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Abstract

In the classical model of Diffusion Limited Aggregation (DLA), introduced by Wit-
ten and Sander, the process begins with a single particle cluster placed at the origin
of a space. Then, one at a time, particles make a random walk from infinity until they
halt by colliding with the existing cluster.

We consider an analogous version of this process on large but finite graphs with a
designated source and sink vertex. Initially the cluster of halted particles contains a
single particle at the sink vertex. Starting one at a time from the source, each particle
makes a random walk in the direction of the sink vertex. The particle halts at the last
unoccupied vertex before the walk enters the cluster for the first time, thus increasing
the size of the cluster. This continues until the source vertex becomes occupied, at
which point the process ends.

We study this DLA process on several classes of layered graphs, including Cayley
trees of branching factor at least two with a sink vertex attached to the leaves. We
determine the finish time of the process for the given classes of graphs and show that
the subcomponent of the final cluster linking source to sink is essentially a unique path.
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1 Introduction

Diffusion limited aggregation. In the classical model of Diffusion Limited Aggregation
(DLA), introduced by Witten and Sander [12], [13], the process begins with a single particle
cluster placed at the origin of a space, and then, one-at-a-time, particles make a random
walk “from infinity” until they collide with and stick to the existing cluster. The process is
particularly natural in Euclidean space with particles making Brownian motion, or on the
d–dimensional lattice Zd. Simulations of DLA in two dimensions show tree-like figures with
long branches. For Zd, Kesten [8] proved that when the cluster size is N , the length of these
arms is almost surely upper bounded by CN2/3, when d = 2, and by CdN

2/d when d ≥ 3.

A distinct but related process, Internal Diffusion Limited Aggregation (IDLA), was intro-
duced by Diaconis and Fulton [3], as a protocol for recursively building a random aggregate
of particles. In IDLA particles are added to the source vertex of an infinite graph, and make
a random walk (over occupied vertices) until they visit an unoccupied vertex at which point
they halt. Thus the first particle occupies the source, and subsequent particles stick to the
outside of the component rooted at the source. Although the DLA and IDLA processes
differ, the point in common is that they both describe the evolution of a unique cluster by
adhesion to the cluster boundary. As with DLA, the focus in IDLA has been on the limiting
shape of the component formed by the occupied vertices. The formative work by Lawler et
al [9], proved that, on d-dimensional lattices the limiting shape approaches a Euclidean ball;
a result subsequently refined in [1], [7] and [10], amongst others.

DLA has been proposed as a model of physical processes in systems as diverse as coagu-
lated aerosols [12] and urban growth [2], a common factor being the dendritic shape of the
cluster so obtained (see [5] for illustrative examples). However the main and an original
motivation for the DLA process was as a model of dendritic growth in dielectric breakdown
and lightning formation. Niemeyer, Pietronero, and Weismann, [11], introduced a dielectric
breakdown model which considers DLA in the presence of an electric field which biasses the
particles to move in a given direction (e.g. downward). In established models of lightning
formation, paths of negatively charged particles (leaders) descend downward from the base of
the cloud layer, and paths of positively charged particles percolate upwards from the ground
towards them, inducing a lightning strike on meeting. The DLA process was seen as a first
approximation of this process, which is itself finite in extent with a source at the top (cloud
layer) and a sink (the earth) at the bottom.

We consider a version of the DLA process on large but finite graphs with a designated source
and sink vertex. DLA on finite graphs was previously studied for complete binary trees by
Hastings and Halsey [6], and for the Boolean lattice (hypercube) by Frieze and Pegden [4].
The current paper continues this analysis of DLA on finite layered graphs, of which the
binary tree and hypercube are typical examples.
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The layers model. Let G be a finite graph G = (V,E), whose vertices can be partitioned
into sets S0, S1, . . . , Sk, Sk+1 to form a layered structure in which all edges are between layer
Si and Si+1 (i = 0, 1, ..., k). The sets S0, Sk+1 are of size one with S0 = {v} and Sk+1 = {z}.
The vertex v is the source vertex and the vertex z is the sink vertex. In certain cases the
source and sink may be attached as extra (artificial) vertices to an existing graph G to
complete the layered structure.

Examples of layered graphs with a symmetric structure include the following: The Boolean
lattice (hypercube) B = {0, 1}n, with v = 1, z = 0. Two dimensional square grids with
source the top left hand corner and sink the bottom right hand corner, thus inducing a
diagonal orientation. Finite Cayley trees with source the root and an artificial sink. Layered
multipartite graphs with attached source and sink.

Graphs in the layers model have a top (the source) and a bottom (the sink). Particles are
constrained to move downwards. As such they can be seen as simple models of particles
percolating downward through some porous medium.

DLA in the layers model. Initially at step t = 0, only the sink vertex z is occupied,
and the occupied component is C0 = {z}. At a given step t, let ρt be a random walk on the
underlying graph starting at the source v and moving forward level by level to the sink z. A
particle placed on the source vertex (assumed unoccupied) follows the walk ρt until it encoun-
ters an occupied vertex. Let the path followed by the walk ρt be v = x0x1x2, ..., xkxk+1 = z,
and let xi, (i ≥ 1) be the first occupied vertex on the walk. The particle halts at position
xi−1 and permanently occupies that vertex. The component Ct is formed by adding the
vertex xi−1 and directed edge xi−1xi to the component Ct−1 thus extending the directed tree
formed by the occupied vertices and rooted the sink z. As the sink is occupied from the
start, any particle which reaches level k automatically halts there. The process ends at a
step tf , the finish time, when the source vertex v first becomes occupied by a halted particle.
Thus tf is the final number of particles occupying the graph (not including the sink).

The models of this paper. Let Ni = |Si| be the size of the set Si, the i–th layer of the
graph G. We regard all edges as directed from the source towards the sink. We consider two
models.

• The Cayley tree G(d, k) with branching factor d and height k. For convenience we
take the size of the last level to be dk = n. Here d ≥ 2 is fixed or tends to infinity
with n sufficiently slowly, so that k = log n/ log d also tends to infinity with n. The
source v is the root vertex at level zero of the tree and the sink z is an artificial vertex
connected to all vertices in the final layer Sk of the tree. Excluding the sink, G(d, k)
is a (dk+1 − 1)/(d− 1)–vertex graph.
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• The multipartite layers model. The sets S0, Sk+1 have size one, the layers Si have size
Ni. For i = 0, .., k there is a complete bipartite graph between Si and Si+1. Here k ≥ 1
is fixed or tends to infinity with n.

The equal (multipartite) layers model is a graph ME(n, k) in which the sets of Si

(i = 1, . . . , k) are the same size Ni = n/k, where Ni → ∞. Excluding the source and
sink, the equal layers model G is an n–vertex graph. The parameter k can either be a
fixed integer k ≥ 1, or a function of n. In the extremes the graph has one layer, S1, of
n vertices (k = 1), or is a path (k = n).

The growing layers model is a graph MG(d, k) in which the sets Si grow geometrically
in size with parameter d. As |S0| = 1, then |Si| = Ni = di, and we take dk = n. Here
d, k → ∞ with n. Excluding the sink, the growing layers modelG is a (dk+1−1)/(d−1)–
vertex graph.

Analysis of the DLA process is in terms of n, which is, up to a constant multiple, the
number of vertices in the graph. The model is probabilistic and corrections arising from the
exceptional events are estimated as a function of n, even if this is not always made explicit.
The parameter k determines the number of levels in the graph, and d the growth rate (if
any) of the levels. The value of k or d can be constant in some models or it can tend to
infinity as a function of n within some bounds. As dk = n in the growing layers model, they
are related by k = log n/ log d.

Notation. We say a sequence of events En, n ≥ 0 occurs with high probability (w.h.p.)
if P(En) = 1 − εn where εn = on(1) for some function on(1) → 0 with n, and thus
limn→∞ P(En) = 1. Typically we write on(1) = o(1) and similarly for other asymptotic
notation such as O(·),Θ(·),Ω(·). We use An ∼ Bn to denote An = (1 + o(1))Bn and thus
limn→∞An/Bn = 1. We use ω = ωn in two ways; either to denote any quantity ωn which
tends to infinity with n but suitably slowly as required in the given proof context, or as a
fixed divergent quantity whose value is stated explicitly. The expression f(n) ≪ g(n) indi-
cates f(n)/g(n) = on(1). The notation f → ∞ indicates that f = f(n) grows unboundedly
with increasing n. All results claimed are for sufficiently large n.

Results for the multipartite layers model. At any step t, the occupied component
Ct is a tree with edges directed downwards towards the sink z. At the finish time tf the
source becomes occupied, and the component Ctf contains a directed connecting path from
the source v to the sink z, all of whose vertices contain halted particles.

On deletion of the sink vertex, the digraph Dt = Ct\{z} consists of a directed forest with
components rooted at the occupied vertices of level k. Let v = u0u1 · · ·ukuk+1 = z be the
path connecting source and sink at the end of the process. In the multipartite layers model
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w.h.p. the tree component rooted at vertex uk containing the connecting path is precisely the
path v = u0u1 · · ·uk. Thus this path grew back to the source without gaining any off-path
neighbours due to other particles colliding with it.

Theorem 1. Let ω → ∞ slowly with n. The following results hold with high probability in
the multipartite layers model.

