K2

D(k)

k

(
d− 1

d

)(1+ǫ/2)k

≤ O(t0)
∑

k∈K2

log4 n

k
(d− 1)

(
d− 1

d

)(1+ǫ/2)k

= O(t0) log
4 n(log n)−(19/3+ǫ/8)

= o(t0). (101)

If d−1 ≥ (log n)−1/3 then by Lemma 4(i-a) min{k ∈ K2} ≥ (log n)1/2, and |K2| = O(log log n).
Thus, as d is bounded

S2 = O(t0)
∑

k≥(logn)1/2

log log n

k
(d− 1)

(
d− 1

d

)(1+ǫ/2)k

= o(t0) (102)

The upper bound on cover time of Cu ≤ t0 + o(t0) now follows from (98)–(102).

8.2 Lower Bound on the Cover Time

For np = d log n, let t1 = (1 − ǫ)d log
(

d
d−1

)
n log n. Here ǫ → 0 sufficiently slowly so that all

inequalities claimed below are valid.

Case 1: np ≤ nδ where 0 < δ ≪ η is a positive constant.
Let k∗ = (d−1) log n, and let V ∗ =

{
v : deg−(v) = k∗ and deg+(v) = d log n

}
. Whp the size

|V ∗| ≥ n∗ = nγd

4π logn(d(d−1))1/2
(see Lemma 4(ii)). Let us first work assuming d ≥ 1.05. In this

case γd = (d− 1) ln(d/(d− 1)) ≥ .15 and we write n∗ = nγd−o(1). The maximum degree in D
is at most ∆0 = O(np) and so V ∗ contains a sub-set V ∗

1 of size nγd/2 such that v, w ∈ V ∗
1 and

x ∈ V implies

dist(x, v) + dist(x, w) > Λ/100. (103)

dist(y, x) + dist(x, y) > Λ/50, for y = v, w. (104)

Here ”dist” refers to directed distance in Dn,p and recall that Λ = lognp n.

Each v ∈ V ∗
1 has πv ∼ d−1

dn
and so we can choose a subset V ∗∗ of size ≥ nγd/3 such that if

v1, v2 ∈ V ∗∗ then

|πv1 − πv2| ≤
1

n log10 n
. (105)
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Indeed, suppose that πv ∈
[
d−1
2dn

, 2(d−1)
dn

]
for v ∈ V ∗

1 . Divide this interval into log10 n equal

sized sub-intervals and then use the pigeon-hole principle.

Now choose u /∈ V ∗∗ and let V † denote the set of vertices in V ∗∗ that have not been visited
by Wu by time t1. Then E(|V †|) → ∞, as the following calculation shows;

E(|V †|) ≥ nγd/3

(
exp

{
−(1 + o(1))k∗t1

m

}
− o(e−Ω(t1/T ))

)
− T,

where the last term accounts for possible visits before time T .

Now assume that 1 + o(1) ≤ d ≤ 1.05. In these circumstances we have n∗ = logω n where
ω → ∞, see (21). Equations (103), (104) now hold for all v, w ∈ V ∗. This follows from
Lemma 14 because the vertices of V ∗ are small. The size of V ∗∗ is at least n∗/(log n)10 and
we can again write

E(|V †|) ≥ n∗

(log n)10

(
exp

{
−(1 + o(1))k∗t1

m

}
− o(e−Ω(t1/T ))

)
− T

→ ∞.

As in previous papers, see for example [5], we will finish our proof by using, the Chebyshev
inequality to show that V † 6= ∅ whp, thus completing the proof of Theorem 1. This will
follow if we can prove that

Var(|V †|) = o(E(|V †|2) +O(|V ∗∗|2n−2) = o(E(|V †|)2).

To establish this inequality, we will show that if v, w ∈ V ∗∗ then

Pr(Av(t1) ∩Aw(t1)) ≤ (1 + o(1))Pr(Av(t1))Pr(Aw(t1)). (106)

To prove this, we identify vertices v, w into a “supernode” σ to obtain a digraph Dσ with n−1
vertices. In this digraph σ has in-degree deg−(v) + deg−(w) = 2k∗ and out-degree 2d log n.

The stationary distribution of Dσ.
Let π∗ denote the vector of steady states in Dσ. The arguments we used in Sections 4 and 5
remain valid in Dσ, and thus

π∗
σ ∼ (1− o(1))

2k∗

m
.

However, we need to be more precise. For a vertex x of Dσ let

π̂x =

{
πx x 6= σ

πv + πw x = σ
.

We will prove for all x ∈ V (Dσ), that

|π∗
x − π̂x| = O

(
1

n(log n)8

)
. (107)
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Proof of (107).
Let ξ = π̂ − π∗ be the difference between π̂ and π∗. Let P ∗ be the transition matrix of the
walk on Dσ, then

P ∗(x, y) =





P (x, y) x, y 6= σ

(P (v, y) + P (w, y))/2 x = σ

P (x, v) + P (x, w) y = σ

.

Let ξ′ be the transpose of ξ. It follows from the steady state equations that

(ξ′P ∗)x =





π̂x − π∗
x x /∈ N+({v, w})

π̂x − π∗
x +

πw−πv

2
P (v, x) x ∈ N+(v)

π̂x − π∗
x +

πv−πw

2
P (w, x) x ∈ N+(w)

.

We rewrite this as
ξ′(I − P ∗) = η′ (108)

where ηx = 0 for x /∈ N+({v, w}) and |ηx| ≤ |πv − πw|/2 otherwise.

