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Abstract

Let Gr
n,p denote the rth power of the random graph Gn,p, where p = c/n for a positive constant c.

We prove that w.h.p. the maximum degree ∆
(︁
Gr

n,p

)︁
∼ logn

log(r+1) n
. Here log(k) n indicates the repeated

application of the log-function k times. So, for example, log(3) n = log log log n.

1 Introduction

The rth power Gr of a graph G is obtained from G by adding edges for all pairs of vertices at distance r
or less from each other. Powers of graphs arise naturally in various contexts, e.g. in the study of Shannon
capacity. In the context of random graphs, there has been little research.

Let log(k) n indicate the repeated application of the log-function k times. So, for example, log(3) n =
log log log n.

One basic property of a class of graphs is their degree sequence. In particular, the maximum degree is of
particular interest. Garapaty, Lokshtanov, Maji and Pothen [4] proved that if p = c/n where c > 0 is constant,

then w.h.p. the maximum degree ∆(Gr
n,p) = Θr

(︂
logn

log(r+1) n

)︂
. The hidden multiplicative factor being in the

range [0.05 · 2−r, 6]. We strengthen this and prove

Theorem 1. Let p = c/n, where c > 0 is a constant and let r ≥ 2 be a fixed positive integer. Then, w.h.p.
∆(Gr

n,p) ∼
logn

log(r+1) n
.

(The case r = 1 is well-known, see e.g. Theorem 3.4 of [3].)

Remark 1. The value of c does not contribute to the main term in the claim of Theorem 1. Thus we would
expect that we could replace p = c/n by p ≤ ω/n for some slowly growing function ω = ω(n) → ∞.
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2 Proof of Theorem 1

Given v ∈ [n] = V (G), G = Gn,p, let Nt(v) denote the set of vertices of G at distance t from v. Let
dt(v) := |Nt(v)|. The probability that |Nt(v)|= ℓt, t = 1, 2, . . . , r can be calculated as follows. Let the ℓi
neighbors of v at distance i have k

(i)
1 , k

(i)
2 , ..., k

(i)
ℓi

neighbors at distance i+ 1 respectively. Then,

P [di(v) = ℓi ∀i = 1, 2, ..., r]

=

(︃
n− 1

ℓ1

)︃
pℓ1(1− p)n−1−ℓ1

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k
(1)
1 ,k

(1)
2 ,...,k

(1)
ℓ1

k
(1)
1 +...+k

(1)
ℓ1

=ℓ2

ℓ1∏︂
i=1

(︃
n− (1 + ℓ1)

k
(1)
i

)︃
pk

(1)
i (1− p)n−(1+ℓ1)−k

(1)
i × · · ·

· · ·

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k
(r−1)
1 ,k

(r−1)
2 ,...,k

(r−1)
ℓr−1

k
(r−1)
1 +...+k

(r−1)
ℓr−1

=ℓr

ℓr−1∏︂
i=1

(︃
n− (1 + ℓ1 + ...+ ℓr−1)

k
(r−1)
i

)︃
pk

(r−1)
i (1− p)n−(1+ℓ1+...+ℓr−1)−k

(r−1)
i

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

Now it is well-known that ∆(Gn,p) = o(log n) w.h.p., see for example [3]. In consequence ℓi = o(logi n) for

i ≤ r. We use the approximation
(︁
n
ℓ

)︁
= nℓ

ℓ!
·
(︂
1 +O

(︂
ℓ2

n

)︂)︂
and simplify(︃

n

ℓ

)︃
pℓ(1− p)n−ℓ =

nℓ

ℓ!
· c

ℓ

nℓ
·
(︂
1− c

n

)︂n−ℓ

·
(︃
1 +O

(︃
ℓ2

n

)︃)︃
=

cℓe−c

ℓ!
·
(︃
1 +O

(︃
ℓ2

n

)︃)︃
Simplifying all terms this way, we have

P [di(v) = ℓi ∀i = 1, 2, ..., r]

=
cℓ1e−c

ℓ1!

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k
(1)
1 ,k

(1)
2 ,...,k

(1)
ℓ1

k
(1)
1 +...+k

(1)
ℓ1

=ℓ2

ℓ1∏︂
i=1

ck
(1)
i e−c

k
(1)
i !

× · · ·

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k
(r−1)
1 ,k

(r−1)
2 ,...,k

(r−1)
ℓr−1

k
(r−1)
1 +...+k

(r−1)
ℓr−1

=ℓr

ℓr−1∏︂
i=1

ck
(r−1)
i e−c

k
(r−1)
i !