(1) Equal layers model, ME(n, k). For i = 1, ..., k let Ni = n/k. Let

Tf = [(k + 1)!(n/k)k]1/(k+1) = γk n
k/(k+1)

where γk > 0 constant, and γk → 1/e as k → ∞.

Provided 2 ≤ k ≤
√
log n/ log log n, the finish time tf satisfies Tf/ω ≤ tf ≤ ωTf .

(2) Growing layers model, MG(d, k). For i = 0, ..., k, let Ni = di, where dk = n and thus
k = log n/ log d. Let

Tf =
√
k dk+3/2−

√
2k+2.

(a) Provided d → ∞, k → ∞ with n, and k ≤ log2 d, the finish time tf satisfies
Tf/ω ≤ tf ≤ ωTf .

(b) At tf , the levels i = 1, . . . , k − ⌈
√
2k + 2 − 1⌉ contain a single occupied vertex, the

vertex ui of the connecting path.

(3) Let v = u0u1 · · ·ukz be the path connecting source v and sink z at tf , and let Dtf =
Ctf \{z} be the occupied component with the sink deleted. In either model, with high
probability, the vertices {u1, · · · , uk} have in-degree one in Ctf . Thus the tree rooted at
uk in Dtf is exactly this path.

Results for Cayley trees. For a Cayley tree G = G(k, d), the connecting path is by
definition the unique path from source to sink. We give values for the finish time both for
d → ∞, and for d finite. By an indicative argument Hastings and Halsey [6] derived an

estimate of
√
2k 2k−

√
2k for the expected finish time of DLA on the binary tree G(2, k) of

height k. We confirm their estimate is of the correct order of magnitude, and give results
for G(d, k) for any constant d.

Theorem 2. With high probability the finish time tf of DLA on a Cayley tree of branching
factor d and height k satisfies Tf/ω ≤ tf ≤ ωTf , where Tf is as given below, and where
ω → ∞ slowly with n.

(1) If d → ∞, k → ∞, and d ≪ k, then Tf =
√
k dk+3/2−

√
2k+2.

(2) If d ≥ 2 constant, then Tf =
√
k dk−

√
2k.

5



Comparison of occupancy. How to compare the results of DLA on different models
with each other? One possibility is to define the packing ratio ρ = N/|V | of a process as the
number of particles N at the finish divided by the number of vertices in the graph. Ignoring

constants and lower order terms, ρ = n−1/(k+1) for the equal layers model and ρ = n−
√

2/k

for the growing layers model.

How can the packing ratio be used to compare results for DLA on infinite graphs such as
Zd? The sink in Zd is the origin 0, as this is where the initial particle is located. At any
fixed moment the longest arm of the figure formed by the occupied vertices defines a path
back to the edge of the current bounding figure; which we take as the source (of particles
entering from outside).

For the two-dimensional grid it is a result of Kesten [8], that, when N particles are added,
the longest arm of the DLA figure is upper bounded by C2N

2/3, for some constant C2. A
circle of radius N2/3 contains order n = N4/3 vertices in Z2, so N = Θ(n3/4). Ignoring
constants, this gives ρ ≤ n−1/4 for Z2, at any point in the (infinite) process. For d ≥ 3, the
longest arm length in Zd is CdN

2/d. A figure of radius R = N2/d has order n = Rd = N2

vertices, so ρ = n−1/2.

Road map of proofs. The following is an outline description and we often suppress minor
details and qualifiers such as w.h.p.

The first step is to derive a solution to the recurrence (1)–(2) for the expected occupancy
of the levels in the multipartite layers model. Under certain assumptions, the solution is
asymptotic to (3), and the actual occupancy is concentrated around this value. This is
particularly true in the equal layers model where the levels fill up in a more or less regular
manner as given by (3), allowing us to estimate the finish time.

Things differ somewhat for the growing layers model. Although the higher levels fill in a
regular manner, as given by (3), eventually we reach a level (with a well defined index k−j∗)
where, in expectation, only a single occupancy occurs. The expected waiting time for further
occupancy of this level is much longer than the expected waiting time for a unique path of
halted particles to grow backwards to the origin, thus terminating the process. This is the
content of Theorem 1.(2).(b). On the other hand Theorem 1.(3) (which requires a separate
proof) says something stronger. Namely that the connecting path grows back from level k
to the source as a unique path, and without gaining any off-path neighbours due to other
particles colliding with it.

Because of the similarity in which the layers grow, the results for the growing layers model
tell us the likely behaviour of the Cayley tree model. This allow us to construct proofs for
the finish time for Cayley trees.
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2 Bounds on occupancy in the layers model

Recall that Ni is the size of layer i for i = 0, 1, ..., k, where the value of Ni depends on the
model in question. For t ≥ 0, let Li(t) be the number of particles halted in level i at the end
of step t. Thus Li(0) = 0 for all i ≤ k, and t =

∑k
i=0 Li(t). We refer to Li as the occupancy

of level i. Note that L0(t) = 0 for t < tf , Lk(t) ≤ t, and generally Li(t) ≤ min(t, Ni).

General formulation of layers occupancy. Let H(t) = (L0(t), L1(t), . . . , Lk(t)) be the
occupancy vector of the DLA process at step t. Then,

E (Li(t+ 1) | H(t)) = Li(t) +
Li+1(t)

Ni+1

i∏
j=0

(
1− Lj(t)

Nj

)
, i < k, (1)

E (Lk(t+ 1) | H(t)) = Lk(t) +
k∏

j=0

(
1− Lj(t)

Nj

)
. (2)

Note that (2) follows from (1) on defining Lk+1(t)/Nk+1 = 1 for all t, and that if L0(t) = 1,
the above recurrences give Li(t+ 1) = Li(t).

The following proposition gives the solution to these recurrences under suitable conditions.

Proposition 3. For t ≥ 0 let µk(t) = t, and for 1 ≤ j ≤ k − 1, let

µk−j(t) =
1

NkNk−1 · · ·Nk−j+1

tj+1

(j + 1)!
. (3)

For j ≥ 0, suppose there are steps Tk < · · · < Tk−ℓ < · · · < Tk−j, such that for all ℓ ≤ j, at
Tk−ℓ the value of µk−ℓ(Tk−ℓ) → ∞ sufficiently fast, and for all levels i < k − ℓ the value of
µi(Tk−ℓ) → 0 sufficiently fast. Then with high probability for all ℓ ≤ j and Tk−ℓ ≤ t ≤ tf we
have Lk−ℓ(t) ∼ µk−ℓ(t) in either of the multipartite layers models.

The condition for the existence of Tk−j is satisfied for 0 ≤ j ≤ k−1 in the equal layers model
and for 0 ≤ j ≤

√
2k + 2− 2 in the growing layers model.

The proposition describes a gap property, that when level k − j starts to fill and become
concentrated, the levels with lower index i = 0, 1, ..., k − (j + 1) remain empty. The proof
of Proposition 3 is inductive backwards from level k. The precise growth of the levels, and
the values of j which make it work are to be determined. The first steps are common to the
equal and growing layers models, and we include them together in this section. For the equal
layers model we complete the proof of Proposition 3 in Sections 3.1 and 3.2. The analogous
proof for the growing layers model is given in Section 4.
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2.1 Upper bound on occupancy at step t

The underlying random walk ρt from source v to sink z at step t defines a path given by
v = u0u1 · · ·ukuk+1 = z, where ui is a random vertex in level i. Particle t follows this walk
until halting at a vertex ui, where ui+1 is the first occupied vertex encountered by ρt.

The upper-blocked process. Let Bi(t) denote the occupied (blocked) vertices in level i
in the DLA process at the end of step t. We define an upper-blocked process which we use
to upper bound Li(t). This process gives rise to sets B̂i(t) ⊇ Bi(t) and random variables

L̂i(t) = |B̂i(t)| ≥ Li(t). For every vertex uj, 0 ≤ j ≤ k on the walk ρt+1, if uj+1 is occupied

(uj+1 ∈ B̂j+1(t)) add a vertex to B̂j(t) as follows. If uj ̸∈ B̂j(t) add uj to B̂j(t + 1). If

uj ∈ B̂j(t) add some other u′
j ∈ Sj\B̂j(t) to B̂j(t+1). If a layer becomes full we continue with

the layer above. As we will prove, this contingency will not occur, as with high probability
the first layer to become full is the source.

If particle t + 1 halts at vertex ui in the DLA process, then either ui is added to both
Bi(t+ 1) and B̂i(t+ 1), or ui is already a member of B̂i(t). In either case Bi(t) ⊆ B̂i(t) for

all i and t ≥ 0. It follows that Li(t) ≤ L̂i(t) ≤ t, as ρt+1 can add at most one vertex to B̂i(t).

Moreover L̂k(t) = t deterministically (provided t ≤ Nk). As a consequence the finish time
tf (UB) of the upper blocked process satisfies tf (UB) ≤ tf (DLA).

Let Ĥ(t) = (L̂0(t), L̂1(t), . . . , L̂k(t)) be the occupancy vector of the upper-blocked process at

step t. For 0 ≤ i ≤ k, the expectation E L̂i(t) satisfies the recurrence

E (L̂i(t+ 1) | Ĥ(t)) = L̂i(t) +
L̂i+1(t)

Ni+1

1{E(t)}, (4)

where E(t) is the event that L̂i(t) < Ni and that L̂i+1(t) < Ni+1 for i < k. As we only
propose to analyse the process as long as no level is full, we assume 1{E(t)} = 1 forthwith.

