
On the insertion time of random walk cuckoo hashing

Alan Frieze∗and Tony Johansson†

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh PA15213
U.S.A.

alan@random.math.cmu.edu
tjohanss@andrew.cmu.edu

Abstract

Cuckoo Hashing is a hashing scheme invented by Pagh and Rodler [14]. It uses d ≥ 2 distinct
hash functions to insert n items into the hash table of size m = (1 + ε)n. In their original paper
they treated d = 2 and m = (2 + ε)n. It has been an open question for some time as to the
expected time for Random Walk Insertion to add items when d > 2. We show that if the number
of hash functions d ≥ dε = O(1) then the expected insertion time is O(1) per item.

1 Introduction

Our motivation for this paper comes from Cuckoo Hashing (Pagh and Rodler [14]). Briefly each
one of n items x ∈ L has d possible locations h1(x), h2(x), . . . , hd(x) chosen from a set R. Here d is
typically a small constant and the hi are hash functions, typically assumed to behave as independent
fully random hash functions. (See [13] for some justification of this assumption.) We note that
[14] only considered the case d = 2 and it was Fotakis, Pagh, Sanders and Spirakis [4] who first
considered the generalisation to d ≥ 2.

We assume each location can hold only one item. Items are inserted consecutively and when an
item x is inserted into the table, it can be placed immediately if one of its d locations is currently
empty. If not, one of the items in its d locations must be displaced and moved to another of its
d choices to make room for x. This item in turn may need to displace another item out of one of
its d locations. Inserting an item may require a sequence of moves, each maintaining the invariant
that each item remains in one of its d potential locations, until no further evictions are needed.

We now give the formal description of the mathematical model that we use. We are given two
disjoint sets L = {v1, v2, . . . , vn} , R = {w1, w2, . . . , wm}. Each v ∈ L independently chooses a set
N(v) of d ≥ 2 uniformly random neighbors in the set R of size m = (1 + ε)n. We assume for
simplicity that this selection is done with replacement. This provides us with the bipartite cuckoo
graph Γ. Cuckoo Hashing can be thought of as a simple algorithm for finding a matching M of

∗Research supported in part by NSF Grants DMS1362785, CCF1522984 and Grant 333329 from the Simons
Foundation
†Research supported in part by NSF Grant DMS1362785

1

L into R in Γ. In the context of hashing, if {x, y} is an edge of M then y ∈ R is a hash value of
x ∈ L.

Cuckoo Hashing constructs M by defining a sequence of matchings M1,M2, . . . ,Mn, where Mk is
a matching of Lk = {v1, v2, . . . , vk} into R. We let Γk denote the subgraph of Γ induced by Lk ∪R.
We let Rk denote the vertices of R that are covered by Mk and define the function φk : Lk → Rk
by asserting that Mk = {{v, φk(v)} : v ∈ Lk}. We obtain Mk from Mk−1 by finding an augmenting
path Pk in Γk from vk to a vertex in R̄k−1 = R \Rk−1.

This augmenting path Pk is obtained by a random walk. To begin we obtain M1 by letting φ1(v1)
be a uniformly random member of N(v1), the neighbors of v1. Having defined Mk we proceed as
follows: Steps 1 – 4 constitute round k.

Algorithm insert:

Step 1 x← vk; M ←Mk−1;

Step 2 If Sk(x) = N(x) ∩ R̄k−1 6= ∅ then choose y uniformly at random from Sk(x) and let
Mk = M ∪ {{x, y}}, else

Step 3 Choose y uniformly at random from N(x);

Step 4 M ←M ∪ {{x, y}} \
{
y, φ−1

k−1(y)
}

; x← φ−1
k−1(y); goto Step 2.

Comment: N(x) is a multi-set and so in Step 2, neighbors are selected proportional to multiplicity.

This algorithm was first discussed in the conference version of [4]. Our interest here is in the
expected time for insert to complete a round. Our results depend on d being a large enough
constant. In this case we will improve on the bounds on insertion time given in Frieze, Melsted and
Mitzenmacher [7], Fountoulakis, Panagiotou and Steger [5], Fotakis, Pagh, Sanders and Spirakis
[4]. The paper [4] studied the efficiency of insertion via Breadth First Search and also reported on
some experiments with the random walk approach. The paper by Khosla [10] describes a nice linear
time algorithm for placing the n items. The papers [7] and [5] considered insertion by random walk
and proved that the expected time to complete a round can be bounded by log2+od(1) n, where
od(1) tends to zero as d → ∞. The paper [5] improved on the space requirements in [7]. They
showed that given ε, their bounds hold for any d large enough to give the existence of a matching
w.h.p. Mitzenmacher [12] gives a survey on Cuckoo Hashing and Problem 1 of the survey asks for
the expected insertion time.

