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Abstract

Let r > 3 be constant, and let G, denote the set of r-regular graphs with vertex set
V =4{1,2,...,n}. Let G be chosen randomly from G,. We prove that whp the cover
time of a random walk on G is asymptotic to :%% nlogn.

1 Introduction

Let G = (V, E) be a connected graph, let |V| = n, and |E| = m. A random walk W,, u € V
on the undirected graph G = (V, E) is a Markov chain Xy = u, Xj,...,X;,... € V associated
to a particle that moves from vertex to vertex according to the following rule: the probability
of a transition from vertex i, of degree d;, to vertex j is 1/d; if {i,j} € E, and 0 otherwise.
For u € V let C, be the expected time taken for W, to visit every vertex of G. The cover
time Cg of G is defined as Cg = max,cy C,. The cover time of connected graphs has been
extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovész and Rackoff [2]
that Cg < 2m(n — 1). It was shown by Feige [8], [9], that for any connected graph G

4
(1 —o(1))nlogn < Cg < (1 + 0(1))ﬁn3.
The lower bound is achieved by (for example) the complete graph K, whose cover time is

determined by the Coupon Collector problem.

In a previous paper [7] we studied the cover time of random graphs G, , when np = clogn
where ¢ = O(1) and (¢ — 1)logn — oo. This extended a result of Jonasson, who proved in
[12] that when the expected average degree (n — 1)p grows faster than logn, whp a random
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graph has the same cover time (asymptotically) as the complete graph K,, whereas, when
np = Q(logn) this is not the case.

(A sequence of events &,,n > 0, is said to occur with high probability (whp), if

lim, ,,, Pr(&,) =1.)

Theorem 1. [7] Suppose that np = clogn = logn + w where w = (¢ — 1)logn — oo and
c>1. If G € G, p, then whp

Cg ~ clog (c—il) nlogn.

The notation A,, ~ B, means that lim, ,,, A,/B, = 1.
The main new result of the paper concerns the cover time of random regular graphs.

Theorem 2. Let r > 3 be constant. Let G, denote the set of r-reqular graphs with vertex set
V=A{1,2,...,n}. If G is chosen randomly from G,., then whp

-1
Cg ~ r_2 nlogn.

Using a similar argument we can consider how many steps are needed for the walk to get
within distance k of every vertex. Let us call this Cgc ). Cover time corresponds to kK = 0. We
prove

Theorem 3. Let r > 3, k > 0 be constants. Let G, denote the set of r-regular graphs with
vertex set V. =1{1,2,...,n}. If G is chosen randomly from G, then whp

1
(r—2)(r — 1)F1

C’(Gk) ~ nlogn.

The next section contains the heart of the proof of our Theorems. In it we establish a good
estimate of the probability that the first visit of W to a vertex v takes place at a time ¢. Once
this is done, we can proceed to the proof of Theorem 2 in Section 3 and the proof of Theorem
3 in Section 6.

2 The first visit time lemma.

2.1 Convergence of the random walk

In this section G denotes a fixed connected graph, and u is some arbitrary vertex from which
a walk W, is started. Let W,(t) be the vertex reached at step t, let P be the matrix of
transition probabilities of the walk and let P (v) = PrOWu(t) = v). Let m, = &= forv € V.
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Let Anax > 0 be the second largest absolute value of an eigenvalue of P. Assume that A\, < 1.
Then,
[P (@) = ma| < (70 /mu) /Ny < 1M2AL (1)

See for example [11]. (Note that connectivity and Anax < 1 implies ergodocity).

2.2 Generating function formulation

For the results of this section, we do not require that G be regular.

Fix two vertices u,v. Let h; be the probability Pr(W,(t) = v) = P (v), that the walk W,
visits v at step t. Let H(s) be the generating function for the sequence h;,t > 0.

Similarly, considering the walk W,, starting at v, let r, be the probability that this walk
returns to v at step t = 0,1, .... Let R(s) be the generating function for the sequence r;,¢ > 0.
We note that rg = 1.