Equation (4) follows because the upper blocked process increases the size of B̂j(t) (if possible)

whenever the walk ρt contains a vertex of B̂j+1(t), this being true at all levels j = 0, ..., k.

The evolution of Ĥ(t) = (L̂0(t), L̂1(t), . . . , L̂k(t)) is Markovian, and for t ≤ tf we henceforth

assume for i ≥ 1 that L̂i(t) < Ni in our calculations. at tf ≤ ωTf . If so, referring to (1) and
(2), we have

E (Li(t+ 1) | H(t)) ≤ Li(t) +
Li+1(t)

Ni+1

≤ L̂i(t) +
L̂i+1(t)

Ni+1

= E (L̂i+1(t+ 1) | Ĥ(t)).

The next lemma gives w.h.p. bounds for L̂i(t) when none of the layers i = 1, . . . , k are full.
With high probability the source is the only layer to become full in either the upper blocked
and DLA process at or before tf . When L0(t) = 1 at t = tf the DLA process stops anyway.
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The proofs of level occupancy are inductive backwards from level k. For a given level k − j
we identify two (not necessarily integer) times, t1(k− j) and tk−j(ω), defined as follows. For
j ≥ 0, let t1(k − j) be the solution to µk−j(t) = 1. Thus as µk(t) = t, t1(k) = 1 and

t1(k − j) = [(j + 1)!NkNk−1 · · ·Nk−j+1]
1/(j+1). (5)

Let tk(ω) = 1, and for 1 ≤ j ≤ k − 1, let tk−j(ω) = (4ω3)1/(j+1)t1(k − j), so that

tk−j(ω) =
(
(4ω3)[(j + 1)!NkNk−1 · · ·Nk−j+1]

)1/(j+1)
. (6)

The variable t1(k−j) is used a reference point in many of our calculations, and concentration

of L̂k−j(t) follows for t ≥ tk−j(ω).

Lemma 4. Let µi(t) be given by (3). Let ω = 6 log n. Provided L̂i(t) ≤ Ni, the following
hold for i = 0, 1, ..., k.

(1) Deterministically L̂k(t) = t, and for j ≥ 1, if j2/t = o(1), then E L̂k−j(t) ∼ µk−j(t).

(2) Suppose that t1(k− (j−1)) ≪ t1(k− j), and that j2/t = o(1). If t ≥ tk−j(ω) then w.h.p.

L̂k−j(t) = µk−j(t)(1 +O(1/ω)).

Note. The fact that t1(k − (j − 1)) ≪ t1(k − j) is to ensure that µk−(j−1)(t1(k − j)) is

sufficiently large and thus L̂k−(j−1)(t1(k − j)) is concentrated as L̂k−j(t) grows, is a model
dependent calculation given in Section 3.1 and Section 4 respectively for the equal and
growing layers models.

Proof. As Nk+1 = 1 and L̂k+1(t) = 1, this implies that L̂k(s) = s for 0 ≤ s ≤ t. Moreover at

most one vertex can be added to L̂i(t− 1) at step t, which implies L̂i(t) ≤ t.

Iterating (4) backwards for 0 ≤ s ≤ t, and using L̂i(0) = 0, gives

E L̂i(t) =
1

Ni+1

t−1∑
s=0

E L̂i+1(s). (7)

We claim for j ≥ 0 that

1{t≥j}
(t− j)j+1

(j + 1)!
≤ (NkNk−1 · · ·Nk−j+1) E L̂k−j(t) ≤

tj+1

(j + 1)!
. (8)

For given t, the induction is backwards on k − j from j = 0. When j = 0 (8) is true, so the
first non-trivial case is j = 1. From (7) we see that

E L̂k−1(t) =
1

Nk

t−1∑
s=0

s, (9)
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which illustrates how (8) arises from bounding this sum.

For the induction at step i = k − (j + 1), let

Mj−1 = NkNk−1 · · ·Nk−j+1. (10)

Multiply (7) by Mj−1, and insert the bounds on Mj−1E L̂k−j(s) from (8) (with i+1 = k− j)
into this, to give

1

Nk−j

t−1∑
s=j

(s− j)j+1

(j + 1)!
≤ Mj−1 E L̂k−(j+1)(t) ≤

1

Nk−j

t−1∑
s=1

sj+1

(j + 1)!
(11)

By comparison of the sum with the related integral we have that

(t− 1)m+1

m+ 1
≤ 1m + 2m + · · ·+ (t− 1)m ≤ tm+1

m+ 1
. (12)

Use (12) in (11) with m = j + 1, giving

1{t≥j+1}

Nk−j

(t− (j + 1))j+2

(j + 2)!
≤ Mj E L̂k−(j+1)(t) ≤

1

Nk−j

tj+2

(j + 2)!
,

which completes the induction for (8). Moreover, provided j2/t = o(1),

E L̂k−j(t) =
1

NkNk−1 · · ·Nk−j+1

tj+1

(j + 1)!

(
1−O

(
j2/t

))
= µk−j(t)(1 + o(1)). (13)

This completes the proof of Lemma 4.(1).

We proceed to the proof of Lemma 4.(2). The first thing to check is that, for the values of
k given in Theorem 1, for t ≥ tk−j(ω), j

2/t = o(1), allowing us to use Lemma 4.(1).

Lemma 5. Let t1(k−j) be the value of t such that µk−j(t) = 1 as given by (5). The condition
j2/t = o(1) is satisfied at t1(k − j) in the equal layers model provided k = o(n1/5) and in
the growing layers model provided d → ∞. This allows us to assume that for t ≥ tk−j(ω),

E L̂k−j(t) ∼ µk−j(t) in subsequent calculations.

Proof. For j ≥ 1, the value of tk−j(ω) given in (6), satisfies

tk−j(ω) ≫ t1(k − j) = ((j + 1)!Nk · · ·Nk−j+1)
1/(j+1) ≥ M

1/(j+1)
j−1 ,

see (10). The product Mj−1 is model specific, having the values Mj−1(E) = (n/k)j (equal
layers model) and Mj−1(G) = dkj−j(j−1)/2 (growing layers model).

In the first case Mj−1(E)1/(j+1) ≥ (n/k)1/2, and in the second Mj−1(G) ≥ dk/2, this minimum

being achieved at j = 1 or j = k. Checking j2/M
1/(j+1)
j−1 we see that the condition j2/t = o(1)

is satisfied at t1(k − j) in the equal layers model provided k = o(n1/5) and in the growing
layers model provided either d → ∞ or k → ∞.
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2.2 Concentration of L̂i(t) for sufficiently large t.

We now prove Lemma 4.(2).

Lemma 6. Let µk−j(t) as be given by (3). Let ω ≥ 2 logNk + 4 log k. Let tk(ω) = 1, and
for 1 ≤ j ≤ k − 1, as given in (6), let

tk−j(ω) =
(
(4ω3)[(j + 1)!NkNk−1 · · ·Nk−j+1]

)1/(j+1)
.

Let k∗ =
√
log n/ log log n. If k ≤ k∗, with probability 1− O(k2ωNke

−ω) it holds that for all

j ≤ k − 1 and all t ≥ tk−j(ω) that L̂k−j(t) ∈ [µk−j(t)(1− 1/ω), µk−j(t)(1 + 1/ω)].

Proof. The proof is inductive and for level k − j it depends on establishing the result for
levels k, k − 1, . . . , k − j + 1. By definition, L̂k(t) = t = µk(t). Let tk(ω) = 1, establishing
Lemma 4.3 for j = 0. For j ≥ 0, let t1(k− j) be the solution to µk−j(t) = 1 as given by (5).

For j ≥ 1,

tk−j(ω) = (4ω3)1/(j+1)[(j + 1)!NkNk−1 · · ·Nk−j+1]
1/(j+1) = (4ω3)1/(j+1)t1(k − j), (14)

so that µk−j(tk−j(ω)) = 4ω3 where ω is still to be determined.

The random variable L̂k−j(t) is obtained from L̂k−j(t − 1) by choosing a random vertex
u ∈ Sk−j irrespective of the current occupancy of u, and a random neighbour w ∈ Sk−j+1.

If w is occupied then L̂k−j(t + 1) = L̂k−j(t) + 1. Thus, L̂k−j(t + 1) = L̂k−j(t) + Qk−j(t),

where P(Qk−j(t) = 1) = (L̂k−j+1(t)/Nk−j+1) independently of any previous outcomes. In

particular, EQk−1(t) = t/Nk, and by equation (9), E L̂k−1(t) = t(t − 1)/(2Nk) ∼ µk−1(t).

Similarly E L̂k−j(t) ∼ µk−j(t) again by the Proof of Lemma 4.2.

For j ≥ 1, and given t ≥ tk−j(ω) let Aj(t) denote the event that L̂k−j(t) ∈ [µk−j(t)(1 −
1/ω), µk−j(t)(1 + 1/ω)]. By Hoeffding’s Inequality,

P(¬Aj(t)) ≤ 2 exp

{
−µk−j(t)

3ω2
(1− δ)

}
≤ 2 exp

{
−µ(tk−j(ω))

4ω2

}
≤ 2e−ω, (15)

where δ = O(1/ω + j2/t), includes the correction from (13).