Multiplying (108) on the right by M =
∑T−1

t=0 (P
∗)t we have

ξ′(I − P ∗)M = ξ′(I − (P ∗)T ) = η′M. (109)

Let
(P ∗)T = Π+ E (110)

where Π is the (n − 1) × (n − 1) matrix with each row equal to (π∗)′. The definition of T
implies that each entry of E has absolute value bounded by n−3.

Now write ξ = απ∗ + ζ where ζ ⊥ π∗. It follows from (π∗)′P ∗ = (π∗)′ and (109) that

(απ∗ + ζ)′(I − (P ∗)T ) = ζ ′(I − (P ∗)T ) = ζ ′(I − Π− E) = η′M.

Now
ζ ′(I − E) = ζ ′(I − (P ∗)T +Π) = η′M + ζ ′Π.

As ζ ⊥ π∗ this implies that
ζ ′(I − E)ζ = η′Mζ. (111)

Note that

|η′Mζ| ≤
T−1∑

t=0

|η′(P ∗)tζ| ≤ T |η||ζ|, (112)

where |z| denotes the ℓ2 norm of z.

Now

|ζ ′(I − E)ζ| ≥ |ζ|2 − |ζ ′Eζ| ≥ |ζ|2 − n−3

(
n−1∑

i=1

|ζi|
)2

≥ |ζ|2(1− n−2). (113)
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It follows from (111), (112) and (113) that

|ζ|2(1− n−2) ≤ T |η||ζ|
and so using (105) we find that

|ζ| = O

(
1

n(log n)8

)
. (114)

Now let 1 denote the (n− 1)-vector of 1’s. Then

0 = 1− 1 = (π̂ − π∗)′1 = ξ′1 = α + ζ ′1.

Using (114) this gives

|α| ≤ |1| |ζ| = O

(
1

n1/2(log n)8

)
.

Now ξx = απ∗
x + ζx for all x and so

ξ2x ≤ 2α2(π∗
x)

2 + 2ζ2x = O

(
1

n(log n)16
· 1

n2
+

1

n2(log n)16

)
= O

(
1

n2(log n)16

)
.

This completes the proof of (107). 2

Proof of (106).
For v ∈ V ∗∗, we first tighten (89) to

Rv = 1 + o(1/(log n)2). (115)

Assume first that np ≤ log10 n. Then (103) and (104) imply that for 1 ≤ t ≤ (log n)2/3,
vertex v will be at distance ≥ 2 log2/3 n − t from Wv(t). Then once the walk is at a vertex
w within distance log2/3 n of v its chance of getting closer is only O(1/ log n). This being
true with at most one exception for a vertex of low out-degree. The probability that there
is a time t such that Wv is within log2/3 n of v and it makes 10 steps closer to v in the next
100 steps is O(T/ log9 n) = O(1/ log7 n. This implies (115). If np ≥ log10 n then we use
Rv ≤ 1 + (1 + o(1))T/np.

Similarly,
Rσ = 1 + o(1/(log n)2). (116)

The mixing time T in what follows is the maximum of the mixing times for D and the
maximum over v, w for Dσ. Using the suffix Prσ to denote probabilities related to random
walks in Dσ and using (107), it follows that

Prσ(Aσ(t1)) ≤ exp

{
−(1 +O(Tπ∗

σ))π
∗
σt1

m

}
− o(e−Ω(t1/T ))

≤ exp

{
−(1 + o(1/ log n))(πv + πw)t1

m

}
− o(e−Ω(t1/T ))

= (1 + o(1))Pr(Av(t1))Pr(Aw(t1)). (117)
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But, using rapid mixing in Dσ,

Prσ(Aσ(t1)) =
∑

x 6=σ

P T
σ,u(x)Prσ(Wx(t) 6= σ, 1 ≤ t ≤ t1 − T )

=
∑

x 6=σ

(π∗
x +O(n−3))Prσ(Wx(t) 6= σ, 1 ≤ t ≤ t1 − T )

On the other hand,

Pr(Av(t1) ∩Aw(t1)) =
∑

x 6=v,w

P T
u (x)Pr(Wx(t) 6= v, w, T ≤ t ≤ t1)

=
∑

x 6=v,w

(πx +O(n−3))Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

But,
Prσ(Wx(t) 6= σ, T ≤ 1 ≤ t1 − T ) = Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

because random walks from x that do not meet v, w or σ have the same measure in both
digraphs.

It follows that

Pr(Av(t1) ∩Aw(t1))−Prσ(Aσ(t1))

=
∑

x 6=v,w

(πx − π∗
x +O(n−3))Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

≤ O

(
1

n log8 n

) ∑

x 6=v,w

Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

≤ O

(
1

n log8 n

) ∑

x 6=v,w

P T
u (x)

P T
u (x)

Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

≤ O

(
1

n log8 n

)
O(n log n)

∑

x 6=v,w

P T
u (x)Pr(Wx(t) 6= v, w, 1 ≤ t ≤ t1 − T )

since P T
u (x) = Ω(1/n log n)

≤ O

(
1

log7 n

)
Pr(Av(t1) ∩Aw(t1)). (118)

Equations (117) and (118) together imply (106). 2

Case 2: np ≥ nδ.
In this range we take t1 = (1 − ǫ)n log n and let V ∗ be the set of vertices of degree ⌊np⌋. A
simple second moment calculation shows that whp we have |V ∗| = Ω((np)1/2−o(1)). We then
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choose ǫ so that E(|V †|) ≥ (np)1/4. It is then only a matter of verifying (106). The details
are as in the previous case.

This completes the proof of Theorem 1. 2

Acknowledgement: We thank several referees whose insight and hard work has helped to
make this paper (hopefully) correct and more readable.
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