Let fi(u—wv) be the probability that the first visit of the walk W, to v occurs at step t. If
u # v then fo(u—v) = 0. Let F(s) generate f;(u—wv). Thus

H(s) = F(s)R(s)- (2)
Let 4l
ogn
=" 3
log 1/Amax (3)
We note that (1) gives
max |PD(z) — 7, <n 3 fort > T. (4)
For R(s) let
-1
Ry(s) =) rjs’. (5)
=0

Thus Rr(s) generates the probability of a return to v during steps 0, ..., 7'—1 of a walk starting
at v. Similarly for H(s), let

HT(S) = Zhjsj. (6)

2.3 First visit time: Single vertex v

The following lemma should be viewed in the context that GG is an n vertex graph which is
part of a sequence of graphs with n growing to infinity. We prove it in greater generality than
is needed for the proof of Theorem 2.

In what follows c1, co, . . . are positive constants independent of n.
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Lemma 4. Let T be as defined in (3). Suppose that

(a) Hr(1) < (1 —c1)Rr(1).

Rr(s)—R
(b) ﬁi}f% <1—cy.

(c) Tm,=0(1), Tm, =Q(n2).

(d) Ama.x <cg <1

Let o
A= Toor @)
Let
Pe = R(1)(1+ 00’ ©
- He(1)
“ = R0+ 0w 9

where the values of the 1 + O(T'w,) terms are given implicitly in (16), (19) respectively. Then

fi(u—v) = cuvpiv + O(e M2 forallt >T. 10
V(1 + py)tt

Proof Write

R(s) = RT(5)+§T(5)+ffS, (11)
A(s) = (1= s)R(s) = msT + (1 — s)(Rr(s) + Rr(s)), (12)

where Ryp(s) is given by (5) and

Rp(s) =) (re—m,)s*

t>T
generates the error in using the stationary distribution 7, for r; when ¢t > T..

Note that while (11) is only valid for |s| < 1, the fact that |r, — 7,| < n'/2c{ means that the
expansion (12) is valid for |s| < c; .

Similarly, let

ST

H(s) = Hyp(s)+ Hr(s) T (13)

B(s)=(1—s)H(s) = ms" + (1 — s)(Hr(s) + Hr(s)). (14)
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Using (11), (13) we rewrite F'(s) = H(s)/R(s) from (2) as F(s) = B(s)/A(s)
If |s| < Amas then (1) implies that for Z = H, R,

Z(s) <0 (sAmax)' = 0(n™?). (15)

t>T
For real s > 1 and Z = H, R, we have
Zp(1) < Zp(s) < Zp(1)s”.
Let s =1+ fm,, where 8 > 0 is constant. Since T'm, = o(1) we have
Zy(s) = Zp(1)(1+ O(Tny)).

T, = o(1) implies that |s| < Amss and (15) applies. As T'm, = Q(n"2) and Rp(1) > 1+, >
1+ % this implies that
A(s) = m(1 — BRr(1)(1 + O(T'my))).

It follows that A(s) has a real zero at sg, where

Ty

=1 + =1 + v 16
°0 Rr(1)(1 + O(Tn,)) P (16)
say. We also see that
A'(so) = =Rr(1)(14 O(Tm,)) # 0 (17)
and thus sq is a simple zero (see e.g. [6] p193). The value of B(s) at s is
B(SO) = Ty (1 - #%)(va)) + O(T’/Tv)) 7& 0 (18)
Thus, from (8), (9)
B(so)
= T PvCluw- 19
AI(S()) PuC ’ ( )

Thus the residue of F(s) at s is B(so)/A’(so) (see e.g. [6] p195) and the principal part of the
Laurent expansion of F(s) at sq is

B S0 A So
(s) = DT, (20)
S — 8
To approximate the coefficients of the generating function F'(s), we now use a standard tech-
nique for the asymptotic expansion of power series (see e.g.[13] Th 5.2.1).

We prove (below) that sq is the only zero of A(s) inside the circle Cy = {s = (1 + \)e'’}.
Thus F(s) = f(s) + g(s), where g(s) is analytic in C). Let M = maxc, |g(s)|. Thus
M < max|f(s)| + max|F(s)].



As F(s) = B(s)/A(s) on Cy we have that

Hr(1)(1+ X" +O(Tm,)
FO) < = R =0T

Let 5= s/(1+ A). We note that |[Rr(s) — Rr(3)| < ((1 + )" — 1)Rp(1) and also that (b)
implies that |Ry(S)| > coRr(1) which implies that

|Rr(s)| > Rr(1) (co+ 1 — ec2/100) ,

and hence M = O(1).