Let Ej(t) be the event that Aj(s) holds for all s ∈ [tk−j(ω), t]. For j = 0, P(E0(t)) = 1, and
for j ≥ 1, given Ej−1(t), we have inductively that

P(¬Ej(t) | Ej−1(t)) ≤
t∑

s=tk−j(ω)

P(¬Aj(s)). (16)

11



Adding over i ≤ j we will be able to complete the induction, via

P(¬Ej) ≤ P(¬Ej | Ej−1) + P(¬Ej−1) ≤
∑
i≤j

∑
t≥tk−i(ω)

P(¬Ai(t)) ≤ cjωNke
−ω, (17)

provided we can establish the bound on the RHS, which we now do. Here c is some absolute
constant.

As µk−j(t) in (3) is monotone increasing in t and by (15) is bounded above by 2e−ω = o(1),
we use the Euler-MacLaurin Theorem to replace the summation over t in (16) by an integral.
Thus, ∑

t≥tk−j(ω)

P(¬Aj(t)) ≤ 2
∑

t≥tk−j(ω)

exp

{
−µ(tk−j(ω))

4ω2

}
≤ 3

∫
t≥t0

exp

{
−tj+1

C

}
dt,

where, t0 = tk−j(ω), C = [4ω2(j + 1)!Nk · · ·Nk−j+1], and from (14), tk−j(ω) = (4ω3C)1/j+1.

Put tj+1/C = z2/2, so that t = (Cz2/2)1/(j+1), and dt/dz = (2/(j+1))(C/2)1/(j+1)z2/(j+1)−1.
Let z0 = z(t0), then z0 =

√
2ω, and as j ≥ 1, z2/(j+1)−1 ≤ 1. Finally (C/2)1/(j+1) =

O(ω3/2Nk), giving∫
t≥t0

exp

{
−tj+1

C

}
dt ≤ 2

j + 1

(
C

2

)1/(j+1) ∫
z≥z0

e−z2/2 dz ≤ O(ω3/2Nk)
1√
ω
e−ω,

by using a standard bound on the tail of the Normal distribution, P(Z ≥ z) ≤ 1/(
√
2πz)e−z2/2.

Lemma 6 follows for all 1 ≤ j ≤ k by adding the RHS of (17) over j ≤ k and choosing
ω = 2 logNk + 4 log k ≤ 6 log n

2.3 Lower bound on occupancy at step t

So far we only have an upper bound on ELj(t) given by ELj(t) ≤ E L̂j(t). We construct

a lower bound E L̃j(t) and prove that for large enough t these bounds converge thus giving
the asymptotic value of ELj(t).

For a given level j, a lower bound on Lj(t) can be found as follows. Define a sub-process of
DLA which requires that the particle avoids upper-blocked vertices. Thus to reach level j, a
particle must avoid choosing neighbours in B̂1, ..., B̂j at steps 0, ..., j− 1 of its random walk.

Let L∗
j(t) be a w.h.p. upper bound on L̂j(t). This will, for example, be obtained from

Lemma 6. if t ≥ tj(ω). Referring to (1), (2), let L̃i(t) be obtained by replacing L by

L∗ in the bracketed terms on the RHS. This defines a lower bound L̃j(t), such that w.h.p.

12



L̃j(t) ≤ Lj(t) ≤ L̂j(t). Let H̃(t) = (L̃0(t), L̃1(t), . . . , L̃k(t)) be the occupancy vector obtained
from this lower bound, then we have the following recurrences.

E (L̃i(t+ 1) | H̃(t)) = L̃i(t) +
L̃i+1(t)

Ni+1

i∏
j=0

(
1−

L∗
j(t)

Nj

)
, (18)

E (L̃k(t+ 1) | H̃(t)) = L̃k(t) +
k∏

j=0

(
1−

L∗
j(t)

Nj

)
. (19)

These recurrences are solved in Section 3.2 for the equal layers model, and in Section 4 for
the growing layers model.

The gap property. It is clear that 0 ≤ L̃k−j(t) ≤ Lk−j(t) ≤ L̂k−j(t) ≤ t, and that these
values are monotone non-decreasing. We choose times

t−(k − j) < t1(k − j) < t+(k − j) = tk−j(ω)

such that
µk−j(t

−) = 1/ω3, µk−j(t1) = 1, µk−j(t
+) = 4ω3.

Below t−(k − j), L̂k−j(t) = 0 w.h.p. for all j = 1, ..., k. This follows from the definition of

k < ω and the Markov Inequality. Above t+(k − j) we have that E L̃k−j(t) ∼ E L̂k−j(t) and
thus ELk−j(t) ∼ µk−j(t). The main content of Sections 3 and 4 is to prove this via a gap
property which implies that

t+(k − j) = tk−j(ω) ≪ t−(k − (j + 1)) ≪ t1(k − (j + 1)),

so that w.h.p. concentration for Lk−j occurs while Lk−(j+1) is still zero.

3 Analysis of DLA in the equal layers model

It is convenient at this point to obtain an asymptotic estimate for the finish time of DLA in
the equal layers model. Let t1(k−j) and tk−j(ω) be as given by (5) and (6). Thus Tf = t1(0),
the time at which the source has expected occupancy one (in the upper-blocked process).
Recalling that N1 = · · · = Nk = n/k, let

Tf = [(k + 1)!N1 · · ·Nk]
1/(k+1) =

(
(k + 1)!

kk
nk

)1/(k+1)

. (20)

That Tf indeed approximates the finish time will be shown in Section 3.3.

13



Lemma 7. For k ≥ 2, let G be an equal layers graph with level sizes Ni = n/k, i = 1, ..., k.

(1) Let γk = e−1(1 +O(log k/k)), then

Tf = nk/(k+1)γk. (21)

(2) For 1 ≤ j ≤ k, let be as given in (5), then

t1(k − j) = ((j + 1)!)1/(j+1) (n/k)j/(j+1) = Θ(j)(n/k)j/(j+1),

and
t1(k − j) = t1(k − (j − 1)) ·Θ(1)(n/k)1/(j(j+1)).

Let k∗ =
√
log n/ log log n. If k ≤ k∗, then t1(k− j) ≫ t1(k− (j− 1)) in the equal layers

model; as claimed in the note below Lemma 4.

Proof. Note that

(k + 1)!

kk
= eO(1/k) 1

kk

√
2πe−(k+1)kk+3/2(1 + 1/k)k+3/2 = e−(k+1) Θk,

where Θk ∼ (e1−1/k+O(1/k2)
√
2πk3/2). Thus

(Θk)
1/k+1 = eO(log k/k) = 1 +O(log k/k)

is bounded for k ≥ 2 and tends to one as k → ∞. From (20)

Tf =

(
(k + 1)!

kk
nk

)1/(k+1)

= n
k

k+1 e−1 (1 +O(log k/k)). (22)

The second part follows by direct calculation using ((j + 1)!)1/(j+1) = jΘ(1 + j3/(2j)) =
jΘ(1).

Note that with tk−j(ω) as given by (6), then tk−j(ω) = (4ω)1/(j+1)t1(k − j), so asymptotics
follow from the above lemma.

3.1 Evolution of the state vector L̂ in the equal layers model.

We prove there is a large gap in the number of steps between the time when E L̂k−j = 1 with

all lower values zero, and the time when E L̂k−(j+1) = 1. The gap allows L̂k−j to increase
and become concentrated around µk−j, whilst all values with a lower index i < k− j remain
zero. This confirms the inductive assumption stated below (5) in Lemma 6.
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We list various assumptions used in this section.

1 ≤ k ≤ k∗ =

√
log n

log log n
, ω = 6 log n, β =

Nk

ωTf

≥ (6 log n)4+k/2. (23)

Let L̂ = (L̂0, L̂1, . . . , L̂k) be the state vector of the upper-blocked process. The entries in L̂

are non-negative integers, and if L̂i = 0, then L̂i−1 = 0.

The following argument for t ≤ ωTf proves there is a large enough gap t′′ − t between

µk−j(t) = 1 and µk−(j+1)(t
′′) = 1 for L̂k−j(t

′′) to be concentrated, as assumed in Lemma 6.
In particular w.h.p. at tk−j(ω), where t′′ ≫ tk−j(ω) > t′ we have (31).

Define β = βk = Nk/ωTf . From (21),

β =
Nk

ωTf

=
n

ωk

1

γknk/(k+1)
=

1

γk

1

ωk
n1/(k+1). (24)

We assumed that β ≥ (6 log n)4+k/2. This is true if ω = 6 log n since we assume that
k ≤

√
log n/ log log n.

As Nk−j = Nk = n/k in the equal layers model, for any t ≤ ωTf ,

µk−(j+1)(t) =
t

(j + 2)Nk−j

· µk−j(t) ≤
1

(j + 1)β
µk−j(t). (25)

For j + ℓ ≤ k, we can iterate this to give

µk−(j+ℓ)(t) ≤ µk−j(t)
1

βℓ

1

(j + ℓ+ 1)(j + ℓ) · · · (j + 2)
≤ µk−j(t)

1

((j + 1)β)ℓ
. (26)

Consider E L̂k−j(t). At t ∼ t1(k − j) when µk−j(t) ∼ 1, then (see Lemma 5) E L̂k−j(t) ∼ 1.

