The cover time of random regular graphs

Colin Cooper*

Alan Frieze[†]

August 13, 2004

Abstract

Let $r \geq 3$ be constant, and let \mathcal{G}_r denote the set of r-regular graphs with vertex set $V = \{1, 2, \ldots, n\}$. Let G be chosen randomly from \mathcal{G}_r . We prove that **whp** the cover time of a random walk on G is asymptotic to $\frac{r-1}{r-2} n \log n$.

1 Introduction

Let G = (V, E) be a connected graph, let |V| = n, and |E| = m. A random walk \mathcal{W}_u , $u \in V$ on the undirected graph G = (V, E) is a Markov chain $X_0 = u, X_1, \ldots, X_t, \ldots \in V$ associated to a particle that moves from vertex to vertex according to the following rule: the probability of a transition from vertex i, of degree d_i , to vertex j is $1/d_i$ if $\{i, j\} \in E$, and 0 otherwise. For $u \in V$ let C_u be the expected time taken for \mathcal{W}_u to visit every vertex of G. The cover time C_G of G is defined as $C_G = \max_{u \in V} C_u$. The cover time of connected graphs has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovász and Rackoff [2] that $C_G \leq 2m(n-1)$. It was shown by Feige [8], [9], that for any connected graph G

$$(1 - o(1))n \log n \le C_G \le (1 + o(1))\frac{4}{27}n^3.$$

The lower bound is achieved by (for example) the complete graph K_n , whose cover time is determined by the Coupon Collector problem.

In a previous paper [7] we studied the cover time of random graphs $G_{n,p}$ when $np = c \log n$ where c = O(1) and $(c-1) \log n \to \infty$. This extended a result of Jonasson, who proved in [12] that when the expected average degree (n-1)p grows faster than $\log n$, whp a random

^{*}Department of Computer Science, King's College, University of London, London WC2R 2LS, UK

[†]Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213. Supported in part by NSF grant CCR-0200945.

graph has the same cover time (asymptotically) as the complete graph K_n , whereas, when $np = \Omega(\log n)$ this is not the case.

(A sequence of events \mathcal{E}_n , $n \geq 0$, is said to occur with high probability (**whp**), if $\lim_{n\to\infty} \mathbf{Pr}(\mathcal{E}_n) = 1$.)

Theorem 1. [7] Suppose that $np = c \log n = \log n + \omega$ where $\omega = (c-1) \log n \to \infty$ and $c \ge 1$. If $G \in G_{n,p}$, then **whp**

$$C_G \sim c \log \left(\frac{c}{c-1}\right) n \log n.$$

The notation $A_n \sim B_n$ means that $\lim_{n\to\infty} A_n/B_n = 1$.

The main new result of the paper concerns the cover time of random regular graphs.

Theorem 2. Let $r \geq 3$ be constant. Let \mathcal{G}_r denote the set of r-regular graphs with vertex set $V = \{1, 2, ..., n\}$. If G is chosen randomly from \mathcal{G}_r , then whp

$$C_G \sim \frac{r-1}{r-2} n \log n.$$

Using a similar argument we can consider how many steps are needed for the walk to get within distance k of every vertex. Let us call this $C_G^{(k)}$. Cover time corresponds to k = 0. We prove

Theorem 3. Let $r \geq 3$, $k \geq 0$ be constants. Let \mathcal{G}_r denote the set of r-regular graphs with vertex set $V = \{1, 2, ..., n\}$. If G is chosen randomly from \mathcal{G}_r , then whp

$$C_G^{(k)} \sim \frac{1}{(r-2)(r-1)^{k-1}} n \log n.$$

The next section contains the heart of the proof of our Theorems. In it we establish a good estimate of the probability that the first visit of \mathcal{W} to a vertex v takes place at a time t. Once this is done, we can proceed to the proof of Theorem 2 in Section 3 and the proof of Theorem 3 in Section 6.

2 The first visit time lemma.

2.1 Convergence of the random walk

In this section G denotes a fixed connected graph, and u is some arbitrary vertex from which a walk \mathcal{W}_u is started. Let $\mathcal{W}_u(t)$ be the vertex reached at step t, let P be the matrix of transition probabilities of the walk and let $P_u^{(t)}(v) = \mathbf{Pr}(\mathcal{W}_u(t) = v)$. Let $\pi_v = \frac{d_v}{2m}$ for $v \in V$.

Let $\lambda_{\text{max}} > 0$ be the second largest absolute value of an eigenvalue of P. Assume that $\lambda_{\text{max}} < 1$. Then,

$$|P_u^{(t)}(x) - \pi_x| \le (\pi_x/\pi_u)^{1/2} \lambda_{\max}^t \le n^{1/2} \lambda_{\max}^t.$$
 (1)

See for example [11]. (Note that connectivity and $\lambda_{\text{max}} < 1$ implies ergodocity).

2.2 Generating function formulation

For the results of this section, we do not require that G be regular.

Fix two vertices u, v. Let h_t be the probability $\mathbf{Pr}(\mathcal{W}_u(t) = v) = P_u^{(t)}(v)$, that the walk \mathcal{W}_u visits v at step t. Let H(s) be the generating function for the sequence $h_t, t \geq 0$.