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎝1 +O

⎛⎜⎜⎝
r∑︁

i=1

ℓ2i

n

⎞⎟⎟⎠
⎞⎟⎟⎠

=
cℓ1e−c

ℓ1!

⎛⎜⎜⎜⎜⎜⎜⎝
cℓ2e−cℓ1

ℓ2!

∑︂
k
(1)
1 ,k

(1)
2 ,...,k

(1)
ℓ1

k
(1)
1 +...+k

(1)
ℓ1

=ℓ2

ℓ2!
ℓ1∏︁
i=1

k
(1)
i !

× · · ·

⎛⎜⎜⎜⎜⎜⎜⎝
cℓre−cℓr−1

ℓr!

∑︂
k
(r−1)
1 ,k

(r−1)
2 ,...,k

(r−1)
ℓr−1

k
(r−1)
1 +...+k

(r−1)
ℓr−1

=ℓr

ℓr!
ℓr−1∏︁
i=1

k
(r−1)
i !

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎝1 +O

⎛⎜⎜⎝
r∑︁

i=1

ℓ2i

n

⎞⎟⎟⎠
⎞⎟⎟⎠

We now use
∑︁

k1,...,kt
k1+...+kt=m

(︁
m

k1,...,kt

)︁
= tm to obtain
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P [di(v) = ℓi ∀i = 1, 2, ..., r] =
cℓ1e−c

ℓ1!
·
(︃
cℓ2e−cℓ1

ℓ2!
· ℓℓ21 × · · ·

(︃
cℓre−cℓr−1

ℓr!
· ℓℓrr−1

)︃)︃
·

⎛⎜⎜⎝1 +O

⎛⎜⎜⎝
r∑︁

i=1

ℓ2i

n

⎞⎟⎟⎠
⎞⎟⎟⎠

=
c(ℓ1+...+ℓr)e−c(1+ℓ1+...+ℓr−1)

ℓ1! ℓ2! ...ℓr!
· ℓℓ21 · ℓℓ32 · · · ℓℓrr−1 ·

⎛⎜⎜⎝1 +O

⎛⎜⎜⎝
r∑︁

i=1

ℓ2i

n

⎞⎟⎟⎠
⎞⎟⎟⎠

The exact probability that we are interested in is the degree of v being d in Gr, i.e.
r∑︁

i=1

di(v) = d.

We aim to show that d ∼ logn
log(r+1) n

happens with high probability.

P

[︄
r∑︂

i=1

di(v) = d

]︄
=

∑︂
ℓ1,...,ℓr

ℓ1+...+ℓr=d

cde−c(1+d−ℓr)

ℓ1! ℓ2! ...ℓr!
· ℓℓ21 · ℓℓ32 · · · ℓℓrr−1 ·

⎛⎜⎜⎝1 +O

⎛⎜⎜⎝
r∑︁

i=1

ℓ2i

n

⎞⎟⎟⎠
⎞⎟⎟⎠

=

⎛⎜⎝ ∑︂
ℓ1,...,ℓr

ℓ1+...+ℓr=d

uℓ1,...,ℓr

⎞⎟⎠(︃1 +O
(︃
d2

n

)︃)︃
,

where

uℓ1,...,ℓr =
cde−c(1+d−ℓr)

ℓ1! ℓ2! ...ℓr!
· ℓℓ21 · · · ℓℓrr−1. (1)

For completeness, define ℓ0 = 1. Using Stirling’s approximation log(n! ) = n log n− n+O(log n), we have

log uℓ1,...,ℓr = d log c− c(1 + d− ℓr)−
r∑︂

i=1

ℓi log
ℓi
ℓi−1

+O(d) (2)

The following lemma bounds the sum in (2):

Lemma 2. For ℓ0 = 1 and ℓ1, ..., ℓr ∈ N such that
r∑︁

i=1

ℓi = d, we have min
r∑︁

i=1

ℓi log
ℓi

ℓi−1
≥ d log(r) d + O(d),

for sufficiently large d.

Proof. We proceed by induction on r. For r = 1, the result holds since we have ℓ1 = d, implying that
ℓ1 log

ℓ1
ℓ0

= d log(1) d. Assume that the result holds for r − 1.

Case 1: (d− ℓr) log(r−1)(d− ℓr) ≥ d log(r) d:

Because
r−1∑︁
i=1

ℓi = d − ℓr, from the induction hypothesis we have
r−1∑︁
i=1

ℓi log
ℓi

ℓi−1
≥ (d − ℓr) log(r−1)(d − ℓr). So

this case is done.