The Markov inequality implies that w.h.p. L̂k−j(t) ∈ Iω = [0, 1, ..., ω]. From (25)–(26),

µk−(j+ℓ)(t) ≤
1 + o(1)

((j + 1)β)ℓ
, for 1 ≤ ℓ ≤ k − j, (27)

and thus w.h.p. L̂0 = 0, L̂1 = 0, . . . , L̂k−(j+1) = 0. Using (25)–(26), we see that

µk−j+ℓ(t) ≥ µk−j(t) j(j − 1) · · · (j − ℓ+ 1) βℓ for ℓ ≤ j. (28)

So if µk−j(t) ∼ 1, then for 1 ≤ ℓ ≤ j, t ≥ tk−j+ℓ(ω) and

µk−j+ℓ(t) ≥ βℓ ≥ (6 log n)4+k/2. (29)
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Thus Lemma 6 holds, and w.h.p. L̂k−j+ℓ is equal to (1 + o(1))E L̂k−j+ℓ ∼ µk−j+ℓ(t).

In summary, at time t such that µk−j(t) ∼ 1 (implying that t ≤ Tf , see Proposition 7.(2)),

w.h.p., the state vector L̂ is such that µk−ℓ → ∞ for ℓ ≤ j − 1, and

L̂(t) = (0, . . . , 0, L̂k−j ∈ Iω, (1 + o(1))µk−j+1, (1 + o(1))µk−j+2, . . . , µk). (30)

Let t = t1(k− j), let t′ = tk−j(ω) = (4ω3)1/((j+1)t1(k− j), so µk−j(t
′) ∼ 4ω3. By Lemma 6 it

holds w.h.p. that L̂k−j(t
′) ∼ µk−j(t

′).

Let t′′ = t1(k− (j+1)). By Proposition 7.(2), t1(k− (j+1)) = Θ(1)(n/k)1/(j(j+1))t1(k− j).
As t′ = (4ω3)1/((j+1)t1(k − j), it can be checked that t′′ ≫ t′. Also by (26)∑

ℓ≥1

µk−(j+ℓ)(t
′) = O

(
µk−j(t

′)

β

)
= O

(
ω3

β

)
= O

(
1

log1+k/2

)
.

Thus, applying the Markov inequality to the above, at t′ = tk−j(ω), w.h.p.

L̂(tk−j(ω)) = (0, ..., 0, (1 + o(1))µk−j, (1 + o(1))µk−j+1, ..., µk), (31)

so that L̂k−j(t
′) is concentrated and all lower levels are unoccupied, and thus the claimed

gap exists. This condition persists w.h.p. until around t1(k − (j + 1)) = t′′ ≫ t′ = tk−j(ω),

when µk−(j+1)(t1(k − (j + 1))) = 1 at which point L̂(t′′) resembles (30) and the induction
continues.

3.2 Lower bound on occupancy in the equal layers model.

We prove that, for t ≥ ti(ω), we have E L̃i(t) ∼ E L̂i(t) ∼ µi(t). As with the upper bounds,

we will have that E L̃k ≫ E L̃k−j for j ≥ 1. The first step is to draw a line between them.

Let t− = t1(k − 1)/ω, so that µk−1(t
−) = 1/ω2. Then w.h.p L̂k−1(t

−) = 0 and as L̂k−1(t) is

monotone non-decreasing, w.h.p. L̂j(t) = 0 for all j ≤ k−1 and t ≤ t−. As L̂k(t) = L∗
k(t) = t

deterministically, this simplifies (19) for t ≤ t−.

As before let β = Nk/ωTf where ω, k are given by (23). Provided k ≥ 2, if t ≥ t−, then
t/β ≫ ω3. Indeed using (24),

t− =
t1(k − 1)

ω
=

1

ω

√
2n

k
=⇒ t−

β
=

γkωk

n1/(k+1)
· 1
ω

√
2n

k
≥ 2γkn

1/6 ≫ ω3.

For t ≥ t−, and 1 ≤ i ≤ k − 1 we first consider the product term in (18). Recalling that
Ni = Nk = n/k, we will prove that

i∏
j=0

(
1−

L∗
j(t)

Nj

)
≥ 1−

i∑
j=0

(
L∗
j(t)

Nj

)
= 1−O

(
t

βNk

)
= 1− o(1). (32)
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By (26), µk−j ≤ µk/β
j. Assume t ≥ t− and that for some ℓ ≤ k − 1, tℓ(ω) ≤ t < tℓ+1(ω).

Apply Lemma 6 for j ≥ ℓ+ 1 along with (30) and (31).

If i < ℓ then L∗
j(t) = 0, for j ≤ i. Next, if i = ℓ, L∗

j(t) = 0 for j < i and L∗
i (t) ≤ 2µi(ti(ω)) ≤

8ω3. Finally assume i ≥ ℓ+ 1. Then (as t ≥ t−),

i∑
j=0

L∗
j(t)

Nj

≤ 8ω3

Nk

+ 2
i∑

j=ℓ+1

t

βk−jNk

≤ O(1)

Nk

(
ω3 +

t

β

)
= O

(
t

βNk

)
. (33)

Consider now E L̃k(t). For all t ≥ 0, L̂k(t) = t, and
∑

j<k L̂j(t) = O(t/β). So from (19)

E L̃k(t) = t−
t∑

s=0

O

(
s

Nk

)
= t−O

(
t2

Nk

)
= t

(
1−O

(
t

Nk

))
.

For t ≥ t0 where t0 → ∞ arbitrarily slowly we have L̃k(t) ∼ t w.h.p., initializing an induction

for E L̃i(t) using arguments equivalent Section 2.2 for E L̂i(t).

At step t+ 1, equation (32) implies that, in the lower bounds on the process, particle t+ 1
arrives at level i with probability (1− o(1)). If i < k, it halts at this level with probability

L̃i+1(t)/Ni+1. Thus

E L̃i(t+ 1) = E L̃i(t) +

(
1−O

(
t

βNk

))
· E L̃i+1(t)

Ni+1

. (34)

Arguing as in (7) on the inductive assumption that E L̃i+1(t) = µi+1(t)(1 − O(t/Nk)), we
find

E L̃i(t) =
1

Ni+1

t−1∑
s=0

E L̃i+1(s)

(
1−O

(
s

βNk

))

=
1

Ni+1

t−1∑
s=0

µi+1(s)

(
1−O

(
s

Nk

))(
1−O

(
s

βNk

))

=
1

Ni+1

t−1∑
s=0

si

i!Nk · · ·Ni+2

(
1−O

(
s

Nk

))
=µi(t)−O(1)

tµi(t)

Nk

= µi(t)

(
1−O

(
t

Nk

))
.

Thus

E L̃i(t) ∼ ELi(t) ∼ E L̂i(t) ∼ µi(t) =
ti+1

(i+ 1)!Nk · · ·Ni+1

(35)
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as required.

Let ti(ω) be given by (14). For those i ≤ k, such that t ≥ ti(ω), then µi(t) → ∞ suitably fast
and the concentration results of Lemma 6 hold. The gaps inherited from the upper bound
argument of Section 3.1 are essentially unaltered.

This completes the proof of Proposition 3 for the equal layers model.

3.3 Finish time of DLA in the equal layers model.

A lower bound on the finish time follows from the upper-blocked process, and an upper
bound from the lower bound estimates for DLA.

Proposition 8. For 1 ≤ k ≤ k∗ =
√
log n/ log log n, let G be an equal layers graph with

level sizes Ni = n/k, i = 1, ..., k. Let Tf be given by (20). With probability 1−O(1/ω′), the
finish time tf of the DLA process in G satisfies Tf/ω

′ ≤ tf ≤ ω′Tf , where ω
′ → ∞ arbitrarily

slowly.

Proof. Let t1 = t1(0) be such that µ0(t1) ∼ 1, and thus t1 ∼ Tf . Let t′ = t1/ω
′, where

ω′ → ∞ slowly. Then w.h.p., E L̂0(t
′) = O(1/(ω′)k+1), and thus P(L̂0(t

′) > 0) = O(1/ω′).

We next investigate the concentration of L1(Tf ). By Lemma 7.(1),

µ1(Tf ) = µ0(Tf )
N1(k + 2)

Tf

≥ n

γknk/(k+1)
= Θ(1)n1/(k+1) ≫ 4ω3, (36)

where ω = 6 log n. Thus Tf ≫ t1(ω) and hence Proposition 6 holds for L̃1(Tf ). Suppose at
Tf that L0(Tf ) = 0. By (36) the expected waiting time τ for a particle to hit L1(Tf ) is

τ ≤ (1− o(1))
N1

µ1(Tf )
= Θ(1)

n

k n1/(k+1)
= Θ(1)

nk/(k+1)

k
= Θ(Tf/k) = O(Tf )

By time ω′Tf , w.h.p. L0(ω
′Tf ) = 1, completing the proof of Proposition 8, and hence

Theorem 1.(1).

3.4 Existence of a unique connecting path component.

We now prove Theorem 1.(3) for the equal layers model. We must show w.h.p. that at tf ,
the finish time, the path of occupied vertices connecting the source to level k (and hence to
the sink) has no off-path neighbours in Ctf .