Frieze and Melsted [6], Fountoulakis and Panagiotou [3] give information on the relative sizes of
L,R needed for there to exist a matching of L into R w.h.p. Our choice of d will be such that
there is a matching of L into R w.h.p. Conditioning on there being a matching can only increase
the probability of an event by a factor 1 + o(1) and we will not explicitly include this factor in the
calculations below.

We will prove the following theorem. We show that the expected insertion time is O(1), but only
for a large value of d. When the load factor n/m is close to zero then the expected size of the
component of Γ containing a fixed item can easily be shown to be bounded. Thus the theorem
below focusses on the more interesting case where the load factor n/m is close to one.

2

Theorem 1 Suppose that n = (1− ε)m where ε is a fixed positive constant, assumed to be small.
Let 0 < θ < 1 also be a fixed positive constant and let

γ = 5(1− ε)d/2. (1)

If d2γ ≤ (1− θ)(d− 1) then w.h.p. the structure of Γ is such that over the random choices in Steps
2,3,

E(|Pk|) ≤ 1 +
2

θ
for k = 1, 2, . . . , n. (2)

Here |Pk| is the length (number of edges) of Pk.

When d is large the value of θ in (2) is close to dε/2. It can be seen from the proof that as ε→ 0,

the value of d needed is of the order
(

log 1/ε
ε

)
. This is larger than the value O(log(1/ε)) needed for

there to be a perfect matching from L to R and finding an O(1) bound on the expected insertion
time for small d remains as an open problem. We note that Theorem 1 of [4] allows small values of
d ≥ 5 + 3 log 1/ε, but the BFS algorithm it relies on requires more space, shown to be O(nδ) extra
space for a constant δ > 0, and is shown to have an expected insertion time of dO(log 1/ε), which is
actually worse than than that implied by our theorem.

The problem here bears some relation to the On-line bipartite matching problem discussed for
example in Chaudhuri, Daskalakis, Kleinberg and Lin [2], Bosek, Leniowski, Sankowski and Zych
[1] and Gupta, Kumar and Stein [8]. In these papers the bipartite graph is arbitrary and has a
perfect matching and vertices on one side A of the bipartition arrive in some order, along with their
choice of neighbors in the other side B. As each new member of A arrives, a current matching is
updated via an augmenting path. The aim is to keep the sum of the lengths of the augmenting
paths needed to be as small as possible. It is shown, among other things, in [2] that this sum can
be bounded by O(n log n) in expectation and w.h.p. This requires finding a shortest augmenting
path each time. Our result differs in that our graph is random and |A| = (1 − ε)|B| and we only
require a matching of A into B. On the other hand we obtain a sum of lengths of augmenting paths
of order O(n) in expectation via a random choice of path.

2 Proof of Theorem 1

2.1 Outline of the main ideas

Let
Bk =

{
v ∈ Lk : N(v) ∩ R̄k−1 = ∅

}
.

If x /∈ Bk in Step 2 of insert then we will have found Pk.

Let P = (x1, ξ1, x2, ξ2, . . . , x`) be a path in Γ, where x1, x2, . . . , x` ∈ Lk−1 and ξ1, ξ2, . . . , ξ`−1 ∈
Rk−1. We say that P is interesting if x1, x2, . . . , x` ∈ Bk. We note that if the path Pk = (x1 =
vk, ξ1, x2, ξ2, . . . , x`, ξ`, x`+1, ξ`+1) then Qk = (x1, ξ1, x2, ξ2, . . . , x`) is interesting. Indeed, we must
have xi ∈ Bk, 1 ≤ i ≤ `, else insert would have chosen ξi ∈ R̄k−1 and completed the round.

