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Abstract

We study the minimum spanning arborescence problem on the complete digraph ~Kn

where an edge e has a weight We and a cost Ce, each of which is an independent uniform
random variable U s where 0 < s ≤ 1 and U is uniform [0, 1]. There is also a constraint
that the spanning arborescence T must satisfy C(T ) ≤ c0. We establish, for a range of
values for c0, s, the asymptotic value of the optimum weight via the consideration of a
dual problem.
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1 Introduction

Let U denote the uniform [0, 1] random variable and let 0 < s ≤ 1. We consider the minimum

spanning arborescence problem in the context of the complete digraph ~Kn where each edge
has an independent copy of U s for weight We and an independent copy of U s for cost Ce. Let
A denote the set of spanning arborescences of ~Kn. An arborescence is a rooted tree in which
every edge is directed away from the root. The weight of a spanning arborescence A is given
by W (A) =

∑
e∈AWe and its cost C(A) is given by C(A) =

∑
e∈ACe. The problem we study

is
Minimise W (A) subject to A ∈ A, C(A) ≤ c0, (1)

where c0 may depend on n.

Without the constraint C(A) ≤ c0, we have a weighted matroid intersection problem and as
such it is solvable in polynomial time, see for example Lawler [10]. Furthermore Edmonds [2]
gave a particularly elegant algorithm for solving this problem. With the constraint C(A) ≤ c0,
the problem becomes NP-hard, since the knapsack problem can be easily reduced to it. On the
other hand, equation (1) defines a natural problem that has been considered in the literature,
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in the worst-case rather than the average case. See for example Guignard and Rosenwein [6]
and Aggarwal, Aneja and Nair [1] and Goemans and Ravi [5] (for an undirected version). This
paper is a follow up to the analysis of the cost constrained minimum weight spanning tree
problem considered in [3].

The addition of a cost contraint makes the problem NP-hard and reflects the fact that in many
practical situations there may be more than one objective for an optimization problem. Here
the goal is to lower weight and cost. We first consider the easier case where s = 1.

We use the following notation. For two real sequences An and Bn we say that An ≈ Bn if there
exists a function ε = ε(n)→ 0 as n→∞ such that for every n

(1− ε)An ≤ Bn ≤ (1 + ε)An.

Theorem 1. Let Dn be the complete digraph ~Kn on n vertices with each edge e having assigned a
random weight We and a random cost Ce, where {We, Ce} is a family of i.i.d. random variables
uniform on [0, 1]. Given c0 > 0, let W ∗

arb be the optimum value for the problem (1). The
following hold w.h.p.

Case 1: If c0 ∈ [ω, n
ω

] where ω →∞ then

W ∗
arb ≈

πn

8c0

. (2)

Case 2: Suppose now that c0 = αn, where α = O(1) is a positive constant.

(i) If α > 1/2 then
W ∗
arb ≈ 1.

(ii) If α < 1/2 then
W ∗
arb ≈ f(β∗)− αβ∗

where β∗ is the unique positive solution to f ′(β) = α and where

f(β) = β1/2

∫ β1/2

t=0

e−t
2/2dt+ e−β/2, β > 0.

Case 3: Suppose now that c0 = α, where α = O(1) is a positive constant.

(i) If α < 1 then there is no solution to (1).

(ii) If α > 1 then
W ∗
arb ≈ (g(β)− αβ)n

where β∗ is the unique positive solution to g′(β) = α and where

g(β) = β1/2

∫ β−1/2

t=0

e−t
2/2dt+ βe−1/2β

= βf(1/β), β > 0.
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Some simple observations: if α > 1/2 in Case 2 then w.h.p. cost of the arborescence of
minimum total weight satisfies the cost contraint and we will see that W ∗

arb ≈ 1 in this case.
If α < 1 in Case 3 then the problem is infeasible. The expected minimum weight of an edge
leaving a fixed vertex is 1/n and summing these gives a lower bound on the minimum weight
of an arborescence.

It is also instructive to examine Case 2 when α → 0 and Case 3 when α → ∞ to see if
we “recover” Case 1. First consider Case 2. Lemma 3 below shows that f ′(β) decreases
monotonically to zero which means that β∗ → ∞ as α → 0. The lemma also shows that for
large β we have α = f ′(β) ≈ (π/8β)1/2. We have f(β) ≈ (πβ/2)1/2 and so f(β) − αβ ≈
(πβ/8)1/2 ≈ (π/8α), and this is consistent with Case 1. For Case 3, Lemma 4 implies that
β → 0 as α → ∞. In which case, α = g′(β) ≈ (π/8β)1/2 and g(β) ≈ (πβ/2)1/2 and we again
get an expression consistent with Case 1.