At a given step t, the edge induced component Ct is obtained from Ct−1 by adding a newly
occupied vertex which points to the neighbour in Ct−1 which halted the particle: Thus a
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particle halts at vertex u in level i if it chooses an edge uw to an occupied neighbour w in
level i + 1. We consider this edge uw as being directed from u to w in the component Ct

rooted at the sink. An arborescence is a rooted tree with all edges directed towards the root
vertex. Thus Ct is an arborescence with root z. On deletion of the z, Dt = Ct\{z} becomes
a directed forest of arborescences each rooted at a vertex in level k.

Let Bi be the set of occupied vertices in level i, where Li = |Bi|. Given that a particle at u
chooses a vertex in Bi+1 as a neighbour, then this neighbour is chosen uniformly at random
(u.a.r.) from the set Bi+1.

We regard vertices occupied by halted particles as coloured either red or blue, with all
occupied vertices in level k coloured blue. If u is the first in-neighbour of w then u is
coloured blue. If however w already has an in-neighbour u′, then u, u′ and all other in-
neighbours are (re-)coloured red. At any step, the red vertices in a level are those with
siblings, and the blue ones are the unique in-neighbour of some vertex in the next level. The
choice of w by the particle at u is independent of the colour of w at this step.

The process halts when there is a directed path of occupied vertices v = u0u1 · · ·ukz from
the source to sink. The source vertex v is blue at tf as it is the first in-neighbour of u1.

Lemma 9. With high probability, the path v = u0u1 · · ·uk = w from the source to level k is
blue, and thus the arborescence of halted particles rooted at w = uk is exactly this path.

Proof. As before, let Bi be the set of occupied vertices in level i, and Li = |Bi|. As each
u ∈ Bi has a unique occupied out-neighbour in C, the subset Out(Bi) of Bi+1 with at least
one in-neighbour has size at most Li.

Let 1{k−j,s} be the indicator that particle s halts in level k − j and is coloured red due to a
pre-existing sibling. In this case particle s has chosen an out-neighbour in the existing set
Out(Bk−j) ⊆ Bk−j+1, and thus, as |Out(Bk−j)| ≤ L̂k−j(s),

E 1{k−j,s} ≤
E L̂k−j(s)

(n/k)
∼ µk−j(s)

(n/k)
.

Let Zk−j(t) be the number of red vertices in level k−j. We associate the number of possibly-

red vertices at each step with a super-process Ẑk−j(t) = Zk−j(t) +Qk−j(t), where Qk−j(t) is

Bernoulii with parameter (L̂k−j − |(Out)Bk−j|). Thus Zk−j(t) ≤ Ẑk−j(t) and where

E (Ẑk−j(t+ 1) | Ĥ(t)) = Ẑk−j(t) +
L̂k−j(t)

Nk−j

.

The recurrence for E Ẑ mirrors the recurrence (4) for L̂i(t) with k − j replacing i + 1.
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Specifically,

E Ẑk−j(t) ∼
1

(n/k)

t∑
s=1

µk−j(s) =
1

(n/k)

t∑
s=1

sj+1

(j + 1)!(n/k)j

∼ tj+2

(j + 2)!(n/k)j+1
= µk−(j+1)(t). (37)

We note that Ẑk−j(t) is the sum of independent indicator variables, and will be concentrated

at or after tk−(j+1)(ω). The number of red vertices is at most 2Zk−j(t) ≤ 2Ẑk−j(t), where
the factor 2 covers the case where the pre-existing sibling was blue but is recoloured red.

Assume Tf/ω ≤ tf ≤ ωTf , where ω = ω′ from Proposition 8 tends slowly to infinity with
n. Denote the path connecting v to level k by v = u0u1u2 · · ·uk. By definition v = u0 is
blue. For i ≥ 1, let Ri(s) be the red vertices in level i at step s. Let si denote the step
at which ui became occupied. Consider next the colour of u1 at tf . As Tf = t1(0), and
t = tf ≥ Tf/ω ≫ t1(ω) by the gap property, so we have that L1(t) ∼ µ1(t). On the other

hand Ẑ1(t) may not be concentrated, but we can assume Ẑ1(t) ≤ ω′µ0(t) where ω′ is to
be determined. If t = 2ωTf , then µ0(t) = (2ω)k+1 and as k ≥ 2 then t ≥ t0(ω), so the
red subprocess in level one is concentrated. Crudely1 put ω′ = ω5. Vertex u1 was chosen
uniformly at random from the occupied vertices in level one by the particle halting at u0, so,

P(u1 ∈ R1(t)) ≤
2Ẑ1(t)

L1(t)
≤ 2ω′µ0(t)

µ1(t)
≤ 2ω′t

(k + 1)(n/k)
≤ 2ω′t

n
. (38)

Next consider the colour of u2. If u2 is red at step t, then either (i) it became red before step
s1 when it was chosen uniformly at random by u1, or (ii) it became red at some later step.

In the first case,

P(u2 ∈ R2(s1)) ≤
2Ẑ2(s1)

L2(s1)
≤ 2ω′µ1(s1)

µ2(s1)
=

2ω′s1
k(n/k)

=
2ω′s1
n

.

By the gap theorem, L2 is already concentrated at s1, for otherwise L1(s1) would be empty.

The ω′ covers possible lack of concentration of Ẑ2

In the second case, as u3 is the chosen out-neighbour of u2, then u2 will turn red if some
particle chooses u3 after time s1, and thus

P(u2 ∈ R2(t)\R2(s1)) ≤
1

(n/k)

t∑
τ=s1+1

E 1{u3 chosen at τ} =
t− s1
(n/k)

.

1Why? The number of red vertices can only increase with t and is at most 8ω3 in expectation at t0(ω).
The width of the ’end time interval’ is ω2. Apply the Markov inequality ω2 times.
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Thus

P(u2 ∈ R2(t)) ≤
2ω′kt

n
,

and similarly for u3, . . . , uk−1. Thus

P(path vu1 · · ·uk is blue) ≥
k−1∏
i=1

(
1− 2ω′kt

n

)
= 1−O

(
ω′k2t

n

)
,

where t = tf ≤ ωnk/(k+1). Provided ω′k2ω/n1/(k+1) = o(1), which holds for k ≤
√
log n/ log log n,

the path from the source to vertex w = uk level k is blue, and thus the arborescence rooted
at w is exactly this path.

4 Analysis of DLA in the growing layers model

In the growing layers model, each layer is larger than the previous one by a factor of d. Thus
Nj = dj for j = 0, 1, ..., k and we take Nk = dk = n. Many of the properties of this model
such as a gap property and unique connecting path are similar to the equal layers model.

The main, and most striking difference, is that there is a well defined level at a distance
about

√
2k + 2 from the end at which agglomerative growth stops and from which and a

single path grows back towards the source. Moreover at the end, except for the last ... levels,
the connecting path is the only occupied vertex in the layer. This is in contrast to the equal
layers model where all levels have significantly occupancy, and even that of the first level at
the end is Θ(n1/(k+1)).

Proposition 10. Let G be a growing layers graph with level sizes Ni = di, for i = 0, ..., k,
where d → ∞, k → ∞, and k ≥ log2 d. Let

Tf =
√
k dk+3/2−

√
2k+2. (39)

(1) The finish time tf of DLA on G satisfies Tf/ω ≤ tf ≤ ωTf , where ω → ∞ slowly.

(2) At tf , levels i = 1, . . . , k − ⌈
√
2k + 2− 1⌉ contain a single occupied vertex, the vertex ui

of the the connecting path.

Proof. The size Ni of layer i is Ni = di. It follows that the product of the set sizes in the
denominator of µk−j(t) in (3) is given by

NkNk−1 · · ·Nk−j+1 = dkdk−1 · · · dk−j+1 = dkj−j(j−1)/2,

21



and thus (3) becomes

µk−j(t) =
tj+1

(j + 1)! dkdk−1 · · · dk−j+1
=

tj+1

(j + 1)! dkj−j(j−1)/2
. (40)

Assume d is sufficiently large. The upper bound E L̂k−j is obtained in Section 2. However, a
problem can arise in the growing layers model in the upper bound calculations. The value of
µk−j can decrease with increasing j and then (anomalously) increase again. This is because
the recurrence used to establish it assumes µk−ℓ → ∞ for all ℓ < j, which is not the case.
We next locate where this happens; this is where the unique path back to the source begins.

An important level. We next show the existence of a level i ∼ k + 1 −
√
2k + 2, such

that the first occupancy of this level effectively determines the finish time of the process.

Let t be such that µk−j(t) = 1, and let t1 = t1(k − j) be ⌈t⌉, so that µk−j(t) ∼ 1 at step t1.
From (40),

µk−j(t1) =
tj+1
1

(j + 1)! dkj−j(j−1)/2
∼ 1 =⇒ t1 ∼ [(j + 1)!]1/(j+1) d

2kj−j(j−1)
2(j+1) . (41)

From (3)
µk−j+1(t)

µk−j(t)
=

(j + 1)dk−j+1

t
, (42)

so setting µk−j(t1(k − j)) ∼ 1 gives

µk−j+1(t1) ∼
j + 1

[(j + 1)!]1/j+1
dk−j+1− 2kj−j(j−1)

2(j+1)

∼ e

(2π(j + 1))1/2(j+1)
d

2k+2−j(j+1)
2(j+1) . (43)

The leading term on the RHS is bounded, and the exponent of d on the RHS is positive
provided 2k + 2 > j(j + 1), which ensures that E L̂k−j+1(t) is sufficiently large close to
t1(k − j).