Our strategy is simple. We show that w.h.p. there are relatively few long interesting paths and
because our algorithm (usually) chooses a path at random, it is unlikely to be long and interesting.
One caveat to this approach is that while all augmenting paths yield interesting sub-paths, the

3

reverse is not the case. That being so, it would be better to estimate the number of possible long
augmenting paths. The problem with this approach is that we then need to control the distribution
of the matching Mk. This has been the difficulty up to now. We have avoided this problem by
focussing on interesting paths. Of course, there is a cost in that d is larger than one would like,
but it is at least independent of n.

To bound the number of interesting paths, we bound |Bk| and use this to bound the number of
paths.

The probability space for the analysis is the product of two spaces. One generates Γ and the other
generates the walks. One observes that except for (8) below, our probability statements are actually
in respect of Γ and are high probablity statements. It is only in (8) that we explicitly consider the
random walks and there we suffice with a bound on expectation.

2.2 Detailed proof

Let yk be the element y chosen at Step 3 of round k = 1, 2, . . . , n. Then, fix 1 ≤ k ≤ n. We observe
that if Rk−1 = {y1, y2, . . . , yk−1} then

yk is chosen uniformly from R̄k−1 (3)

and is independent of the graph Γk−1 induced by Lk−1 ∪ Rk−1. This is because we can expose Γ
along with the algorithm. When we start the construction of Mk we expose the neighbors of vk one
by one. In this way we either determine that Sk(vk) = ∅ or we expose a uniformly random member
of Sk(vk) without revealing any more of N(vk). In general, in Step 2, we have either exposed all the
neighbors of x and these will necessarily be in Rk−1. Or, we can proceed to expose the unexposed
neighbors of x until either (i) we determine that Sk(x) = ∅ and we choose a uniformly random
member of N(x) or (ii) we find a neighbor of x that is a uniformly random member of R̄k−1. Thus

Rk−1 is a uniformly random subset of R.

We need to show that Bk is small. It is clear that v1 /∈ B1 i.e. B1 = ∅ and so we deal next with
2 ≤ k ≤ d. If vk ∈ Bk then N(vk) ⊆ Rk−1 and when vk is considered, Rk−1 is fixed. But then

P(∃2 ≤ k ≤ d : N(vk) ⊆ Rk−1) ≤ (d− 1)

(
d− 1

m

)d
= O(n−d) = o(1).

This implies that w.h.p. Bk = ∅ for 2 ≤ k ≤ d. We deal next with d+ 1 ≤ k ≤ n9/10. Since N(vk)
is uniformly random, we see that

P(∃k ≤ n9/10 : vk ∈ Bk) ≤ n1−d/10 = o(1) for d > 10.

Now fix n9/10 ≤ k ≤ n − 1. Let νk,` denote the number of interesting paths with 2` − 1 vertices.
Let θ, γ > 0 be as in the statement of Theorem 1.

Lemma 2 Let A0 be an arbitrary positive constant and assume that d is sufficiently large,

P
(
∃2 ≤ ` ≤ A0 log log n : νk,` ≥ (1 + θ)kγ(d2γ)`−1

)
= o(n−2). (4)

4

The bound o(n−2) is sufficient to deal with the insertion of n items.

Before proving the lemma, we show how it can be used to prove Theorem 1. We will need the
following claims:

Claim 3 Let ∆ denote the maximum degree in Γ. Then for any t ≥ log n we have P(∆ ≥ t) ≤ e−t.

Proof of Claim: If v ∈ L then its degree deg(v) = d. Now consider w ∈ R. Then for t ≥ log n,

P(∃w ∈ R : deg(w) ≥ t) ≤ m
(
dn

t

)
1

mt
≤ m

(
de

t

)t
≤ e−t.

End of proof of Claim

Claim 4 With probability 1 − o(n−2), Γ contains at most n1/2+o(1) cycles of length at most Λ =
(log log n)2.

Proof of Claim: Let C denote the number of cycles of length at most 2` = Λ. Then

E(C) ≤
∑̀
s=2

(
n

s

)(
m

s

)
(s!)2

(
d

m

)2s

≤
∑̀
s=2

d2s = no(1).