Similarly, considering the walk W_v , starting at v, let r_t be the probability that this walk returns to v at step t = 0, 1, ... Let R(s) be the generating function for the sequence $r_t, t \geq 0$. We note that $r_0 = 1$.

Let $f_t(u \to v)$ be the probability that the first visit of the walk \mathcal{W}_u to v occurs at step t. If $u \neq v$ then $f_0(u \to v) = 0$. Let F(s) generate $f_t(u \to v)$. Thus

$$H(s) = F(s)R(s). (2)$$

Let

$$T = \frac{4\log n}{\log 1/\lambda_{\text{max}}}. (3)$$

We note that (1) gives

$$\max_{x \in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3} \qquad \text{for } t \ge T.$$
 (4)

For R(s) let

$$R_T(s) = \sum_{j=0}^{T-1} r_j s^j. (5)$$

Thus $R_T(s)$ generates the probability of a return to v during steps 0, ..., T-1 of a walk starting at v. Similarly for H(s), let

$$H_T(s) = \sum_{j=0}^{T-1} h_j s^j. (6)$$

2.3 First visit time: Single vertex v

The following lemma should be viewed in the context that G is an n vertex graph which is part of a sequence of graphs with n growing to infinity. We prove it in greater generality than is needed for the proof of Theorem 2.

In what follows c_1, c_2, \ldots are positive constants independent of n.

Lemma 4. Let T be as defined in (3). Suppose that

(a) $H_T(1) \leq (1 - c_1)R_T(1)$.

(b)
$$\max_{|s|=1} \frac{|R_T(s) - R_T(1)|}{R_T(1)} \le 1 - c_2.$$

(c)
$$T\pi_v = o(1)$$
, $T\pi_v = \Omega(n^{-2})$.

(d) $\lambda_{\max} \le c_3 < 1$.

Let

$$\lambda = \frac{c_2}{100T}. (7)$$

Let

$$p_v = \frac{\pi_v}{R_T(1)(1 + O(T\pi_v))},\tag{8}$$

$$c_{u,v} = 1 - \frac{H_T(1)}{R_T(1)(1 + O(T\pi_v))}, \tag{9}$$

where the values of the $1 + O(T\pi_v)$ terms are given implicitly in (16), (19) respectively. Then

$$f_t(u \to v) = c_{u,v} \frac{p_v}{(1+p_v)^{t+1}} + O(e^{-\lambda t/2}) \quad \text{for all } t \ge T.$$
 (10)

Proof Write

$$R(s) = R_T(s) + \widehat{R}_T(s) + \frac{\pi_v s^T}{1 - s},$$
 (11)

$$A(s) = (1 - s)R(s) = \pi_v s^T + (1 - s)(R_T(s) + \widehat{R}_T(s)), \tag{12}$$

where $R_T(s)$ is given by (5) and

$$\widehat{R}_T(s) = \sum_{t > T} (r_t - \pi_v) s^t$$

generates the error in using the stationary distribution π_v for r_t when $t \geq T$.

Note that while (11) is only valid for |s| < 1, the fact that $|r_t - \pi_v| \le n^{1/2} c_3^t$ means that the expansion (12) is valid for $|s| < c_3^{-1}$.

Similarly, let

$$H(s) = H_T(s) + \widehat{H}_T(s) + \pi_v \frac{s^T}{1-s},$$
 (13)

$$B(s) = (1 - s)H(s) = \pi_v s^T + (1 - s)(H_T(s) + \widehat{H}_T(s)).$$
(14)

Using (11), (13) we rewrite F(s) = H(s)/R(s) from (2) as F(s) = B(s)/A(s)

If $|s| \leq \lambda_{\max}^{-1/3}$ then (1) implies that for Z = H, R,

$$|\widehat{Z}(s)| \le n^{1/2} \sum_{t > T} (s\lambda_{\max})^t = o(n^{-2}).$$
 (15)

For real $s \geq 1$ and Z = H, R, we have

$$Z_T(1) \le Z_T(s) \le Z_T(1)s^T.$$

Let $s = 1 + \beta \pi_v$, where $\beta > 0$ is constant. Since $T\pi_v = o(1)$ we have

$$Z_T(s) = Z_T(1)(1 + O(T\pi_v)).$$

 $T\pi_v = o(1)$ implies that $|s| \leq \lambda_{\max}^{-1/3}$ and (15) applies. As $T\pi_v = \Omega(n^{-2})$ and $R_T(1) \geq 1 + r_2 > 1 + \frac{1}{n}$ this implies that

$$A(s) = \pi_v (1 - \beta R_T(1)(1 + O(T\pi_v))).$$

It follows that A(s) has a real zero at s_0 , where

$$s_0 = 1 + \frac{\pi_v}{R_T(1)(1 + O(T\pi_v))} = 1 + p_v, \tag{16}$$

say. We also see that

$$A'(s_0) = -R_T(1)(1 + O(T\pi_v)) \neq 0$$
(17)

and thus s_0 is a simple zero (see e.g. [6] p193). The value of B(s) at s_0 is

$$B(s_0) = \pi_v \left(1 - \frac{H_T(1)}{R_T(1)(1 + O(T\pi_v))} + O(T\pi_v) \right) \neq 0.$$
 (18)

Thus, from (8), (9)

$$\frac{B(s_0)}{A'(s_0)} = -p_v c_{u,v}. (19)$$

Thus the residue of F(s) at s_0 is $B(s_0)/A'(s_0)$ (see e.g. [6] p195) and the principal part of the Laurent expansion of F(s) at s_0 is

$$f(s) = \frac{B(s_0)/A'(s_0)}{s - s_0}. (20)$$

To approximate the coefficients of the generating function F(s), we now use a standard technique for the asymptotic expansion of power series (see e.g.[13] Th 5.2.1).