Case 2: (d− ℓr) log(r−1)(d− ℓr) < d log(r) d:

For d sufficiently large, we have d
10
log(r−1)

d
10

> d log(r) d. Hence ℓr ≥ 9
10

· d, implying ℓr−1 ≤ d
10

and ℓr
ℓr−1

≥ 9.
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We now use the method of Lagrange multipliers. But first we deal with the constraints ℓi ≥ 0 for i = 1, 2, . . . , r.

If ℓi = 0 and ℓi+1 ̸= 0 then
r∑︁

i=1

ℓi log
ℓi

ℓi−1
= ∞. If ℓi = ℓi+1 = · · · = ℓr = 0 then

r∑︁
i=1

ℓi log
ℓi

ℓi−1
=

i−1∑︁
i=1

ℓi log
ℓi

ℓi−1

and the result follows by induction. So, in effect there is one constraint:
r∑︁

i=1

ℓi = d.

Define L(ℓ1, ..., ℓr, λ) =
r∑︁

i=1

ℓi log
ℓi

ℓi−1
+ λ

(︃
r∑︁

i=1

ℓi − d

)︃
. By the Lagrange multiplier theorem, the minima must

satisfy ∂L
∂ℓi

= 0 for all i. Notice that ∂L
∂ℓi

= 1 + log ℓi
ℓi−1

− ℓi+1

ℓi
+ λ for 1 ≤ i < r, and ∂L

∂ℓr
= 1 + log ℓr

ℓr−1
+ λ.

Let pi :=
ℓi

ℓi−1
. From ∂L

∂ℓr
= 0, we have 1 + log pr + λ = 0 which implies that pr = e−(λ+1). For 1 ≤ i < r,

from ∂L
∂ℓi

= 0 we have 1 + log pi − pi+1 + λ = 0 which implies that pi = epi+1−(1+λ) = pr · epi+1 ≥ prpi+1. Thus,
we can iteratively obtain the exact expressions for p1, p2, ..., pr−1 in terms of pr. Now recall that pr ≥ 9 from
induction hypothesis, hence pi ≥ 9 for all i.

Since ℓ0 = 1, ℓ1 = p1. Now ℓi = pi · pi−1 · · · p1, for all i = 1, 2, ..., r and then ℓr
ℓi

= prpr−1...pi+1 ≥ 9r−i. Now

r∑︁
i=1

ℓi = d and so clearly d > ℓr. Moreover, d = ℓr

(︃
r∑︁

i=1

ℓi
ℓr

)︃
≤ ℓr

(︃
r∑︁

i=1

1
9r−i

)︃
< ℓr

(︄
∞∑︁
j=0

1
9j

)︄
= 9

8
· ℓr. We can

thus assume that d = c1 · ℓr for some c1 ∈ (1, 9/8). So,

d = c1 · pr · pr−1 · · · p1

= c1 · pr · (prepr) ·
(︁
pre

prepr
)︁
· · ·

⎛⎜⎜⎝pr epre
...epr⏞ ⏟⏟ ⏞

exponential tower
of height r−1

⎞⎟⎟⎠

= c1 · prr ·

⎛⎜⎜⎝eprepre
pr · · · epre

...epr⏞ ⏟⏟ ⏞
exponential tower
of height r−1

⎞⎟⎟⎠
Applying the logarithmic function to both sides (r − 1) times, we have pr ≤ log(r−1) d = pr + O(log pr),
implying that log(r−1) d − c log(r) d ≤ pr ≤ log(r−1) d for some constant c > 0. We see from the above that
pr−1 = pre

pr and that pi ≥ prpi+1. It follows that ℓi ≤ ℓrp
i−r
r and so

ℓr = d(1− η) for η ≤ 2

log(r−1) d
→ 0.

Let Ti := ℓi log
ℓi

ℓi−1
. Then we have

Ti

Ti−1

= pi
log pi
log pi−1

=
pi log pi

pi + log pr
≥ 1

2
log pi ≫ 1.

It follows that for all i < r − 1, we have Ti < Tr−1. Now log pr−1 = pr + log pr implies that

Tr−1 = ℓr−1 log pr−1 = ℓr−1(pr + log pr) ≤
ℓr
pr
(pr + log pr) = O(ℓr) = O(d).

Thus, the objective is dominated by last summand Tr = ℓr log
ℓr

ℓr−1
, resulting in minimum value of at least

d log(r) d+O(d).