We note that Lemma 3 of Section 3.1 shows that the claims in Case 2 are reasonable and
Lemma 4 shows that the claims in Case 3 are reasonable (that is, the stated equations possses
unique solutions).

For the case s < 1 we will prove the following.

Theorem 2. Let Dn be the complete digraph ~Kn on n vertices with each edge e being assigned a
random weight We and a random cost Ce, where {We, Ce} is a family of i.i.d. random variables
U s. Given

n1−s log n� c0 �
n

log n
, (3)

let W ∗
arb be the optimum value for the problem (1). The following holds w.h.p.

W ∗
arb ≈

C2
sn

2−s

4c0

, (4)

where

Cs = Γ(s/2 + 1)

(
Γ(2/s+ 1)

Γ(1/s+ 1)2

)s/2
.

Note that Γ(3/2) =
√
π/2 and this implies that C1 =

√
π/2 and the expression in (4) is

consistent with the expression in (2).

We will first concentrate on the case s = 1. After this, we will continue with the proof of
Theorem 2. We note that a preliminary version containing the results for the case s = 1
appeared in [4]. The weights and costs will therefore be uniform [0, 1] until we reach the more
general case in Section 5. We will then prove Theorem 2 as stated and then show how to extend
this result to a wider class of distribution via a simple coupling argument from Janson [8].

2 Outline of the argument

We first prove an equivalent result where we replace spanning arborescence by a surrogate, a
functional digraph. Given f : [n] → [n] we let the associated digraph Df be ([n], Af ) where
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Af = {(v, f(v)) : v ∈ [n]}. We will estimate the minimum weight of the set of edges in a Df

that satisfies C(Af ) ≤ c0. Computing this minimum is a 0-1 integer program IPmap and we
estimate the value of the LP relaxation LPmap and show that w.h.p. IPmap and LPmap have
asymptotically equal minimum objective values. A random function f gives rise to a Df that
is close enough to being an arborescence that we can translate results for the optimal f to
results for the optimal arborescence.

We get our estimate for the optimum objective value in LPmap by using Lagrangean Relaxation.
We used the same approach in [3] for the constrained spanning tree problem. The main
difference there is that in the case of spannning trees we can estimate the dual value directly
via an integral formula. We do not need a surrogate as we did here. So the philosophy is the
same, but the details differ substantially.

Lagrangean Relaxation introduces a dual function φ(λ), where λ is the “Lagrange Multiplier”.
We have to maximise φ and while it is straightforward to estimate Eφ, to maximise φ we need
concentration around the mean. This is the subject of Section 3.3. Rather than attempt a
union bound over all real λ, we discretize the set of values for λ and show we have sufficient
concentration to get a very good estimate for the maximum. This is done in Section 3.5. The
optimum solution to LPmap is almost a mapping and it needs to be converted to an actual
mapping.

So, the proof goes:

1. Define the dual problem for finding a minimum weight functional digraph and get an
expression for E(φ(λ)).

2. Prove concentration of φ around its mean.

3. Discretize and apply concentration and find the maximum value of φ.

4. Convert the optimum LP solution to a random mapping that is close in weight and cost
to the optimum LP solution.

5. Argue that the duality gap for the functional digraph problem is small.

6. Transfer the result on functional digraphs to spanning arborescences.

3 Auxiliary results

3.1 Properties of the functions f and g

Lemma 3. f(0) = 1, f(∞) =∞, f ′(0) = 1/2, f ′(∞) = 0 and f ′ is strictly monotone decreas-
ing. These imply that f ′ > 0, f is concave increasing and for every 0 < α < 1

2
, there is a

unique β > 0 such that f ′(β) = α.
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Proof. This follows by inspection of f and

f ′(β) =
1

2β1/2

∫ β1/2

t=0

e−t
2/2dt.

f ′′(β) =
1

4β3/2

∫ β1/2

t=0

(
e−β/2 − e−t2/2

)
dt < 0.

Lemma 4. g′(0) = ∞, g′(∞) = 1 and g′ is strictly monotone decreasing. This implies that g
is concave and for every α > 1, there is a unique β > 0 such that g′(β) = α.

Proof. We have g(β) = βf(1/β) and

g′(β) = f(1/β)− 1

β
f ′(1/β) =

1

2β1/2

∫ β−1/2

t=0

e−t
2/2dt+ e−1/2β.

g′′(β) =
1

β3
f ′′(1/β) < 0.