We prove (below) that s_0 is the only zero of A(s) inside the circle $C_{\lambda} = \{s = (1 + \lambda)e^{i\theta}\}$. Thus F(s) = f(s) + g(s), where g(s) is analytic in C_{λ} . Let $M = \max_{s \in C_{\lambda}} |g(s)|$. Thus $M \leq \max |f(s)| + \max |F(s)|$.

As F(s) = B(s)/A(s) on C_{λ} we have that

$$|F(s)| \le \frac{H_T(1)(1+\lambda)^T + O(T\pi_v)}{|R_T(s)| - O(T\pi_v)}.$$

Let $\widetilde{s} = s/(1+\lambda)$. We note that $|R_T(s) - R_T(\widetilde{s})| \leq ((1+\lambda)^T - 1)R_T(1)$ and also that (b) implies that $|R_T(\widetilde{s})| \geq c_2 R_T(1)$ which implies that

$$|R_T(s)| \ge R_T(1) \left(c_2 + 1 - e^{c_2/100}\right),$$

and hence M = O(1).

Let $a_t = [s^t]g(s)$, then (see e.g.[6] p143), $a_t = g^{(t)}(0)/t!$. By the Cauchy Inequality (see e.g. [6] p130) we have that $|g^{(t)}(0)| \leq Mt!/(1+\lambda)^t$ and thus

$$|a_t| \le \frac{M}{(1+\lambda)^t} = O(e^{-t\lambda/2}).$$

As $[s^t]F(s) = [s^t]f(s) + [s^t]g(s)$ and $[s^t]1/(s-s_0) = -1/(s_0)^{t+1}$ we have

$$[s^{t}]F(s) = \frac{-B(s_{0})/A'(s_{0})}{s_{0}^{t+1}} + O(e^{-t\lambda/2}).$$
(21)

Thus, we obtain

$$[s^t]F(s) = c_{u,v} \frac{p_v}{(1+p_v)^{t+1}} + O(e^{-t\lambda/2}),$$

which completes the proof of (10).

We now prove that s_0 is the only zero of A(s) inside the circle C_{λ} . We use Rouché's Theorem (see e.g. [6]), the statement of which is as follows: Let two functions f(z) and g(z) be analytic inside and on a simple closed contour C. Suppose that |f(z)| > |g(z)| at each point of C, then f(z) and f(z) + g(z) have the same number of zeroes, counting multiplicities, inside C.

Let the functions f(s), g(s) be given by $f(s) = (1-s)R_T(1)$ and $g(s) = \pi_v s^T + (1-s)(R_T(s) - R_T(1) + \widehat{R}_T(s))$. For $s \in C_\lambda$, let $\widetilde{s} = s/(1+\lambda)$,

$$|g(s)|/|f(s)| \leq \frac{\pi_v(1+\lambda)^T}{\lambda R_T(1)} + \frac{|R_T(s) - R_T(\widetilde{s})|}{R_T(1)} + \frac{|R_T(\widetilde{s}) - R_T(1)|}{R_T(1)} + o(n^{-2})$$

$$\leq 100e^{c_2/100}\pi_v T + \left(e^{c_2/100} - 1\right) + (1 - c_2) + o(n^{-2})$$

$$< 1.$$

As f(s) + g(s) = A(s) we conclude that A(s) has only one zero inside the circle C_{λ} . This is the simple zero at s_0 .

Corollary 5. Let $A_t(v)$ be the event that W_u has not visited v by step t. Then for $t \geq T$,

$$\mathbf{Pr}(\mathbf{A}_{t}(v)) = \frac{c_{u,v}}{(1+p_{v})^{t}} + O(\lambda^{-1}e^{-\lambda t/2}).$$

Proof We use Lemma 4 and $Pr(A_t(v)) = \sum_{\tau>t} f_{\tau}(u \rightarrow v)$.

3 Random regular graphs are nice

Our task now is to show that a typical r-regular graph satisfies the conditions (a) – (d) of Lemma 4 and to compute $R_T(1)$.

We start with some typical properties of a random regular graph. Let

$$\sigma = |\log \log \log n|$$
.

Say a cycle C is small if $|C| \leq \sigma$.

An r-regular graph G is nice if

- **P1.** G is connected.
- **P2.** The second eigenvalue of the adjacency matrix of G is at most $2\sqrt{r-1} + \epsilon$, where $\epsilon > 0$ is arbitrarily small ($\epsilon = 1/10$ is small enough).
- **P3.** There are at most $r^{2\sigma}$ vertices on small cycles.
- **P4.** No pair of small cycles are within distance 3σ of each other.

Theorem 6. Let $r \geq 3$ be a constant and let G be chosen uniformly from the set \mathcal{G}_r of r-regular graphs with vertex set [n]. Then G is nice whp.