Now let C1 denote the number of cycles of length at most Λ where we can only use the first
min {λ,deg(w)} , λ = (log n)2 edges incident with each vertex w ∈ R. Here “first” is defined in
some canonical way. Then C1 ≤ C and Claim 3 implies that

P(C 6= C1) ≤ e−λ = e−(logn)2 . (5)

Now C1 depends on the dn independent choices of edges in Γ and changing one choice of edge can
only change C1 by at most λΛ. Applying McDiarmid’s inequality, and using E(C1) ≤ E(C) we see
that

P(C1 ≥ E(C) + n1/2λ2Λ) ≤ exp

{
−2nλ4Λ

dnλ2Λ

}
= o(n−2).

Together with (5), this proves the claim.
McDiarmid’s Inequality [11]: Let Z = Z(Y1, Y2, . . . , YN) be a function of N independent
random variables Y1, Y2, . . . , YN . Suppose that changing the value of a single Yi can change the
value of Z by at most c. Then

P(Z − E(Z) ≥ t) ≤ exp

{
− 2t2

Nc2

}
.

End of proof of Claim

These two claims imply the following property of Γ:

With probability 1− o(n−2) there are at most n1/2+o(1)(3 log n)2` = n1/2+o(1) vertices within

distance at most 2A0 log log n of a cycle of length at most Λ = (log log n)2. (6)

Now let pk,` denote the probability that insert requires at least ` steps to insert vk.

5

We finish the proof of the theorem by showing that

E(|Pk|) = 1 + 2
∞∑
`=2

pk,` ≤ 1 +
2

θ
. (7)

Here we are using E(Z) =
∑

k≥1 P(Z ≥ k) for non-negative integer valued Z. We observe that
if vk has no neighbor in R̄k−1 and has no neighbor in a cycle of length at most Λ then for some
` ≤ A0 log logn, the first 2`−1 vertices of Pn follow an interesting path. Hence, if d2γ ≤ (1−θ)(d−1)
then

A0 log logn∑
`=2

pk,` ≤ O(n−1/2+o(1)) +

A0 log logn∑
`=2

νk,`
k(d− 1)`

. (8)

Explanation of (8): Following (6), we find that the probability vk is within 2A0 log log n of a
cycle of length at most Λ is bounded by n−1/2+o(1). The O(n−1/2+o(1)) term accounts for this and
also absorbs the error probability in (4). Failing this, we have divided the number of interesting
paths of length 2`− 1 by the number of equally likely walks k(d− 1)` that insert could take. To
obtain k(d− 1)` we argue as follows. We carry out the following thought experiment. We run our
walk for ` steps regardless. If we manage to choose y ∈ R̄k−1 then instead of stopping, we move
to vk and continue. In this way there will in fact be k(d− 1)` equally likely walks. In our thought
experiment we choose one of these walks at random, whereas in the execution of the algorithm we
only proceed as far the first time we reach R̄k−1.

Using (4) and (8) we now see that

A0 log logn∑
`=2

pk,` ≤ O(n−1/2+o(1)) + (1 + θ)

A0 log logn∑
`=2

kγ(d2γ)`−1

k(d− 1)`

≤ o(1) + (1 + θ)
∞∑
`=2

(1− θ)`−1

= o(1) +
1− θ2

θ
.

Finally, for the algorithm to take at least ` steps, it must choose an interesting path of length at
least 2`− 1.

Note next that
pk,A0 log logn ≤ O(n−1/2+o(1)) + 3−A0 log logn.

It follows that
(logn)A0∑

`=A0 log logn

pk,` ≤
(logn)A0∑

`=A0 log logn

pk,A0 log logn = o(1). (9)

We will use the result of [7]: We phrase Claim 10 of that paper in our current terminology.

Claim 5 There exists a constant a > 0 such that for any v ∈ Lk−1, the expected time for insert
to reach R̄k−1 is O((log k)a).

It follows from Claim 5 that for any integer ρ ≥ 1,

P(|Pk| ≥ ρ(log k)2a) ≤ 1

(log k)ρa
. (10)

6

Indeed, we just apply the Markov inequality every (log k)2a steps to bound |Pk| by a geometric
random variable.

It follows from (10) that

∑
`≥3(log k)2a

pk,` ≤
∞∑
ρ=3

∑
`/(log k)2a∈[ρ,ρ+1]

pk,` ≤
∞∑
ρ=3

1

(log k)ρa−2a
= o(1). (11)

Theorem 1 now follows from (7), (8), (9) and (11), if we take A0 > 2a.