Let a; = [s!]g(s), then (see e.g.[6] p143), a, = g(0)/t!. By the Cauchy Inequality (see e.g.
[6] p130) we have that [g(?(0)] < M#!/(1 + A)! and thus

M

|ag| < SV O(e~™M?).
As [s]F(s) = [s!]f(s) + [st]g(s) and [s!]1/(s — sg) = —1/(s0)*"! we have
$9P(s) = L) o(e ), 1)
Thus, we obtain
[SF($) = Cun gy + O™,

C’Lh'U (1 + pv)t+1
which completes the proof of (10).

We now prove that sq is the only zero of A(s) inside the circle C. We use Rouché’s Theorem
(see e.g. [6]), the statement of which is as follows: Let two functions f(z) and g(z) be analytic
inside and on a simple closed contour C'. Suppose that |f(2)| > |g(z)| at each point of C, then
f(2) and f(2) + g(2) have the same number of zeroes, counting multiplicities, inside C.

Let the functions f(s), g(s) be given by f(s) = (1—s)Rr(1) and g(s) = 7,87 +(1—38)(Rp(s)—
Rr(1) 4+ Rr(s)). For s € Cy, let s=s/(1+ )),
m(1+N)" | |Rr(s) = Re(3)| | |Rr(3) — Rr(1)]
s/ < P ) Zen
100e/'m, T + (€21 — 1) + (1 — ¢3) + o(n™?)
1.

+o(n?)

<
<

As f(s) + g(s) = A(s) we conclude that A(s) has only one zero inside the circle C,. This is
the simple zero at so. O

Corollary 5. Let A;(v) be the event that W, has not visited v by step t. Then fort > T,

Pr(A;(v)) = ﬁ + O\ "le™ ),

Proof We use Lemma 4 and Pr(A;(v)) =Y ., fr(u—v). O
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3 Random regular graphs are nice

Our task now is to show that a typical r-regular graph satisfies the conditions (a) — (d) of
Lemma 4 and to compute Rp(1).

We start with some typical properties of a random regular graph. Let
o = |logloglogn].

Say a cycle C is small if |C| < o.

An r-regular graph G is nice if

P1. G is connected.

P2. The second eigenvalue of the adjacency matrix of GG is at most 2v/r — 1 + ¢, where € > 0
is arbitrarily small (¢ = 1/10 is small enough).

P3. There are at most 72° vertices on small cycles.
P4. No pair of small cycles are within distance 30 of each other.

Theorem 6. Let r > 3 be a constant and let G be chosen uniformly from the set G, of
r-reqular graphs with vertex set [n]. Then G is nice whp.

Proof
(P1) That a random r-regular graph is r-connected whp, for r > 3, was proved in [4].

(P2) That the second eigenvalue of a random r-regualr graph is this small whp was proved
by Friedman [10].

For P3,P4 we use the configuration model as elaborated in [5]. Let W = [n] x [r] (W, = vx[r]
represents r half edges incident with vertex v € [n].) A configuration F is a partition of W
into 7n/2 2-element subsets and 2 denotes the set of possible configurations. We associate
with F' a multigraph p(F') = ([n], E(F)) where, as a multi-set,

E(F) ={(v,w) : {(v,i),(w,j)} € F for some 1 <i,j <r}.
(Note that v = w is possible here.)
We say that F' is simple if the multigraph p(F') has no loops or multiple edges. Let Qg denote
the set of simple configurations. It is known that if F' is chosen uniformly from (2 then
(a) Each G € G(n,r) is the image (under u) of exactly (r!)™ simple configurations.

(b) Pr(F € Q) ~ e ("~D/4,



It follows from this that any property of almost every up(F') is a property of almost every
member of G,.

(P3) The expected number of small cycles in u(F), F' chosen randomly from €, is bounded

T e S (e

k=3

where My, = é2m_":7z: and [Q| = M,,.

The almost sure occurrence of property P3 now follows from the Markov inequality.

(P4) Similarly, the expected number of pairs of small cycles which are close to each other is
bounded by

g(,:zg <Z> (bﬁ 1) (a—21)! (b_21)! (%)a+b+
NN (n> @ (n) (@D Dl gy (Z)™* _ o),

a=3 b=3 c=1

O

Remark 1. Although the main subject of the paper is random regqular graphs, it is worth
mentioning Ramanujan graphs. An n-vertez r-reqular graph is Ramanujan if Amax < ¥ :_1. It

is known that such graphs have girth Q(logn) and so they are nice, see Alon [3]. Consequently,
their cover time ~ %nlog n.