Proof

- (P1) That a random r-regular graph is r-connected whp, for $r \geq 3$, was proved in [4].
- (**P2**) That the second eigenvalue of a random r-regual graph is this small **whp** was proved by Friedman [10].

For **P3,P4** we use the configuration model as elaborated in [5]. Let $W = [n] \times [r]$ ($W_v = v \times [r]$ represents r half edges incident with vertex $v \in [n]$.) A configuration F is a partition of W into rn/2 2-element subsets and Ω denotes the set of possible configurations. We associate with F a multigraph $\mu(F) = ([n], E(F))$ where, as a multi-set,

$$E(F) = \{(v, w) : \{(v, i), (w, j)\} \in F \text{ for some } 1 \le i, j \le r\}.$$

(Note that v = w is possible here.)

We say that F is simple if the multigraph $\mu(F)$ has no loops or multiple edges. Let Ω_0 denote the set of simple configurations. It is known that if F is chosen uniformly from Ω then

- (a) Each $G \in \mathcal{G}(n,r)$ is the image (under μ) of exactly $(r!)^n$ simple configurations.
- **(b)** $\Pr(F \in \Omega_0) \approx e^{-(r^2-1)/4}$.

It follows from this that any property of almost every $\mu(F)$ is a property of almost every member of \mathcal{G}_r .

(**P3**) The expected number of small cycles in $\mu(F)$, F chosen randomly from Ω , is bounded by

$$\sum_{k=3}^{\sigma} \binom{n}{k} \frac{(k-1)!}{2} \frac{(r(r-1))^k M_{rn-2k}}{M_{rn}} \le \sum_{k=3}^{\sigma} \binom{n}{k} \frac{(k-1)!}{2} \left(\frac{r}{n}\right)^k \le r^{\sigma},$$

where $M_{2m} = \frac{(2m)!}{2^m m!}$ and $|\Omega| = M_{rn}$.

The almost sure occurrence of property P3 now follows from the Markov inequality.

 $(\mathbf{P4})$ Similarly, the expected number of pairs of small cycles which are close to each other is bounded by

$$\sum_{a=3}^{\sigma} \sum_{b=3}^{\sigma} \binom{n}{a} \binom{n}{b-1} \frac{(a-1)!}{2} \frac{(b-1)!}{2} \left(\frac{r}{n}\right)^{a+b} + \sum_{a=3}^{\sigma} \sum_{b=3}^{\sigma} \sum_{c=1}^{\sigma} \binom{n}{a} \binom{n}{b} \binom{n}{c} \frac{(a-1)!}{2} \frac{(b-1)!}{2} ab \left(\frac{r}{n}\right)^{a+b+c+1} = o(1).$$

Remark 1. Although the main subject of the paper is random regular graphs, it is worth mentioning Ramanujan graphs. An n-vertex r-regular graph is Ramanujan if $\lambda_{\max} \leq \frac{2\sqrt{r-1}}{r}$. It is known that such graphs have girth $\Omega(\log n)$ and so they are nice, see Alon [3]. Consequently, their cover time $\sim \frac{r-1}{r-2}n\log n$.

Remark 2. Aldous [1] considered the cover time of Cayley graphs and obtained a similar expression for the cover time. By relaxing the assumptions in Lemma 4 it is possible to obtain some of his results e.g. the hypercube and toroidal grids in three or more dimensions.

4 Nice graphs

Assume from now on that G is a nice regular graph. For $v \in V$ and $k \geq 0$, let $N_k(v) = \{w : dist(v, w) = k\}$ be the set of vertices at distance k from v. Let $M_l(v) = \bigcup_{j=0}^l N_l(v)$, and let $G_l(v)$ be the subgraph of G induced by $M_l(v)$. Also let us replace the notations $R_T(1)$, $H_T(1)$ by R_v , H_v reflecting their dependence on v.

Definition 1. We say v is locally tree-like if $G_{\sigma}(v)$ is a tree.

Lemma 7. If v is locally tree-like then

$$R_T(1) = \frac{r-1}{r-2} + o(\sigma^{-1}).$$

Proof Let T_r be the infinite r-regular tree, rooted at v. Let \mathcal{X} be a random walk on T_r starting at v. Let ρ_i be the probability that \mathcal{X} is at v at step i. Now we can project the walk \mathcal{X} onto a walk \mathcal{Y} on $\{0, 1, 2, \ldots, \}$ where the particle moves right with probability $q = \frac{r-1}{r}$ and left with probability $p = \frac{1}{r}$, except of course at the origin, where it must move right. Let E_i be the expected number of visits to 0 for \mathcal{Y} starting at i. Then

$$E_0 = 1 + E_1 = 1 + E_0 p/q$$
.