Let

d∗ =
log n

log(r+1) n
.
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2.1 Upper bound on ∆(Gr)

We prove that ∆(Gr) ≤ d∗(1 + ϵ) w.h.p., where ϵ = 1
log(r+1) n

. The following inequality will be useful.

Lemma 3. Suppose that a ≫ b. Then

log(s)(a− b) ≥ log(s) a−
2sb

a log a log log a · · · logs−1 a
.

Proof. We prove this by induction on s. For s = 1 we have

log(a− b) = log a+ log

(︃
1− b

a

)︃
≥ log a− 2b

a
.

Then for s > 1 we have

log(s)(a− b) = log
(︁
log(s−1)(a− b)

)︁
≥ log

(︃
log(s−1) a−

2(s− 1)b

a log a log log a · · · logs−2 a

)︃
≥ log(s) a−

2sb

a log a log log a · · · logs−1 a
.

Corollary 4. Suppose that log a ≫ log b. Then

log(s)(a/b) ≥ log(s) a−
2(s− 1) log b

log a log log a · · · logs−1 a
.

Using uℓ1,...,ℓr as in (2) and Lemma 2,

log uℓ1,...,ℓr = d log c− c(1 + d− ℓr)−
r∑︂

i=1

ℓi log
ℓi
ℓi−1

+O(d)

≤ −d∗(1 + ϵ) log(r)(d∗(1 + ϵ)) +O(d∗)

≤ −d∗(1 + ϵ) log(r) d∗ +O(d∗)

≤ − (1 + ϵ) log n

(︃
1−O

(︃
log(r) n

log n

)︃)︃
≤ −

(︂
1 +

ϵ

2

)︂
log n

Hence uℓ1,...,ℓr ≤ 1
n1+ϵ/2 . Since there are at most dr terms in the summation, we have

P

[︄
r∑︂

i=1

di(v) = d

]︄
=

⎛⎜⎝ ∑︂
ℓ1,...,ℓr

ℓ1+...+ℓr=d

uℓ1,...,ℓr

⎞⎟⎠(︃1 +O
(︃
d2

n

)︃)︃
≲

dr

n1+ϵ/2
.

Finally by taking the union bound over all n vertices,

P[∆r(G) ≥ d] ≤
n∑︂

i=1

P

[︄
r∑︂

j=1

dj(vi) = d

]︄
≲ n · dr

n1+ϵ/2
=

dr

nϵ/2
→ 0.
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2.2 Lower bound on ∆(Gr)

We now use the second moment method to show that ∆r(G) ≥ d∗(1− ϵ) w.h.p. For i = 1, 2, ..., n, let Xi be

the indicator random variable for
r∑︁

j=1

dj(vi) > d∗(1− ϵ), i.e. the event that vi ∈ V (G) has degree greater than

d∗(1− ϵ) in Gr. Let X∗ =
n∑︁

i=1

Xi and ℓ∗ be values of ℓi which achieve the lower bound in Lemma 2.

P[Xi = 1] ≥ uℓ∗ = exp(−d∗(1− ϵ) log(r) d∗(1− ϵ) +O(d∗))

≥ exp(−(1− ϵ) log n+O(d∗))

≥ 1

n1−ϵ/2
.

Then we have
E[X∗] ≥ nϵ/2.

On the other hand,

P[X∗ > 0] ≥ E[X∗]
2

E[X2
∗ ]

=
E[X∗]

2

n∑︂
i=1

E
[︁
X2

i

]︁
+
∑︂
i ̸=j

E [XiXj]

≥ E[X∗]
2

E [X∗] + E [X∗]
∑︂

j:d(v1,vj)>r

E [Xj] + E [|{j : d(v1, vj) ≤ r} |]
.

Here we use the fact Xj ≤ 1 for all j and that the only variables Xj that are dependent on X1 are for the
vertices vj within a distance r of v1.

Now,
E [|{j : d(v1, vj) ≤ r} |] ≤ O(logr+1 n) + nP(∆(Gn,p ≥ 10c log n) ≤ 2 logr+1 n.

So,

P[X∗ > 0] ≥ E[X∗]
2

E[X∗] + E[X∗]2 + 2 logr+1 n
≥ 1

n−ϵ/2 + 1 + 2n−ϵ logr+1 n
→ 1.

3 Conclusions

We have established the likely value of one of the key parameters related to powers of Gn,p, p = c/n. It would
be interesting to explore other parameters. The chromatic number of G2

n,p was asymptotically determined
w.h.p. in Frieze and Raut [2] and the independence number w.h.p. (for large c) in Atkinson and Frieze [1].
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