By inspection, g′(0) =∞ and g′(∞) = 1.

3.2 Expectation

Our strategy will be to prove results about mappings f : [n] → [n], where f(i) 6= i, i ∈ [n].
Given f , we have a digraph Df with vertex set [n] and edge set Af = {(i, f(i)) : i ∈ [n]}. Most
of the analysis concerns the problem
Minimum Weight Constrained Mapping (MWCM):

Minimise Wmap(f) =
∑
i∈[n]

W(i,f(i)) subject to C(f) =
∑
i∈[n]

C(i,f(i)) ≤ c0.

Let f ∗ solve MWCM. We will argue that w.h.p. Df∗ is close to being an arborescence and
that a small change will result in a near optimum arborescence that will verify the claims of
Theorem 1. The following lemma begins our analysis of optimal mappings. To motive it, note
that the minimum over the mappings in the Lagrangean dual of MWCM is simply attained
by choosing the best edge for each vertex (see (30) below). We have expressed the following
calculations with n replacing n− 1, but this does not affect the final results.

Lemma 5. Let X1, X2, . . . and Y1, Y2, . . . be i.i.d. random variables uniform on [0, 1]. Then

E1: For λ ≤ 1
n logn

, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

1

n
. (5)

E2: For 1
n logn

≤ λ ≤ logn
n

, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

1

n

(
√
λn

∫ √λn
0

e−
t2

2 dt+ e−λn/2

)
. (6)

5



E3: For logn
n
≤ λ ≤ n

logn
, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

√
π

2

√
λ

n
. (7)

E4: For n
logn
≤ λ ≤ n log n, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

λ

n

(√
n

λ

∫ √n
λ

0

e−
t2

2 dt+ e−
1
2
n
λ

)
. (8)

E5: For λ ≥ n log n, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

λ

n
. (9)

Proof. Thanks to independence

Emin
i≤n
{Xi + λYi} =

∫ ∞
0

P
(

min
i≤n
{Xi + λYi} > t

)
dt

=

∫ ∞
0

[
P (X1 + λY1 > t)

]n
dt. (10)

Case 1. λ ≥ 1.
It follows from an elementary computation that (for details see e.g. the appendix in [3])

P (X1 + λY1 > t) =


1− t2

2λ
, 0 < t < 1,

1 + 1
2λ
− t

λ
, 1 ≤ t < λ,

(1+λ−t)2
2λ

, λ ≤ t < 1 + λ,

0, t ≥ 1 + λ.

Thus,

Emin
i≤n
{Xi + λYi} =

∫ 1

0

(
1− t2

2λ

)n
dt

+

∫ λ

1

(
1 +

1

2λ
− t

λ

)n
dt

+

∫ 1+λ

λ

(
(1 + λ− t)2

2λ

)n
dt

=

∫ 1

0

(
1− t2

2λ

)n
dt (11)

+
λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

.

Case 1.1. 1 ≤ λ ≤ n
logn

A change of variables gives∫ 1

0

(
1− t2

2λ

)n
dt =

√
λ

∫ 1√
λ

0

(
1− t2

2

)n
dt. (12)
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We have
√

log n/n ≤ 1√
λ
≤ 1 and∫ 1

√
logn/n

(
1− t2

2

)n
dt ≤

∫ 1

√
logn/n

e−
nt2

2 dt =
1√
n

∫ 1

√
logn

e−
t2

2 dt = o(n−1/2).

Therefore

√
λ

∫ 1√
λ

0

(
1− t2

2

)n
dt =

√
λ

∫ √logn/n

0

(
1− t2

2

)n
dt+

√
λo(n−1/2).

Using 1 + x = ex+O(x2) as x→ 0, we get∫ √logn/n

0

(
1− t2

2

)n
dt =

∫ √logn/n

0

e−
nt2

2
+O(nt4)dt

= (1 + o(1))

∫ √logn/n

0

e−
nt2

2 dt

= (1 + o(1))
1√
n

∫ √logn

0

e−
t2

2 dt

= (1 + o(1))
1√
n

∫ ∞
0

e−
t2

2 dt+ o(n−1/2)

= (1 + o(1))
1√
n

√
π

2
+ o(n−1/2).

Putting these together back into (12) yields∫ 1

0

(
1− t2

2λ

)n
dt = (1 + o(1))

√
π

2

√
λ

n
+
√
λo(n−1/2) = (1 + o(1))

√
π

2

√
λ

n
.

Since

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

= O

(
λ

n

)

=

√
λ

n
O

(√
1

log n

)
,

from (11) we can finally obtain (7).