This is because E_1 is E_0 times the expected number of visits to 0 between right moves from 1. Solving gives

$$\sum_{i=0}^{\infty} \rho_i = E_0 = \frac{r-1}{r-2}.$$
 (22)

Note next that for $i \geq 0$ we have $\rho_{2i+1} = 0$ and we will argue that

$$\rho_{2i} \le \binom{2i}{i} \frac{(r-1)^i}{r^{2i}}.\tag{23}$$

and then

$$\sum_{i=\sigma+1}^{\infty} \rho_i \le \sum_{j=\sigma/2} {2j \choose j} \frac{(r-1)^i}{r^{2i}} = o(\sigma^{-1}).$$
 (24)

We compare this with $R_T(1)$. First observe that $r_i = \rho_i$ for $i \leq \sigma$. Then from (1) we see that

$$\sum_{i=\sigma+1}^T r_i \leq \sum_{i=\sigma+1}^T (\pi_v + \lambda_{\max}^i) = o(\sigma^{-1}).$$

Let us now prove (23). First observe that the RHS of (23) is the probability that a walk \mathcal{Y}_1 is at the origin after 2i steps. Here \mathcal{Y}_1 is the walk on $\{0, \pm 1, \pm 2, \ldots, \}$ where the particle moves right with probability $q = \frac{r-1}{r}$ and left with probability $p = \frac{1}{r}$ i.e. there is no barrier at the origin. We can couple $\mathcal{Y}, \mathcal{Y}_1$ so that $\mathcal{Y}(t) \geq |\mathcal{Y}_1(t)|$. When $\mathcal{Y}_1(t) > 0$ we can move them in the same direction and when $\mathcal{Y}_1 < 0$ then we can move \mathcal{Y} further from the origin whenever \mathcal{Y}_1 moves further from the origin.

The lemma now follows from (22) and (24).

Remark 1. Because there are very few non-tree-like vertices and because they are far apart, we will find that we do not need to estimate $R_T(1)$ for such vertices. It is relatively easy to show that for non-tree-like vertices $R_T(1) = 1 + O(r^{-1})$ as $r \to \infty$, thus the only difficulty is with small r.

Lemma 8. If v is locally tree-like then for |s| = 1, $\frac{|R_T(s) - R_T(1)|}{R_T(1)} \leq \frac{5}{6}$.

Proof For any s,

$$|R_T(s) - R_T(1)| \le \sum_{j=1}^T r_j |s^j - 1|.$$

As |s| = 1 we have that

$$\sum_{j=1}^{T} r_j |s^j - 1| \le 2 \sum_{j=1}^{T} r_j. \tag{25}$$

We prove the lemma for $r \geq 4$ by observing that Lemma 7 implies

$$2\sum_{j=1}^{T} r_j = 2(R_T(1) - 1) = (1 + o(1))\frac{2}{r - 2} \le (1 + o(1))\frac{2}{3} \cdot \frac{r - 1}{r - 2} = (1 + o(1))\frac{2}{3}R_T(1).$$
 (26)

When r=3 we improve on (25) using ad-hoc arguments. First observe that $\pi_v=1/n$ for $v\in V$ and that (1) implies that

$$S_0 = \sum_{i=\sigma}^T r_j |s^j - 1| \le 2 \sum_{i=\sigma}^T r_i \le 2 \sum_{i=\sigma}^T (\lambda_{\max}^i + \pi_v) = o(1).$$
 (27)

Now consider $j < \sigma$. For a locally tree-like vertex, $r_j = 0$ if j is odd, and $r_j > 0$ if j is even. Fix $0 \le \theta < 2\pi$ and let $s = e^{i\theta}$, then for j = 2k

$$|s^j - 1| = (2(1 - \cos j\theta))^{1/2} = 2|\sin k\theta|.$$

Thus

$$S_1 = \sum_{j=1}^{\sigma-1} r_j |s^j - 1| = 2 \sum_{k=1}^{\lfloor (\sigma-1)/2 \rfloor} r_{2k} |\sin k\theta|.$$

Note now that $r_2 = \frac{1}{3}$ and $r_4 = \frac{5}{27}$. Suppose first that $\theta \notin I = \left[\frac{3\pi}{16}, \frac{5\pi}{16}\right] \cup \left[\frac{11\pi}{16}, \frac{13\pi}{16}\right]$. Then $|\sin 2\theta| \leq \sin \frac{3\pi}{8}$ and so

$$S_1 \le 2\sum_{i=1}^{\sigma-1} r_j - \frac{2}{3} \left(1 - \sin \frac{3\pi}{8} \right). \tag{28}$$

On the other hand, if $\theta \in I$ then $|\sin 4\theta| \le \sin \frac{\pi}{4}$ and then

$$S_1 \le 2\sum_{j=1}^{\sigma-1} r_j - \frac{10}{27} \left(1 - \sin \frac{\pi}{4} \right). \tag{29}$$

(27), (28), (29) imply that $S_0 + S_1 \le 2(R_T(1) - 1) - 1/3$. The lemma follows, since $R_T(1) \sim 2$ for r = 3.

Finally we note:

Lemma 9. For nice graphs, $\frac{H_T(1)}{R_T(1)} \leq \frac{9}{10}$.

Proof Let f'_t be the probability that \mathcal{W}_u has a first visit to v at time t. As H(s) = F(s)R(s) we have

$$H_T(1) \le \mathbf{Pr}(\mathcal{W}_u \text{ visits } v \text{ by time } T - 1)R_T(1)$$

= $R_T(1) \sum_{t=1}^{T-1} f'_t$.