Remark 2. Aldous [1] considered the cover time of Cayley graphs and obtained a similar
expression for the cover time. By relaxing the assumptions in Lemma 4 it is possible to obtain
some of his results e.g. the hypercube and toroidal grids in three or more dimensions.

4 Nice graphs

Assume from now on that G is a nice regular graph. For v € V and k > 0, let Ny(v) = {w:
dist(v,w) = k} be the set of vertices at distance k from v. Let M;(v) = U5_4Ny(v), and let
Gi(v) be the subgraph of G induced by M;(v). Also let us replace the notations Ry (1), Hy(1)
by R,, H, reflecting their dependence on v.

Definition 1. We say v is locally tree-like if G,(v) is a tree.

Lemma 7. If v is locally tree-like then

Rr(1) == )




Proof Let T, be the infinite r-regular tree, rooted at v. Let X be a random walk on T,

starting at v. Let p; be the probability that X is at v at step . Now we can project the walk

X onto a walk ) on {0,1,2,...,} where the particle moves right with probability ¢ = %
1

and left with probability p = -, except of course at the origin, where it must move right. Let

E; be the expected number of visits to 0 for ) starting at . Then
EOZ 1+E1 = 1+E0p/q

This is because F; is Ey times the expected number of visits to 0 between right moves from

1. Solving gives

r—1
y = By = . 22
;%’ 0 R ( )

Note next that for i > 0 we have p;11 = 0 and we will argue that

p2i < (2:) (r r_?’ )i- (23)

i pi< Y (ij)”;—;) =o(c™h). (24)

and then

We compare this with Ry(1). First observe that r; = p; for i < o. Then from (1) we see that

T T

Z r; < Z (my + A ,) =o(c™).

i=0+1 i=0+1
Let us now prove (23). First observe that the RHS of (23) is the probability that a walk ) is
at the origin after 2i steps. Here ) is the walk on {0,+1,+2, ..., } where the particle moves
right with probability ¢ = ”;—1 and left with probability p = % i.e. there is no barrier at the
origin. We can couple Y,V so that Y(t) > |Vi(t)]. When Y;(t) > 0 we can move them in
the same direction and when ); < 0 then we can move ) further from the origin whenever
Y; moves further from the origin.

The lemma now follows from (22) and (24). O

Remark 1. Because there are very few non-tree-like vertices and because they are far apart,
we will find that we do not need to estimate Rp(1) for such vertices. It is relatively easy to
show that for non-tree-like vertices Rp(1) = 14+ O(r™') as r — oo, thus the only difficulty is
with small r.

| Rz (s)—Rr(1)] < %

Lemma 8. If v is locally tree-like then for |s| =1, )

Proof For any s,

T
[Rr(s) = Re(1)] < ) _myls’ — 1],
j=1
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As |s| = 1 we have that
T T
D ol —11<2) (25)
7j=1 7j=1
We prove the lemma for » > 4 by observing that Lemma 7 implies

2 2 r—1
1 1
r—2" < (4o ())3 T —2

23" 1 = 2ARr(1) = 1) = (14 o(1)) —(1+ 0(1))§RT(1). (26)

When r = 3 we improve on (25) using ad-hoc arguments. First observe that 7, = 1/n for
v € V and that (1) implies that

}jmy—u<22}¢w§jnm+m,—dn (27)

Now consider j < o. For a locally tree-like vertex, r; = 0 if j is odd, and r; > 0 if j is even.
Fix 0 < 0 < 27 and let s = €?, then for j = 2k

|s9 — 1] = (2(1 — cos j§))*? = 2| sin k6.

Thus
-1 [(e—1)/2]
31:ZTj|8]—1|:2 Z ’I“leSiIlkel.
=1 k=1

Note now that ry = 5 and 74 = . Suppose first that § ¢ I = [32,57] U [Lr 137] Then

| sin 20| < sin 3T and so

3T
S1<2 Zr] (1 — sin ?) . (28)

On the other hand, if € I then |sin 40| <sin § and then

i
S < 227'] (1 — sin 4) (29)
(27), (28), (29) imply that So+S; < 2(Rr(1) —1) —1/3. The lemma follows, since Ry(1) ~ 2
for r = 3. O
Finally we note:
Lemma 9. For nice graphs, RTB < %.
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Proof Let f; be the probability that W, has a first visit to v at time ¢t. As H(s) =
F(s)R(s) we have