What value of k − j maximizes the step t1 = t1(k − j) at which µk−j(t) ∼ 1? Write the
exponent of d on the RHS of (41) as f(j)/2 where

f(j) =
2kj − j(j − 1)

(j + 1)
= (2k + 2)− j − 2k + 2

j + 1
.

The maximum of f(j) occurs at j∗ when (j∗+1)2 = (2k+2), giving f(j∗) = (j∗)2. The (not
necessarily integer) values of j∗, k − j∗ and df(j

∗)/2 are

j∗ =
√
2k + 2− 1, k − j∗ = k + 1−

√
2k + 2, df(j

∗)/2 = dk+3/2−
√
2k+2. (44)
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In the case where j∗ is not integer, the rounding error is addressed in the Appendix, where
we show that the condition k ≥ log2 d given in Proposition 10 is sufficient to ignore the effect
of rounding on the value of Tf .

Ignoring rounding effects, we evaluate t1 = t1(k − j) at j = j∗, where f(j) = j2, to find

t1 ∼ [(j + 1)!]1/(j+1) df(j)/2

∼ e−1(
√
2π)1/(j+1) (j + 1)1+1/2(j+1) dj

2/2

= Ck−j

√
2k + 2 dk+3/2−

√
2k+2, (45)

on inserting the values from (44), and where Ck−j = e−1(1+O(1/j)). Note that t1 = Θ(Tf ).
From (42),

µk−(j+1)(t)

µk−j(t)
=

t

(j + 2)dk−j

so that at t1, for some C, C ′ = Θ(1),

µk−j∗(t1) ∼ 1, µk−(j∗−1)(t1) = Cd1/2, µk−(j∗+1)(t1) = C ′d1/2. (46)

At first this seems confusing, as one might expect to have µk−(j∗−1)(t1) = o(1) by analogy
with the equal layers model. Assuming d1/2 → ∞, level k − j∗ + 1 is the last level at which
the condition µk−j+1 → ∞ is valid in the recurrence from k − j + 1 to k − j; and is where
the assumption in Proposition 3 breaks down.

Gap property of L̂ and a lower bound on L. Note that from the definition of t1(k −
j∗), at t1/ω, we have µk−j∗(t1/ω) = O(ω−(j∗+1)), where j∗ ∼

√
2k → ∞. Thus w.h.p.

L̂k−j∗(t1/ω) = o(1) in the upper process. Consequently all levels i = k − ℓ, ℓ ≥ j∗, have

L̂i(t) = 0, w.h.p., for t ≤ t1/ω.

In what follows we only consider indexes k − ℓ where 0 ≤ ℓ ≤ k − j∗ + 1. By (44) we have
k − j∗ + 1 = k + 2−

√
2k + 2.

We see from (46) that µk−j∗+1(t1(k − j∗)) = C ′d1/2. Thus although d → ∞ so that L̂k−j∗+1

will be concentrated around µk−(j∗+1)(t1), we cannot expect it to be as strong as in Lemma
6. Fortunately this will not matter as k − j∗ is the last level to which we apply the gap
argument. For ℓ ≤ j∗ − 1 at t1(k − ℓ), the value of L̂k−ℓ+1 obeys Lemma 6. In particular, it
can be checked that t1(k − j∗ + 1) = Θ(1)

√
kdk+5/2−(3/2)

√
2k+2. Thus using (42), we obtain

µk−j∗+2(t1(k − j∗ + 1)) = Θ(d(
√
2k+2+1)/2).

Turning to the lower bound L̃ as given in (18)–(19) we need to prove that (32) holds. The
main task is to find a value of β for the growing layers model which we can use in the
arguments given in Section 3.2 for the equal layers model. In what follows ω → ∞ slowly.
The value from Lemma 6 is denoted as ω′ = 6 log n.
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Using (39), (40), and Nk−ℓ = dk−ℓ, for ℓ ≥ 1,

µk−ℓ

Nk−ℓ

=
t

(k − ℓ+ 1)dk−ℓ

µk−ℓ+1

Nk−ℓ+1

≤ µk−ℓ+1

Nk−ℓ+1

ω
√
k

(k + 2−
√
2k + 2)

dk+3/2−
√
2k+2

dk+2−
√
2k+2

≤ ω(1 + o(1))√
kd

µk−ℓ+1

Nk−ℓ+1

≤
(
1

β

)ℓ
t

Nk

.

Choosing β = (1 + o(1)))
√
kd/ω, (33) becomes

i∑
ℓ=j∗+1

L∗
k−ℓ

Nk−ℓ

≤ O(ω′3)

Nk−j∗
+ 2

i∑
ℓ=j∗+1

(
1

β

)ℓ
t

Nk

= O

(
t

βiNk

)
.

It now follows from the proof in Section 3.2 that for those k− j∗+1 ≤ i ≤ k, and t ≥ ti(ω
′),

then µi(t) → ∞ suitably fast. We hence obtain that E L̃i(t) ∼ µi(t) ∼ E L̂i(t), and so we

have Lk−ℓ(t) ∼ L̂k−ℓ(t) ∼ µk−ℓ(t).

4.1 The finish time in the growing layers model.

We now turn to the proof of (39). We show that, w.h.p., a path (of occupied vertices) grows
back to the source from the first vertex to be occupied in level k−j∗, thus halting the process;
and moreover this occurs before a second vertex becomes occupied in level k − j∗.

Let t0 be the first step at which Lk−j∗(t) = 1, where w.h.p. t0 ≥ t1/ω. Then either t0 ≤ t1,
or, as the probability a particle halts at level k − j∗ is

ϕ =
Lk−(j∗−1)(t1)

Nk−(j∗−1)

∼ Cd1/2

dk−j∗+1
=

C

dk+3/2−
√
2k+2

;

the probability this does not occur in a further t1 steps is, see (45),

(1− ϕ)t1 ≤ e−t1ϕ = e−C′√2k+2 = o(1),

where C ′ ∼ C/e and we assume k → ∞.

Let u be the vertex in level k−j∗ containing the unique particle halted at t0. Construct a path
back from u to the source as follows. Wait until a particle halts at wk−j∗−1 in level k− j∗−1
by choosing edge wk−j∗−1u. The expected time for this is dk−j∗ . In a further expected time
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dk−j∗−1, the path will extend backwards, as a particle will halt in level k− j∗−2 by choosing
edge to wk−j∗−1 etc. Thus in a further

T = dk−j∗ + dk−j∗−1 + · · ·+ d = dk−j∗
(
1− 1/dk−j∗

1− 1/d

)
= Θ(dk−j∗) = Θ(dk+1−

√
2k+2)

expected steps there will be a path vw1 · · ·wk−j∗−1u of halted particles extending from the
source v to vertex u thus stopping the DLA process (if it has not already halted). This path
should be unique, as the expected time for it to branch backwards at any level i is di ≫ di−1

if d → ∞.

We next give the proof of Proposition 10.(2). The expected number of steps needed to create
another halted particle in level k − j∗ is

1

ϕ
= Θ(dk+3/2−

√
2k+2) = Θ(Td1/2).

Whereas, w.h.p. on the assumption that d → ∞, in at most (t1 + T )ω steps the process has
halted as claimed, before a second vertex can become occupied in level k − j∗.

Existence of a unique connecting path. Finally, we prove that the arborescence rooted
at level k containing the connecting path from source to sink, consists uniquely of that path.
The proof is similar to Lemma 9 for the equal layers model. At tf , w.h.p. there is a unique
path from level k − j∗ to level zero, so that level k − j∗ + 1 plays the role of level one. By
analogy with Section 3.4 equation (38) etc.,

P(uk−j∗+1 ∈ Rk−j∗+1(t)) =
Zk−j∗+1(t)

Lk−j∗+1(t)
≤ ω

µk−j∗+1(t)
≤ O

(
ω2

d1/2

)
,

where we used an earlier result that µk−j∗+1(t1) = Cd1/2.

Thus as tf ≤ ωt1(j
∗), where j∗ =

√
2k + 2− 1 and t1(k − j∗) is given by (45)

P((v, uk)–path is blue) ≥
(
1− ω2

d1/2

) j∗−2∏
j=1

(
1− ωtf

dk−j

)
= 1−O

(
ω2

d1/2

)
−O

(
ω
√
k

d3/2

)
.

5 Theorem 2.(1): Trees with large branching factor

Let G = G(k, d) be a labelled tree with branching factor d and final level k, such that dk = n.
As before, the source of the particles is the unique vertex v at level zero. An artificial sink
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vertex z (at level k + 1) is attached to the vertices at level k. To establish Theorem 2.(1),
we need to prove w.h.p. that Tf/ω ≤ tf ≤ ωTf where ω → ∞ slowly with n.