Now (1) implies that if $\tau_0 = \lfloor 2 \log \lambda_{\max}^{-1} \log \log n \rfloor$ then

$$\sum_{t=\tau_0}^{T-1} f_t' \le \sum_{t=\tau_0}^{T-1} (\pi_v + \lambda_{\max}^t) = o(1).$$

We now estimate $\sum_{t=0}^{\tau_0} f'_t$, the probability that \mathcal{W}_u visits v by time τ_0 . Let v_1, v_2, \ldots, v_r be the neighbours of v and let w be the first neighbour of v visited by \mathcal{W}_u . Then

$$\mathbf{Pr}(\mathcal{W}_u \text{ visits } v \text{ by time } \tau_0) = \sum_{i=1}^r \mathbf{Pr}(\mathcal{W}_u \text{ visits } v \text{ by time } \tau_0 \mid w = v_i) \mathbf{Pr}(w = v_i)$$

$$\leq \sum_{i=1}^r \mathbf{Pr}(\mathcal{W}_{v_i} \text{ visits } v \text{ by the time } \tau_0) \mathbf{Pr}(w = v_i).$$

So it suffices to prove the lemma when u is a neighbour of v. If $G_l(u)$ is a tree then we can argue as in Lemma 7. Let ψ be the probability that a particle at the root of T_r ever returns to the root. The expected number of visits is

$$\frac{r-1}{r-2} = \sum_{k=1}^{\infty} k\psi^{k-1}(1-\psi) = \frac{1}{1-\psi}.$$

So $\psi = \frac{1}{r-1}$ and

$$\mathbf{Pr}(\mathcal{W}_u \text{ does not visit } v \text{ by time } \tau_0) \geq \frac{r-1}{r}(1-\psi-o(1)) = \frac{r-2}{r}-o(1).$$

If $G_l(u)$ contains a cycle C then let $e = (\xi, \eta)$ be an edge of C not incident with u and let T_u be the tree $G_l(u) - e$. Let $N'(u) = \{u_1, u_2, \ldots, u_s\}, s \in \{r - 2, r - 1\}$ be the neighbours of u which are not on a shortest path from ξ or η to u in T_u . $|N'(u) \setminus \{v\}| \ge r - 3$ and so

$$\mathbf{Pr}(\mathcal{W}_u \text{ does not visit } v \text{ by time } \tau_0) \ge \frac{r-3}{r}(1-\psi-o(1)) = \frac{(r-2)(r-3)}{r(r-1)} - o(1).$$

This leaves the case r=3 and $N'(u)=\{v\}$. With probability $\frac{2}{3}$ we have $\mathcal{W}_u(1)\neq v$. If ξ or η is reached (possibly $N(u)=\{v,\xi,\eta\}$), then with probability $\frac{1}{3}$ the next move is away from u and $1-\psi-o(1)$ bounds the probability that there is no return to ξ or η . Hence

$$\mathbf{Pr}(\mathcal{W}_u \text{ does not visit } v \text{ by time } \tau_0)) \geq \frac{2}{9}(1 - \psi - o(1))$$

completing the proof of the lemma.

5 Cover time of nice graphs

We now prove that

$$C_G \sim \frac{r-1}{r-2} n \log n.$$

Assume that $u, v \in V$ and that v is tree-like. Section 3 establishes that the conditions of Lemma 4 hold, and gives values for the parameters c_{uv}, p_v given by (8), (9). To summarize we have

$$R_T(1) = rac{r-1}{r-2} + o(1), \qquad rac{H_T(1)}{R_T(1)} \le rac{9}{10}, \qquad \lambda_{\max} \le rac{2\sqrt{r-1} + .1}{r}, \ \pi_v = rac{1}{n}, \qquad \qquad T = O(\log n) \qquad \lambda = \Omega(1/\log n).$$

Hence, the probability that \mathcal{W}_u has not visited v by some step $t \geq T$ (see Corollary 5) is given by

$$\mathbf{Pr}(\mathbf{A}_t(v)) = (1 + o(1))c_{uv}e^{-tp_v} + O(\lambda^{-1}e^{-\lambda t/2}).$$

Here $c_{uv} < 1$ and

$$p_v = \frac{r-2}{(r-1)n} (1 + o(\sigma^{-1})).$$

5.1 Upper bound on cover time

Let $t_0 = \lceil (1 + \sigma^{-1}) \frac{r-1}{r-2} n \log n \rceil$. We prove that for nice graphs, for any vertex $u \in V$,

$$C_u \le t_0 + o(t_0). \tag{30}$$

Let $T_G(u)$ be the time taken to visit every vertex of G by the random walk \mathcal{W}_u . Let U_t be the number of vertices of G which have not been visited by \mathcal{W}_u at step t. We note the following:

$$C_u = \mathbf{E} T_G(u) = \sum_{t>0} \mathbf{Pr}(T_G(u) \ge t), \tag{31}$$

$$\mathbf{Pr}(T_G(u) > t) = \mathbf{Pr}(U_t > 0) \le \min\{1, \mathbf{E} U_t\}. \tag{32}$$

It follows from (31), (32) that for all t

$$C_u \le t + \sum_{s \ge t} \mathbf{E} \ U_s = t + \sum_{v \in V} \sum_{s \ge t} \mathbf{Pr}(\mathbf{A}_s(v)). \tag{33}$$

Let V_1 be the set of locally tree-like vertices and let $V_2 = V - V_1$. If G is nice then $|V_2| \leq r^{3\sigma}$ for there are at most r^{σ} vertices within distance σ of a particular vertex in a small cycle, and at most $r^{2\sigma}$ vertices on small cycles.