Hr(1) < Pr(W, visits v by time T'— 1) Rp(1)

_ RT(l)ifé-

Now (1) implies that if 75 = [2log AL loglogn| then

th<Z7rv+)\t ) = o(1).

t=10 t=19

We now estimate ) ;° f;, the probability that W, visits v by time 7o. Let vi,vs,...,v, be
the neighbours of v and let w be the first neighbour of v visited by W,. Then

Pr(W, visits v by time 75) = Z Pr(W, visits v by time 75 | w = v;)Pr(w = v;)
i=1

< Z Pr(W,, visits v by the time 79)Pr(w = v;).
i=1

So it suffices to prove the lemma when w is a neighbour of v. If G;(u) is a tree then we can
argue as in Lemma 7. Let ¢ be the probability that a particle at the root of 7, ever returns
to the root. The expected number of visits is

- 1
=Y kpFl1—e) = ——.
— ;«p Q===

Sow:ﬁand

1 -2
Pr(W, does not visit v by time 79) > T(l -1 —o0(1)) = ! —o(1).

If Gi(u) contains a cycle C then let e = (£,7) be an edge of C not incident with u and let T,
be the tree G;(u) — e. Let N'(u) = {u1,ua,...,us}, s € {r — 2,7 — 1} be the neighbours of u
which are not on a shortest path from £ or  to w in T,,. |[N'(u) \ {v}| > r — 3 and so

Pr(W, does not visit v by time 75) > %3(1 -1 —o(l)) = % —o(1).

This leaves the case r = 3 and N’'(u) = {v}. With probability 2 we have W, (1) # v. If £ or
1 is reached (possibly N(u) = {v,&,1}), then with probability 3 the next move is away from
u and 1 — ¢ — o(1) bounds the probability that there is no return to £ or . Hence

2
Pr(W, does not visit v by time 79)) > §(1 — 1 —o(1))
completing the proof of the lemma. O
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5 Cover time of nice graphs

We now prove that
r —

Ca ~

1 1
n logn.
r—2 &

Assume that u,v € V and that v is tree-like. Section 3 establishes that the conditions of
Lemma 4 hold, and gives values for the parameters c,,,p, given by (8), (9). To summarize

we have W
r—1 Hp(1 9 2yr—1+4.1
Rr(1) = 1 < — Amax S )
( )1 2t R S r
Ty = —, T =0(logn) A=Q(1/logn).
n

Hence, the probability that WV, has not visited v by some step t > T' (see Corollary 5) is given
by
Pr(A;(v)) = (14 o(1))cye P + O(X e 2/2),

Here c,, < 1 and

r—2 1
Dy = m(l +o(c7)).

5.1 Upper bound on cover time

Let to = [(1+ 0~')2=;nlogn]. We prove that for nice graphs, for any vertex u € V,
Cu S to + O(to). (30)

Let T (u) be the time taken to visit every vertex of G by the random walk W,. Let U, be the
number of vertices of G which have not been visited by W, at step t. We note the following:

C.=ETg(u) = Y Pr(Ts(u)>1), (31)
Pr(Tg(u) > t) = gﬁ(Ut > 0) < min{1,E U,}. (32)

It follows from (31), (32) that for all ¢

C.<t+) EU,=t+> > Pr(A,)). (33)

s>t veV s>t

Let Vi be the set of locally tree-like vertices and let V5 = V — V;. If G is nice then |V3| < r®°
for there are at most r? vertices within distance o of a particular vertex in a small cycle, and
at most r?? vertices on small cycles.
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For v € V] we have

Z Pr(A;(v)) < (1+o(1))e tor Z e~(smtlp L O(A\~2eMo/2)

s>to s>t
< Zpgle_top”
r—1
< 3 .
- r—=2

Furthermore, we see that in particular,
Pr(As,(v)) < 2e7t (34)

Suppose next that v € Vo. We can find w € V; such that dist(v,w) < o. So from (34), with
v = 5n + o, we have
Pr(A,(v)) <1—(1—2¢Yr e

since if our walk visits w, it will with probability at least »— visit v within the next o steps.
Thus if v = (1 — 2e7)r—7,

Y Pr(A,(v) < Y (1-7y)M (35)

s>to s>to

< (-7

s>1p
(1= /e
-
vy~ (36)

IN

Thus, for all u € V,

r—1
C. < to+ 37_—2|1/1| + 3|Va|vy~t

= to+O(r"n)
= t() + O(to),

as 0 = |logloglogn].