Case 1.2. n
logn
≤ λ ≤ n log n

Since for t ≤ 1√
λ
, (1− t2

2
)n = e−

nt2

2 eO(nt4) = e−
nt2

2 eO( log2 n
n

), directly from (12), we get

∫ 1

0

(
1− t2

2λ

)n
dt = (1 + o(1))

√
λ

∫ 1√
λ

0

e−
nt2

2 dt = (1 + o(1))

√
λ

n

∫ √n
λ

0

e−
t2

2 dt.
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Moreover,

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

= (1 + o(1))
λ

n
e−

n
2λ

+O( n
λ2

) +O

((
log n

n

)n)
=
λ

n
e−

n
2λ

(
1 + o(1) +

n

λ
e
n
2λO

((
log n

n

)n))
=
λ

n
e−

n
2λ (1 + o(1)) .

Plugging these back in (11) yields (8).

Case 1.3. λ ≥ n log n
Plainly, ∫ 1

0

(
1− t2

2λ

)n
dt = O(1) =

λ

n
o(1).

Since
(
1− 1

2λ

)n+1
= eO(n

λ
) = 1 + o(1), we have

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

=
λ

n
(1 + o(1)) .

Putting these in (11) gives (9).

Case 2. λ ≤ 1
We write

Emin
i≤n
{Xi + λYi} = λEmin

i≤n
{Xi + λ−1Yi}

and then apply (7), (8) and (9) to λ−1, multiply the answers by λ to get (5), (6) and the
missing range logn

n
≤ λ ≤ 1 of (7).

Remark 1. If λn → ∞ in Case E2, then the integral in (6) is asymptotic to
√
π/2 and so

the R.H.S. of (6) is asymptotic to the R.H.S. of (7). Similarly, if n/λ→∞ in Case E4 then
the R.H.S. of (8) is asymptotic to the R.H.S. of (7).

Corollary 6. Under the assumptions of Lemma 5, we have

nEmin
i≤n
{Xi + λYi} = Ω(max{1,

√
λn}). (13)

Proof. This follows directly from (5) - (9) and the fact that f(β) ≥ 1 (Lemma 3) as well as the
lower bound

f(β) ≥ max{
√
β

∫ √β
0

e−t
2/2dt, e−β/2} ≥ max

{√
β

∫ √β
0

e−t
2/2dt,

√
β1{β≤ 1

2
}

}
≥ 1

2

√
β.
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3.3 Concentration

Again n replaces n− 1 in the calculations.

Lemma 7. Let W(i,j) and C(i,j), i, j ≤ n, be i.i.d. random variables uniform on [0, 1]. Let
λ ∈ [0, n log n]. For Xi = minj{W(i,j) + λC(i,j)}, S =

∑
i≤nXi and ε = Θ(n−1/5), we have

P (|S − ES| > εES) = O(n−99). (14)

Moreover,

P
(
∃i : Xi > 10(1 + λ)

√
log n/n

)
≤ n−99. (15)

Proof. Let M = 10(1 + λ)
√

log n/n and B be the event that for some i, Xi ≥M . We have,

P (|S − ES| > εES) ≤ P (B) + P ((|S − ES| > εES) ∧Bc) . (16)

First we bound P (B). By the union bound and independence,

P (B) ≤ nP (X1 ≥M) = n
[
P
(
W(1,1) + λC(1,1) ≥M

)]n
.

We use W(1,1) + λC(1,1) ≤ (1 + λ) max{W(1,1), C(1,1)} and note that since these variables are
uniform, we have P

(
max{W(1,1), C(1,1)} ≥ u

)
= 1− u2 for u < 1. We thus get

P (B) ≤ n

[
1− 100

log n

n

]n
≤ ne−100 logn = n−99,

which establishes (15).

The second term in (16) can be bounded using Chernoff’s inequality because on Bc, Xi =
Xi1Xi≤M , that is S can be treated as a sum of n independent random variables X̃i = Xi1Xi≤M
with X̃i ∈ [0,M ]. Clearly X̃i ≤ Xi and S̃ =

∑
X̃i ≤ S, so

P ((|S − ES| > εES) ∧Bc) = P
(

(|S̃ − ES| > εES) ∧Bc
)
≤ P

(
|S̃ − ES| > εES

)
.

By the Chernoff bound

P
(
|S̃ − ES̃| > εES̃

)
≤ 2 exp

{
−ε

2ES̃
3M

}
.