For $v \in V_1$ we have

$$\sum_{s \geq t_0} \Pr(\mathbf{A}_s(v)) \leq (1 + o(1))e^{-t_0 p_v} \sum_{s \geq t_0} e^{-(s - t_0)p_v} + O(\lambda^{-2} e^{-\lambda t_0/2})$$

$$\leq 2p_v^{-1} e^{-t_0 p_v}$$

$$\leq 3\frac{r - 1}{r - 2}.$$

Furthermore, we see that in particular,

$$\mathbf{Pr}(\mathbf{A}_{5n}(v)) \le 2e^{-1}. (34)$$

Suppose next that $v \in V_2$. We can find $w \in V_1$ such that $dist(v, w) \leq \sigma$. So from (34), with $\nu = 5n + \sigma$, we have

$$\Pr(\mathbf{A}_{\nu}(v)) \le 1 - (1 - 2e^{-1})r^{-\sigma}$$

since if our walk visits w, it will with probability at least $r^{-\sigma}$ visit v within the next σ steps. Thus if $\gamma = (1 - 2e^{-1})r^{-\sigma}$,

$$\sum_{s \geq t_0} \mathbf{Pr}(\boldsymbol{A}_s(v)) \leq \sum_{s \geq t_0} (1 - \gamma)^{\lfloor s/\nu \rfloor}$$

$$\leq \sum_{s \geq t_0} (1 - \gamma)^{s/(2\nu)}$$

$$= \frac{(1 - \gamma)^{t_0/(2\nu)}}{1 - (1 - \gamma)^{1/(2\nu)}}$$

$$\leq 3\nu \gamma^{-1}.$$
(35)

Thus, for all $u \in V$,

$$C_u \leq t_0 + 3\frac{r-1}{r-2}|V_1| + 3|V_2|\nu\gamma^{-1}$$

$$= t_0 + O(r^{4\sigma}n)$$

$$= t_0 + o(t_0),$$

as $\sigma = \lfloor \log \log \log n \rfloor$.

5.2 Lower bound on cover time

For any vertex u, we can find a set of vertices S such that at time $t_1 = t_0(1 - \epsilon)$, $\epsilon \to 0$, the probability the set S is covered by the walk W_u tends to zero. Hence $T_G(u) > t_1$ whp which implies that $C_G \ge t_0 - o(t_0)$.

We construct S as follows. Let $S \subseteq V_1$ be some maximal set of locally tree-like vertices all of which are at least distance $2\sigma + 1$ apart. Thus $|S| \ge (n - r^{3\sigma})r^{-(2\sigma + 1)}$.

Let S(t) denote the subset of S which has not been visited by \mathcal{W}_u after step t. Now, provided $t \geq T$

$$\mathbf{E} |S(t)| \ge (1 - o(1)) \sum_{v \in S} \left(\frac{c_{u,v}}{(1 + p_v)^t} + o(n^{-2}) \right).$$

Let u be a fixed vertex of S. Let $v \in S$ and let $H_T(1)$ be given by (6), then (1) implies that

$$H_T(1) \le \sum_{t=\sigma}^{T-1} (\pi_v + \lambda_{\max}^t) = o(1).$$
 (37)

Thus $c_{uv} = 1 - o(1)$. Setting $t = t_1 = (1 - \epsilon)t_0$ where $\epsilon = 2\sigma^{-1}$, we have

$$\mathbf{E} |S(t_1)| = (1 + o(1))|S|e^{-(1-\epsilon)t_0p_v}$$

$$\geq n^{1/\sigma}.$$
(38)

Let $Y_{v,t}$ be the indicator for the event that \mathcal{W}_u has not visited vertex v at time t. Let $Z = \{v, w\} \subset S$. We will show (below) that that for $v, w \in S$

$$\mathbf{E}\left(Y_{v,t_1}Y_{w,t_1}\right) = \frac{c_{u,Z}}{(1+p_Z)^{t+2}} + o(n^{-2}),\tag{39}$$

where $c_{u,Z} \sim 1$ and $p_Z \sim 2(r-2)/(n(r-1))$. Thus

$$\mathbf{E}(Y_{v,t_1}Y_{w,t_1}) = (1 + o(1))\mathbf{E}(Y_{v,t_1})\mathbf{E}(Y_{w,t_1}). \tag{40}$$

It follows from (38) and (40), that

$$\mathbf{Pr}(S(t_1) \neq 0) \geq \frac{(\mathbf{E} |S(t_1)|)^2}{\mathbf{E} |S(t_1)|^2} = \frac{1}{\frac{\mathbf{E} |S_{t_1}|(|S_{t_1}|-1)}{(\mathbf{E} |S(t_1)|)^2} + (\mathbf{E} |S_{t_1}|)^{-1}} = 1 - o(1).$$

Proof of (39). Let Γ be obtained from G by merging v, w into a single node Z. This node has degree 2r and every other node has degree r.