5.2 Lower bound on cover time

For any vertex u, we can find a set of vertices S such that at time t; = to(1 —€), € — 0, the
probability the set S is covered by the walk W, tends to zero. Hence T (u) > ¢t; whp which
implies that Cg > to — o(to).

We construct S as follows. Let S C V; be some maximal set of locally tree-like vertices all of
which are at least distance 20 + 1 apart. Thus |S| > (n — r37)r—(@e+1),

13



Let S(t) denote the subset of S which has not been visited by W, after step t. Now, provided
t>T

E 5] > (1-o(1) Y (ﬁ " OW)) .

veS 1+ Pu
Let u be a fixed vertex of S. Let v € S and let Hr(1) be given by (6), then (1) implies that

SN
-

Hr(1) <Y (m+A,,) = o(1). (37)

g

o~
Il

Thus ¢y, = 1 — o(1). Setting t = t; = (1 — €)ty where ¢ = 20~!, we have

E|St)| = (1+0(1))S|e - ors
> pl/o, (38)

Let Y,, be the indicator for the event that W, has not visited vertex v at time ¢. Let
Z ={v,w} C S. We will show (below) that that for v,w € S

Cu,z —
E (Yo Yuu) = (+ps)2 +o(n™?), (39)

where ¢, 7z ~ 1 and pz ~ 2(r — 2)/(n(r — 1)). Thus
E (Yo, Yuu) = (1+01))E (Yo, )E (Y ) (40)
It follows from (38) and (40), that

(E[S(t)])* L
Pr(S(t1) #0) > = - =1-o0(1).
E[S@)P  Ealazd 4 (ES,[)-!

Proof of (39). Let I" be obtained from G by merging v, w into a single node Z. This node
has degree 2r and every other node has degree r.

There is a natural measure preserving mapping from the set of walks in G which start at u
and do not visit v or w, to the corresponding set of walks in I' which do not visit Z. Thus the
probability that W, does not visit v or w in the first ¢ steps is equal to the probability that
a random walk W, in I' which also starts at « does not visit Z in the first ¢ steps.

We apply Lemma 4 to T. That 7z = 2 is clear, and ¢,z = 1 — o(1) is argued as in (37). The
derivation of Rr(1) in Lemma 7 is also valid. The vertex Z is tree-like up to distance ¢ in T'.
The fact that the root vertex of the corresponding infinite tree has degree 2r does not affect
the calculation of Ry(1). O
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6 Looking ahead

We now consider Theorem 3. Fix u € V and let C&k) be the expected time for W, to have
been within distance k of every vertex. In analogy to (33) we have

CH <t+> > Pr(AP(v)). (41)

veEV s>t
where Agk) (v) is the event that W, has not been within distance k£ by time s.

Now fix v with dist(u,v) > k. Assume that v is tree-like. Define 'y by contracting Mj(v)
to a single vertex Z and deleting any loops created (M is defined in Section 4). There is
a natural measure preserving mapping from the set of walks in G which start at v and do
not get within distance k of v to the corresponding set of walks in I’y which do not visit Z.
Thus the probability that W, does not get within distance k in the first ¢ steps is equal to
the probability that a random walk W, in I'y which also starts at u does not visit Z in the
first ¢ steps i.e. Pr(A.(Z)) = Pr(AW(v)).

T%g’()ll) = y_ol()lk), Ry ~ :%é and Hz/Rz < 9/10. So if now

to = [%nlogrﬂ then > .., Pr(A;(Z)) = O(1). Thus

YN Pr(aP(v) = O(n). (42)

veEV] t2>1t0

We apply Lemma 4 to I'. 7z =

Now A (v) C A,(v) and (36) holds, even with the smaller value of t,. Thus

> D Pr(4(v)) = o(n) (43)

veEVa t>1g

and an upper bound of to + o(to) for C{ follows from (41), (42) and (43).

The lower bound is obtained by taking a set S of n'=°() tree-like vertices at distance at least
30 apart and using the Chebychev inequality as we did in Section 5.2. Choose u € S and
then for each pair of vertices vy, ve € S\ {u} we form I'; by contracting My (v1) U My(v2) into
a single vertex, removing loops and then arguing as we did before. O
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