Note that
|S̃ − ES| ≤ |S̃ − ES̃|+ |ES − ES̃|.

and

|ES − ES̃| =
∣∣∣E∑Xi1Xi>M

∣∣∣ ≤ (1 + λ)E
∑

1Xi>M ≤ (1 + λ)nP (X1 > M)

= O((n log n) · n · n−99) = O(n−97),

thanks to (15). Moreover, by Corollary 6,

ES = Ω(max{1,
√
λn})
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and by the assumption ε = Ω(n−1/5), so

|ES − ES̃|= O(n−97) ≤ Ω(n−1/5) ≤ 1

2
εES

and we get

P
(
|S̃ − ES| > εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES̃

)
≤ 2 exp

{
−ε

2ES̃
12M

}
.

Finally, observe that

ES̃
M
≥ ES

2M
=

Ω(max
{

1,
√
λn
}

)

20(1 + λ)
√

log n

√
n

and for λ ≤ n log n, we have max{1,
√
λn}

1+λ
≥ 1

2

√
1

logn
. Consequently,

ε2ES̃
12M

= Ω

(
ε2
√
n

log n

)
= Ω(n−1/10n1/2/ log n) = Ω(n1/10),

so
P (|S − ES| > εES,Bc) = O(e−n

1/10

).

In view of (16), this combined with (15) finishes the proof of (14).

Next define j(i) = j(i, λ) by Wi,j(i) = min {Wi,j + λCi,j, j ∈ [n]}. Then let Wi = Wi,j(i) and
Ci = Ci,j(i) for i ∈ [n] and finally let Wmax = maxi∈[n] Wi and Cmax = maxi∈[n] Ci.

Corollary 8. Let Mn denote the minimum weight of a mapping with weights We + λCe, e ∈
E( ~Kn). Then with probability 1−O(n−90),

Mn ≈


(πλn/2)1/2 E3/Case 1.

f(λn) E2/Case 2.

ng(λ/n) E4/Case 3.

Wmax ≤


O
(

(1 + λ)
√

log n/n
)

E3/Case 1.

O
(√

log n/n
)

E2/Case 2.

1 E4/Case 3.

(17)

Cmax ≤


O
(

1
λ

+ 1
)√

log n/n E3/Case 1.

1 E2/Case 2.

O(log n/n) E4/Case 3.

(18)

Proof. The claim about Mn follows directly from Lemma 5 and Lemma 7.
For Cases 1 and 2 the claim about Wmax follows from (15) and the claim for Case 3 is trivial.
For Case 1 the claim about Cmax follows from (15) and the claim for Case 2 is trivial. For Case
3, we let p = K log n/n and argue that w.h.p. for each v ∈ [n], there exists w 6= v such that
C(v,w) ≤ p (the probability of the contrary is at most n(1−p)n−1 = o(1)). If Cmax = C(v1,w1) > 2p
then replacing (v1, w1) by (v1, w2) where C(v1,w2) ≤ p we reduce the value W (F ) + λC(F ) of

the supposed mapping F , by at least λp− 1 ≥ n
logn

K logn
n
− 1 > 0, contradicting the optimality

of F .
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3.4 Properties of optimal dual solutions

Let

I = Iλ =
{

(i, j) ∈ [n]2 : i 6= j and Wi,j, Ci,j are bounded by (17), (18) respectively
}
.

For i ∈ [n] we let Ji = {j : (i, j) ∈ I}. It will transpire that our analysis will bound certain
error terms via Wmax, Cmax. By restricting our attention to (i, j) ∈ I, we obtain some control
over these error bounds.

We can express the problem MWCM as the following integer program:
IPmap

Minimize
∑

(i,j)∈I

Wi,jxi,j subject to

∑
j∈Ji

xi,j = 1, i ∈ [n] (19)∑
(i,j)∈[I]

Ci,jxi,j ≤ c0 (20)

xi,j = 0 or 1, for all i 6= j. (21)

We obtain the relaxation LPmap by replacing (21) by

0 ≤ xi,j ≤ 1 for all (i, j) ∈ I. (22)

We will consider the dual problem: we will say that a map f is feasible if f(i) ∈ Ji for i ∈ [n].
We let Ω∗ denote the set of feasible f .

Dualmap(W,C, c0):

Compute max
λ≥0

φmap(λ, c0) where φmap(λ, c0) = min
f∈Ω∗

∑
i∈[n]

(Wi,f(i) + λCi,f(i))− λc0

 .

Now it is well known (see for example [11]) that

max
λ≥0

φmap(λ, c0) = min

 ∑
(i,j)∈I

Wi,jxi,j subject to (19), (20), (22)

 .