2.3 Proof of Lemma 2

We will argue as in the proof of Claim 4 that

P(νk,` ≥ E(νk,`) + n3/4) ≤ 2e−(logn)2 . (12)

We let ν∗k,` be the number of interesting paths that only use the first min {λ,deg(w)} , λ = (log n)2

edges incident with vertex w ∈ R. Then ν∗k,` ≤ νk,` and Claim 3 implies that

P(νk,` 6= ν∗k,`) ≤ e−λ = e−(logn)2 . (13)

Now ν∗k,` depends on the dk independent choices of edges in Γk and changing one choice of edge

can only change ν∗k,` by at most λ2`. Applying McDiarmid’s inequality, and using E(ν∗k,`) ≤ E(νk,`)
we see that

P(ν∗k,` ≥ E(νk,`) + n3/4) ≤ exp

{
− 2n3/2

dkλ4`

}
≤ e−(logn)2 .

Together with (13), this proves (12).

It follows from (12) that to finish the proof, all we need to show is that if θ > 0 is an arbitrary
positive constant then we have

E(νk,`) ≤ (1 + θ)kγ(d2γ)`−1, (14)

where γ is as in (1).

Claim 6 Let
Bk = {|Bk| ≥ kγ} .

Then
P(Bk) = e−Ω(n1/2).

Proof of Claim:
Let Bk,1 denote the set of vertices vi ∈ Lk such that round i exposes at least d/2 edges incident
with vi. Then

P(vi ∈ Bk,1) ≤ (1− ε)d/2.

Now |Bk,1| is the sum of independent {0, 1} random variables and so Hoeffding’s theorem [9] implies
that

P
(
|Bk,1| ≥ 2k(1− ε)d/2

)
≤ e−Ω(n1/2). (15)

7

Next let

Bk,2 = {s ≤ k : round s does not end immediately in Step 2 with x = vs.}

Then, P(s ∈ Bk,2) =
(
s−1
m

)d
and this holds for each value of s independently and so

E(|Bk,2|) ≤
k∑
s=1

(
s− 1

m

)d
≤ kd+1

(d+ 1)md
.

Now |Bk,2| is the sum of independent {0, 1} random variables and so again we have that Hoeffding’s
theorem [9] implies that for a constant θ > 0,

P

(
|Bk,2| ≥ (1 + θ)

kd+1

(d+ 1)md

)
= O(e−ε1k) for some constant ε1 = ε1(d, ε, θ) > 0. (16)

Now if Bk,3 = {s ∈ Bk : ∃` ≤ k, ` 6= s s.t. round ` ends with x = vs} then |Bk,3| ≤ |Bk,2|. Define
Bk,4 = Bk \ (Bk,1 ∪ Bk,2 ∪ Bk,3). Let t > s be the first time that vs is re-visited by insert or let
t = k if vs is not re-visited. Then s ∈ Bk,4 only if in round t, at least d/2 unexposed edges incident
to s are found to be in Rt−1. It follows that

E(|Bk,4|) ≤ k(1− ε)d/2.

Since membership of s in Bk,4 is determined by the random choices of vs, |Bk,4| is the sum of
independent random variables and so

P
(
|Bk,4| ≥ 2k(1− ε)d/2

)
= O(e−Ω(n1/2)). (17)

The claim follows from (15), (16) and (17).
End of proof of Claim

Given Claim 6, we have

E(νk,`) = E(νk,` | ¬Bk)P(¬Bk) + E(νk,` | Bk)P(Bk)

≤ k`γ`k`−1 ·
(

(1 + o(1))
d

k

)2`−2

+O(k2`−1 · e−Ω(n1/4)), (18)

≤ (1 + o(1))kγ(d2γ)`−1 + o(1).

This proves (14).