We borrow several ideas from the growing layers model, starting with j∗ and Tf (see (44)
and (39)). Let j∗ =

√
2k + 2− 1 and let Tf be given by

Tf =
√
k dk+3/2−

√
2k+2. (47)

By a uniformity argument, the expected number of particles arriving at a given vertex in
level k − j∗ by step Tf is Tf/d

(k−j∗) =
√
kd. However, the expected number of particles

arriving at a vertex w at level k − j∗ + 1 by step Tf is

Tf

dk−j∗+1
=

√
k

d
= o(1),

provided k ≪ d, which we assume to be true. In order for w to be occupied, the sub-tree
rooted at w must contain a path from w to level k consisting of j∗ occupied vertices. By the
Markov inequality the event that j∗ = Θ(

√
k) particles have arrived at w by step Tf , has

probability O(1/
√
d). So there should be few vertices in level k− j∗ +1 with a path to level

k containing j∗ halted particles.

Consider t particles percolating downward from the root of an infinite d-ary tree. Particle
s starts at step s and each particle transitions one edge at each step, so they never collide.
Let w be a vertex in level ℓ of this tree, where the root vertex is at level zero. Let u be
a vertex at level ℓ + j contained in the subtree rooted at w, and H(w, u) the unique path
w = w0w1...wj = u from w in level ℓ to u in level ℓ+ j. Let 1 ≤ s0 ≤ s1 ≤ s2 ≤ · · · ≤ sj ≤ t
be particle labels, where particles s0 and s1 transition all edges of H, particle s2 transitions
edges w0w1...wj−1; in general si transitions w0w1...wj−i+1, and sj transitions w0w1. The
probability of this is

P (s0, s1, ..., sj) =

(
1

dℓ

)j+1
1

dj
1

dd2 · · · dj
.

The expected number of j+1 tuples of particles which transition as above is
(

t
j+1

)
P (s0, s1, ..., sj).

There are dj vertices u at level j in the subtree of w, and dℓ vertices w in level ℓ of the tree,
so the number of sequences Zℓ,j+1(t) forming such a path between the levels has expectation

EZℓ,j+1(t) = dℓdj
(

t

j + 1

)
P (s0, s1, ..., sj) =

(
t

j + 1

)
1

dℓ+1 · · · dℓ+j
.

For j ≪ t, with ℓ = k − j and µk−j(t) as given by (40) for the growing layers model,

EZk−j,j+1(t) ∼
tj+1

(j + 1)!

1

dk−j+1 · · · dk
= µk−j(t). (48)
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Return now to the finite Cayley tree G(k, d). For some vertex in level k− j∗ to be occupied
at step t there must be some sequence (s0, s1, ..., sj) which satisfies the construction given
above. Indeed s0 halts in level k, causing s1 to halt in level k − 1 and so on, until sj halts
in level k − j.

Let j = j∗ and t = (1− ε)t1(k − j∗) where ε = ω/
√
2k + 2 = ω/(j∗ + 1), and ω <

√
k,

µk−j∗(t) = (1− ε)j
∗+1 ≤ e−ω = o(1). (49)

We conclude that at t′ no such sequence exists w.h.p. and levels 0, 1, ..., k − j∗ are empty.
By (45), t1(k − j∗) = CTf , for some constant C > 0, so the finish time tf ≥ Tf/ω.

From (42), µk−j+1(t) = [(j + 1)dk−j+1/t] · µk−j(t), and so

µk−j∗+1(t
′) =

√
2k + 2 dk−j∗+1

(1− ε)CTf

µk−j∗(t1) = Θ(
√
d).

Returning briefly to the infinite d-regular tree process, let Z ′(t) be the number of vertices w
in level k− j∗+1 with j∗ particles following a path w = w1w2...wj = u in the subtree rooted
at w, plus another particle which passes through w, to any of its children. Then

EZ ′(t) ≤ t

dk−j∗+1
EZk−j∗+1,j∗(t) =

t

dk−j∗+1
µk−j∗+1(t).

If t = t1(k − j∗), then for k ≪ d

EZ ′(t1) = Θ(
√
k) = o(µk−j∗+1(t1)).

Thus in expectation there are (1− o(1))µk−j∗+1(t1) vertices w in level k − j∗ + 1 are exact.
They have occupancy j∗, in their subtree and a unique occupied path to level k. The events
that two such vertices w,w′ have this path property are independent and we conclude that
the number of such vertices is concentrated around its mean at Θ(

√
d).

From now on the proof mirrors that of the growing layers model in Section 4.1. Thus w.h.p.
within a most 2t1 steps the first occupancy of a vertex in level k−j∗ has occured; and a path
grows back to the source from this vertex, halting the process before the second occupancy
in level k − j∗ can occur.

5.1 Theorem 2.(2): DLA on trees with branching factor d ≥ 2

Proposition 11. For d ≥ 2, let G = G(k, d) be the Cayley tree with branching factor d and
height k, where dk = n. Let T = T (G) be given by

T =
√
kdk+3/2−

√
2k+2.

Let tf be the finish time of DLA on G. Then w.h.p. T/ω ≤ tf ≤ ωT .
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Proof. The argument leading to (49) in the previous section only assumed k → ∞ so that
we could find some ω <

√
k and where ω → ∞. As dk = n then k = log n/(log d) which is

is monotone increasing with deceasing d. So k → ∞ as before and the lower bound on tf
follows from (49) on choosing t′ = (1− ε)t1(k− j∗), and noting that t′ ≈ (1− ε)T/e > T/ω.

For the upper bound, let j = j∗ − h where h = ⌈1/2 + logd k⌉. In Section 5, for the upper
bound, we assumed that k ≪ d, in which case h = 1, which led to an argument about the
occupancy of levels k − j∗ and k − j∗ + 1. In this section the assumption k ≪ d may no
longer hold, for example, when d = 2, k = log n/ log 2.

The value of µk−j∗ given by (48), satisfies µk−j+1(t) = [(j + 1)dk−j+1/t] · µk−j(t). Iterating
this, and evaluating at t1(k − j∗) = (1 +O(1/j))e−1

√
2k + 2dk−j∗+1/2 from (45),

µk−j∗+h(t)

µk−j∗(t)
=

(j + 1) · · · (j + h)

th
dk−j+1 · · · dk−j+h = Θ(1) ehdh

2/2.

This ratio is ω(1), as either (i) d → ∞, or (ii) d is constant and then logd k = logd logd n,
implying that h = ω(1). As before, with EZk−j∗+h,j∗−h+1(t) = µk−j∗+h(t), consider Z ′(t1),
where

EZ ′(t1(k − j∗)) ≤ t1
dk−j∗+h

µk−j∗+h(t1).

The ratio ρ = t1(k − j∗)/dk−j∗+h satisfies

ρ = t1(k − j∗)/dk−j∗+h = Θ(1)

√
k

dh+1/2
=

(
k

d2h+1

)1/2

.

Assume k ≤ d, then 2h + 1 ≥ 3, so ρ ≤ 1/d. Alternatively, if d ≤ k, then h ≥ logd k and
ρ ≤ 1/k. In either case w.h.p. (1 − o(1))µk−j∗+h(t) vertices in level k − j∗ + h are exact at
around t = t1.

Either some path of halted particles already extends to a level i where i < k− j∗ + h, or all
vertices in these levels are unoccupied at t1. In the latter case, w.h.p. there exists Θ(ehdh

2/2)
exact paths from level k − j∗ + h to level k. In expectation, it takes at most

Θ(1)
dk−j∗+h

ehdh2/2
≤ T

further steps for one of these paths to extend back to the source. The upper bound now
follows from the Markov inequality.

Proof of Theorem 2.(2). If d is constant, dk = n implies k = log n/ log d. Hence√
2k + 2 =

√
2k +Θ(1), and d3/2 = Θ(1). Thus t1, T are both Θ(Tf ), where Tf is as given.
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Appendix

The effect of rounding error in the growing layers model. We examine conditions
on d, k which allow us to effectively ignore the rounding error on j∗ in the value of Tf , and

show that (log d)/
√
k = O(1) suffices. In the case that j∗ is not integer, we require the

maximum j such that 2k + 2 > j(j + 1); see the exponent of d in (43). Clearly j = ⌊j∗⌋
satisfies 2k + 2 > j(j + 1), but what about j = ⌈j∗⌉? Put j = j∗ + ε. Further analysis, not
given here, shows that the condition 2k + 2 ≥ j(j + 1), is satisfied by j = ⌈j∗⌉ up to some
ε ∈ (1/2, 1).

Let j = max{i : (2k + 2) ≥ i(i + 1)} and suppose that j = ⌊j∗⌋ so that j∗ = j + ε. Let
TM = Θ(t1(k − j)) be given by

TM =
√
kd

1
2
(2k+2−j−(2k+2)/(j+1)),

be a revised estimate of the order of the halting time, where TM ≤ Tf as j∗ maximizes Tf .

As j∗ =
√
2k + 2− 1, Tf =

√
kd(j

∗2/2), see (44), and 2k + 2− j∗ − (j∗)2 =
√
2k + 2,

TM

Tf

=d
1
2((2k+2)−j∗+ε− 2k+2

j∗+1−ε
−(j∗)2 )

=d
1
2

(√
2k+2−

√
2k+2

1−ε/(
√
2k+2)

+ε
)

=d
− ε2

2
√
2k+2

(1+O(1/
√
k))
.

Choosing j = ⌈j∗⌉ = j∗ + ε gives the same result. Thus the effect of rounding is to alter Tf

by Θ(1)d−O(1/
√
k). Thus (log d)/

√
k = O(1) suffices.
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