I.e. maximising φmap solves the linear program LPmap. The basic feasible solutions to the
linear program LPmap have a rather simple structure. A basis matrix is obtained by replacing
a single row of the n × n identity matrix In with coefficients from the LHS of (20) (or it is
In+1). This is because there are exactly n + 1 basic variables. We either (i) have a single i∗

such that (a) i 6= i∗ implies that there is a unique j(i) such that xi,j(i) = 1 and xi,j = 0 for
j 6= j(i) and (b) there are two indices j1, j2 such that xi∗,j` 6= 0, ` = 1, 2 or (ii) for each i there
is a basic xi,j(i) and the (n+ 1)th basic variable is the slack in (20).

We are using Corollary 8 to restrict ourselves to feasible f , so that we may use the upper
bounds in (17), (18).

11



Consider the unique (with probability one) basic feasible solution that solves LPmap. The
optimal shadow price λ∗ is also the optimal solution to the dual problem DUALmap(W,C, c0).
Let the map f ∗ = f ∗(c0) be obtained from an optimal basic feasible solution to LPmap by (i)
putting xi∗,j1 = xi∗,j2 = 0 and then (ii) choosing j∗ to minimise Ci∗,j +λ∗Wi∗,j and then putting
xi∗,j∗ = 1. This yields the map f ∗, where f ∗(i) = j(i), i 6= i∗ and f ∗(i∗) = j∗.

Let Wmax = max
{
Wi,f∗(i) : i ∈ [n]

}
and define Cmax similarly. Let W ∗

LP denote the optimal
objective value to LPmap. Then we clearly have

W (f ∗) ≤ W ∗
LP +Wmax and C(f ∗) ≤ c0 + Cmax. (23)

Lemma 9. Let W(i,j) and C(i,j), i, j ≤ n, be i.i.d. random variables on [0, 1]. Then f ∗ is
distributed as a random mapping.

Proof. Fix f0 ∈ [n][n] and a permutation π of [n]. The distribution of f ∗ is invariant with respect
to relabelling (permuting) the domain [n], that is π ◦ f ∗ and f ∗ have the same distribution.
Therefore,

P (f ∗ = f0) = P (π ◦ f ∗ = π ◦ f0) = P (f ∗ = π ◦ f0) .

The importance of the above lemma stems from the fact that it implies that w.h.p. Df∗

has O(log n) components and as such we only need to change O(log n) edges to make it an
arborescence.

3.5 Discretisation

We divide the interval [0, n log n] into n10 intervals [λi, λi+1] of equal length. Then |λi+1 −
λi| ≤ n−8. By standard arguments we have the following claim about the maximum after the
discretisation.

Lemma 10. Almost surely, we have

max
λ

φmap(λ, c0) = max
i≤n10

φmap(λi, c0) +O(n−7). (24)

Proof. This follows from a standard argument: we have

|max
λ

φmap(λ, c0)− max
i≤n10

φmap(λi, c0)| ≤ max
i≤n10

max
λ∈[λi,λi+1]

|φmap(λ, c0)− φmap(λi, c0)|

and for any λ, λ′

|φmap(λ, c0)− φmap(λ′, c0)| ≤ |min
f

∑
e=(v,f(v))

(We + λCe)−min
f

∑
e=(v,f(v))

(We + λ′Ce)|+ |λ− λ′|c0.

If we take f̃ to be an optimal mapping for λ and f̃ ′ for λ′, we can conclude that

min
f

∑
e=(v,f(v))

(We+λCe) ≤
∑

e=(v,f̃ ′(v))

(We+λCe) ≤ min
f ′

∑
e=(v,f ′(v))

(We+λ
′Ce)+max

f

∑
e=(v,f(v))

|λ−λ′|Ce

12



which easily gives (by estimating each Ce by 1 and exchanging the roles of λ and λ′)

|min
T

∑
e∈T

(We + λCe)−min
F ′

∑
e∈F ′

(We + λ′Ce)| ≤ |λ− λ′|n.

Since c0 = O(n) and |λ− λi| ≤ n−8, we finish the argument.

The function φmap(λ, c0) is concave and will be strictly concave with probability one. Let λ∗

denote the value of λ maximising φ and let λ∗∗ be the closest discretised value to λ∗. Let f ∗∗

be the mapping that minimises W (f) + λ∗∗C(f). We will see in the following that

λ∗ ≥ 1

n2
w.h.p. (25)

The asymptotic values of λ∗ are derived in Section 4.1.

Lemma 11. Assuming (25), then
f ∗ = f ∗∗ w.h.p.