Explanation of (18): We can choose the vertex sequence σ = (x1, ξ1, . . . , ξ`−1, x`) of an interesting
path P in at most |Bk|`k`−1 ways, and we apply Claim 6. Having chosen σ we see that ((1 +
o(1))d/k)2`−2 bounds the probability that the edges of P exist. To see this, condition on R̄k−1 and
the random choices for vertices not on P . In particular, we can fix Rk−1 = {y1, y2, . . . , yk−1} from
the beginning and this simply constrains the sequence of choices y1, y2, . . . , yk−1 to be a uniformly
random permutation of Rk−1. Let Mk be the property that Γ has a matching from Lk to R. It is
known that P(Mk) = 1 − O(n4−d). This will also be true conditional on the value of R̄k−1. This
follows by symmetry. The conditional spaces will be isomorphic to each other. So for large d, we
can assume that our conditioning is such that with probability 1 − O(1/n3) the edge choices by
x1, x2, . . . , x` are such that Γk has propertyMk with probability 1−O(n7−d). Recall from (3) that
the disposition of the edges of Γk−1 is independent of R̄k−1. Now each edge adjacent to a given

8

x ∈ σ ∩Lk is a uniform choice over those edges consistent with x being in Bk. But there will be at
least k − 1 such choices for such an x viz. the vertices of Rk−1. Thus

P(P exists | Mk) ≤
P(P exists)

P(Mk)
≤ (1 + o(1))

(
d

k

)2`−2

.

Note that P(M̄k) is only inflated by at most 1
(1−ε)d` = o(no(1)) if we condition on x1, x2, . . . , x`

making their choices in R̄k−1. This has to be compared with the unconditional probability of
O(n7−d).

This completes the proof of Theorem 1. �

Remark 7 Along with an upper bound, we can prove a simple lower bound:

E(|Pk|) ≥
2

1− (1− ε)d
.

This follows from the fact that Step 2 of insert ends the procedure with probability 1− (1− ε)|Sk(x)|

and |Sk(x)| ≤ d.

3 Final Remarks

There is plenty of room for improvement in the bounds on d in Theorem 1. It would be most
interesting to prove an O(1) bound on the expected insertion time for small d, e.g. d = 3, 4, 5.
This no doubt requires an understanding of the evolution of the matching M . It would also be of
interest to consider the effect of deleting (random) elements. It is tempting to say that the analysis
is robust enough but we won’t make that claim.

Acknowledgement: We thank Wesley Pegden for his comments. We also thank Lutz Warnke for
pointing out a minor error and one of the reviewers for poining out another minor error.

References

[1] B. Bosek, D. Leniowski, P. Sankowski and A. Zych, Online bipartite matching in offline time,
Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (2014)
384-393.

[2] K. Chaudhuri, C. Daskalakis, R. Kleinberg and H. Lin, Online Bipartite Matching With Aug-
mentations, Proceedings of the 55th 28th IEEE INFOCOM (2009) 1044-1052.

[3] N. Fountoulakis and K. Panagiotou, Sharp Load Thresholds for Cuckoo Hashing, Random
Structures and Algorithms 41 (2012) 306-333.

[4] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, Space Efficient Hash Tables With Worst
Case Constant Access Time, Theory of Computing Systems 8 (2005) 229-248.

[5] N. Fountoulakis, K. Panagiotou and A. Steger, On the Insertion Time of Cuckoo Hashing,
SIAM Journal on Computing 42 (2013) 2156-2181.

9

[6] A.M. Frieze and P. Melsted, Maximum Matchings in Random Bipartite Graphs and the Space
Utilization of Cuckoo Hashtables, Random Structures and Algorithms 41 (2012) 334-364.

[7] A.M. Frieze, P. Melsted and M. Mitzenmacher, An Analysis of Random-Walk Cuckoo Hashing,
SIAM Journal on Computing 40 (2011) 291-308.

[8] A. Gupta, A. Kumar and C. Stein, Maintaining assignments online: matching, scheduling, and
flows, Proceedings of the 25th Annual ACM-SIAM Symposium on Disrete Algorithms (2014)
468-479.

[9] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the
American Statistical Association 58 (1963) 13-30.

[10] M. Khosla, Balls into bins made faster, Proceedings of ESA 2013, 601-612.

[11] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, ed. J.
Siemons, London Mathematical Society Lecture Notes Series 141, Cambridge University Press,
1989.

[12] M. Mitzenmacher, Some open questions related to cuckoo hashing. In Proceedings of the 17th
Annual European Symposium on Algorithms (ESA) (2009) 1-10.

[13] M. Mitzenmacher and S. Vadhan. Why simple hash functions work: exploiting the entropy in
a data stream. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2008) 746-755.

[14] R. Pagh and F. Rodler. Cuckoo Hashing, Journal of Algorithms 51 (2004) 122-144.

10