There is a natural measure preserving mapping from the set of walks in G which start at u and do not visit v or w, to the corresponding set of walks in Γ which do not visit Z. Thus the probability that \mathcal{W}_u does not visit v or w in the first t steps is equal to the probability that a random walk $\widehat{\mathcal{W}}_u$ in Γ which also starts at u does not visit Z in the first t steps.

We apply Lemma 4 to Γ . That $\pi_Z = \frac{2}{n}$ is clear, and $c_{u,Z} = 1 - o(1)$ is argued as in (37). The derivation of $R_T(1)$ in Lemma 7 is also valid. The vertex Z is tree-like up to distance σ in Γ . The fact that the root vertex of the corresponding infinite tree has degree 2r does not affect the calculation of $R_T(1)$.

6 Looking ahead

We now consider Theorem 3. Fix $u \in V$ and let $C_u^{(k)}$ be the expected time for \mathcal{W}_u to have been within distance k of every vertex. In analogy to (33) we have

$$C_u^{(k)} \le t + \sum_{v \in V} \sum_{s > t} \mathbf{Pr}(A_s^{(k)}(v)).$$
 (41)

where $A_s^{(k)}(v)$ is the event that \mathcal{W}_u has not been within distance k by time s.

Now fix v with dist(u,v) > k. Assume that v is tree-like. Define Γ_0 by contracting $M_k(v)$ to a single vertex Z and deleting any loops created (M_k is defined in Section 4). There is a natural measure preserving mapping from the set of walks in G which start at u and do not get within distance k of v to the corresponding set of walks in Γ_0 which do not visit Z. Thus the probability that \mathcal{W}_u does not get within distance k in the first t steps is equal to the probability that a random walk $\widehat{\mathcal{W}}_u$ in Γ_0 which also starts at u does not visit Z in the first t steps i.e. $\mathbf{Pr}(A_t(Z)) = \mathbf{Pr}(A_s^{(k)}(v))$.

We apply Lemma 4 to Γ . $\pi_Z = \frac{|N_k(v)|}{rn - O(1)} = \frac{(r-1)^k}{n - O(1)}$, $R_Z \sim \frac{r-1}{r-2}$ and $H_Z/R_Z \leq 9/10$. So if now $t_0 = \lceil \frac{1+\sigma^{-1}}{(r-2)(r-1)^{k-1}} n \log n \rceil$ then $\sum_{t \geq t_0} \mathbf{Pr}(\boldsymbol{A}_t(Z)) = O(1)$. Thus

$$\sum_{v \in V_1} \sum_{t > t_0} \mathbf{Pr}(\mathbf{A}_t^{(k)}(v)) = O(n). \tag{42}$$

Now $A_t^{(k)}(v) \subseteq A_t(v)$ and (36) holds, even with the smaller value of t_0 . Thus

$$\sum_{v \in V_2} \sum_{t \ge t_0} \mathbf{Pr}(\mathbf{A}_t^{(k)}(v)) = o(n)$$
(43)

and an upper bound of $t_0 + o(t_0)$ for $C_u^{(k)}$ follows from (41), (42) and (43).

The lower bound is obtained by taking a set S of $n^{1-o(1)}$ tree-like vertices at distance at least 3σ apart and using the Chebychev inequality as we did in Section 5.2. Choose $u \in S$ and then for each pair of vertices $v_1, v_2 \in S \setminus \{u\}$ we form Γ_1 by contracting $M_k(v_1) \cup M_k(v_2)$ into a single vertex, removing loops and then arguing as we did before.

References

- [1] D.J. Aldous, On the time taken by random walks on finite groups to visit every state, Z. Wahrscheinlichkeitstheorie verw. Gebeite 62 (1983) 361-374.
- [2] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász and C. Rackoff, Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. *Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science* (1979) 218-223.

- [3] N. Alon, Tools from higher algebra, in Handbook of Combinatorics, R.L. Graham, M. Grötschel and L. Lovász, eds, North Holland (1995) 1749-1783.
- [4] B.Bollobás, Random graphs, in *Combinatorics*, (H.N.V. Temperley, Ed.), London Mathematical Society Lecture Notes Series 52, Cambridge University Press (1981) 80-102.
- [5] B.Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European Journal on Combinatorics 1 (1980) 311-316.
- [6] J. Brown and R. Churchill, *Complex Variables and Applications*, (Sixth Edition) McGraw-Hill (1996).
- [7] C. Cooper and A. M. Frieze, The cover time of sparse random graphs, *Proceedings of SODA 2003* (14th ACM-SIAM Symposium on Discrete Algorithms) (2003)
- [8] U. Feige, A tight upper bound for the cover time of random walks on graphs, Random Structures and Algorithms 6 (1995) 51-54.
- [9] U. Feige, A tight lower bound for the cover time of random walks on graphs, Random Structures and Algorithms 6 (1995) 433-438.
- [10] J. Friedman, A proof of Alon's second eignevalue conjecture, to appear.
- [11] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate counting and integration. In Approximation Algorithms for NTP-hard Problems. (D. Hochbaum ed.) PWS (1996) 482-520
- [12] J. Jonasson, On the cover time of random walks on random graphs, *Combinatorics*, *Probability and Computing*, 7 (1998), 265-279.
- [13] H. Wilf, Generating function ology, Academic Press (1990).
- [14] L. Lovász, Combinatorial Problems and Exercises, North Holland, 2nd Edition 1993.