Proof. From the above, we have to show that

argminj {Wi,j + λ∗Ci,j} = argminj {Wi,j + λ∗∗Ci,j} for i ∈ [n]. (26)

Now |λ∗∗ − λ∗| ≤ n−8 and so |Z∗i,j − Z∗∗i,j | ≤ n−8 where Z∗i,j = Wi,j + λ∗Ci,j etc. Furthermore,
if U, V,X, Y are independent uniform [0, 1] random variables then Pr(|X − Y + λ(U − V )| ≤
δ) ≤ δ/λ for any choice of δ, λ > 0. Thus

Pr

(
∃i, j1, j2 : j1 6= j2, |Z∗i,j1 − Z

∗
i,j2
| ≤ 2

n8

)
≤ n3 ·

(
2

λ∗n8

)
= o(1), (27)

under the assumption that (λ∗)n5 →∞.

Now switching from λ∗ to λ∗∗ can only change a Zi,j by at most n−8 and (27) implies that this
is not enough to affect which is the smallest Z∗∗i,j , for a fixed i.

3.6 Cycles

A mapping f gives rise to a digraph DF = ([n], {(v, f(v)) : v ∈ [n]}. The digraph DF splits
into components consisting of directed cycles plus arborescences attached to these cycles.

Lemma 12. There is a universal constant K such that a uniform random mapping F : [n]→
[n] has at most K log n cycles with probability at least 1−O(n−50).

Proof. If we condition on the set C of vertices on cycles, then the cycles define a random
permutation of the elements of C. One can see this by observing that if we remove the edges
from these cycles and replace them with another collection of cycles that cover C then we get
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another digraph of a mapping. This explains that each set of cycles that covers C has the same
set of extensions to a mapping digraph i.e. arises in the same number of mappings.

Let C = [m]. Let π be a random permutation of [m]. Let X denote the size of the cycle
containing 1. Then

P (X = i) =
(m− 1)(m− 2) · · · (m− i+ 1)× (m− i)!

m!
=

1

m
.

Explanation: The factor (m− 1)(m− 2) · · · (m− i+ 1) is the number of ways of completing
the cycle containing 1 and (m− i)! is the number of ways of computing the vertices not on C.

Now let Y denote the number of cycles in π. From this we can argue that

P (Y ≥ t) ≤ P (Bin(t, 1/2) ≤ dlog2me) .

Explanation: We flip a sequence of fair coins. If we get a head in the first one, then we
interpret this as vertex 1 being on a cycle C1 of size at least m/2 and then we continue the
experiment with [m] \ C1. If we get a tail, then we continue the experiment with [m].

So, by the Chernoff bounds, if Z is the number of cycles in a random mapping, then for K ≥ 2,

P (Z ≥ K log2 n)) ≤ P (Bin(K log2 n, 1/2) ≤ dlog2 ne)

≤ exp

{
−(K − 2)2

2K2
· A log2 n

}
= n−(K−2)2/2K .

4 Proof of Theorem 1

It will be convenient to first argue about the cost of an optimal mapping and then amend it
to obtain an almost optimal arborescence with the (asymptotically) correct cost. Namely, we
define W ∗

map(c0) to be the optimal value of the integer program IPmap of Section 3.4.

First, we show that with high probability

W ∗
map(c0) ≈


πn
8c0
. Case 1.

f(β)− αβ where f ′(β) = α Case 2.

(g(β)− αβ)n where g′(β) = α Case 3.

(28)

and then we modify an almost optimal mapping (with the slightly more restricted budget c0−δ
for the cost) to obtain an arborescence A which with high probability will satisfy W (A) ≈
W ∗
map(c0) as well as the cost constraint C(A) =

∑
e∈ACe ≤ c0. Since

W ∗
arb(c0) ≥ W ∗

map(c0) ≈ W (A) ≥ W ∗
arb(c0),

this will show that W ∗
arb(c0) ≈ πn

8c0
in Case 1., etc., as desired.
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4.1 A near optimal mapping

Our goal is to show (28). By weak duality or the fact that LPmap relaxes IPmap we have

W ∗
map(c0) ≥ max

λ
φmap(λ, c0). (29)

To handle φmap, note that the minimum over the mappings is of course attained by choosing
the best edge for each vertex, that is

φmap(λ, c0) =
∑
i≤n

min
j 6=i
{W(i,j) + λC(i,j)} − λc0. (30)

Now the analysis splits into three cases according to the value of c0.

Case 1: c0 ∈ [ω, n/ω].

First we take the maximum over i (the index for the discretization). The function (1 +
o(1))

√
π
2

√
λn − λc0 is strictly concave and has a global maximum at λ∗ = (1 + o(1)) πn

8c20
,

satisfying (25). Note that with our assumption on c0, this value of λ is in the second, third
or fourth range of Lemma 5. The expression (1 + o(1))

√
π
2

√
λn comes from multiplying the

R.H.S. of (7) by n. Remark 1 enables us to this expression throughout the range c0 ∈ [ω, n/ω]
or λ∗ = (1 + o(1)) πn

8c20
.

By (7) and the concentration result of Lemma 7 applied to ε = n−1/5, we have

Lemma 13.

φmap(λi, c0) = (1 + o(1))

√
π

2

√
λin− λic0,

for every i ≤ n10 with probability at least 1−O(n−89).

Thus the optimal value over λ = λi, i ≤ n10, is

max
i≤n10

φmap(λi, c0) = (1 + o(1))

√
π

2

√
(λ∗ +O(n−8))n− (λ∗ +O(n−8))c0

= (1 + o(1))
π

8

n

c0

which together with Lemma 10 gives that with probability at least 1−O(n−90)

max
λ

φmap(λ, c0) = (1 + o(1))
π

8

n

c0

+O(n−3) = (1 + o(1))
π

8

n

c0

. (31)

The last step is to tighten the cost constraint a little bit and consider c′0 = c0 − 1. By using
(31) twice and recalling (29), we obtain

W ∗
map(c0) ≥ max

λ
φmap(λ, c0) = (1 + o(1))

π

8

n

c0

= (1 + o(1))
π

8

n

c′0
= (1 + o(1)) max

λ
φmap(λ, c

′
0) ≥ W (f ∗)−Wmax, (32)
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where f ∗ = f ∗(c′0) is as in (23) and

C(f ∗) ≤ c′0 + Cmax(f ∗) ≤ c′0 + 1=c0. (33)

This means that the solution f ∗ is feasible and thusW (f ∗) ≥ W ∗
map(c0). We have from Corollary

8 and our expressions for the optimal value of λ that

Wmax = O

(
1 +

n

c2
0

)√
log n/n = o

(
n

c0

)
= o(W (f ∗)).

Going back to (32) we see that W ∗
map(c0) ≈ π

8
n
c0

, thus showing (28) holds with probability at

least 1−O(n−90). Moreover,

W ∗
map(c0) ≈ max

λ
φmap(λ, c0). (34)

Case 2: c0 = αn, α = O(1).

If α > 1/2 then w.h.p. we can take the mapping f(v) where W(v,f(v)) = min
{
W(v,w) : w 6= v

}
.

Then the sum
∑

v C(v,f(v)) being the sum of n independent uniform [0, 1] random variables is
asymptotically equall to n/2 w.h.p. This implies that f defines a feasible mapping w.h.p.

Assume then that α < 1/2. We use the argument of Case 1 and we omit details common
to both cases. We first check that the optimal value λ∗ is in the second range of Lemma 5,

justifying (25) in this case. To see this observe that if λ = β
n

where β ∈
[

1
logn

, log n
]

then

φmap(λ, c0) ≈ f(β)− αβ. Now Lemma 3 affirms that f(β)− αβ is concave and that there is a
unique positive solution β∗ to f ′(β) = α. It follows that maxλ φmap(λ, c0) ≈ f(β∗)− αβ∗.

We let c′0 = c0 − 1 ≈ c0. Using the continuity of f and Wmax = o(1) from (17), we have
W ∗
map(c0) ≥ (1 + o(1))W (f ∗) in (32) and by (23) we have C(f ∗) ≤ c′0 + 1 = c0. Again, (25) is

satisfied.

Case 3: c0 = α, α = O(1).

If α < 1 then w.h.p. the problem is infeasible. This is because the sum S =
∑

v minwW(v,w)

is the sum of n i.i.d. random variables and this sum has mean n
n+1

and Lemma 7 with λ = 0
shows that S is concentrated around its mean.

Assume then that α > 1. We use the argument of Case 1 and as in Case 2, we omit details
common to both cases. We first check that the optimal value λ∗ is in the fourth range of Lemma

5. To see this observe that if λ = βn where β ∈
[

1
logn

, log n
]

then φmap(λ, c0) ≈ n(g(β)− αβ).

Now Lemma 4 affirms that g(β) − αβ is concave and that there is a unique positive solution
β∗ to g′(β) = α. It follows that maxλ φmap(λ, c0) ≈ n(g(β∗) − αβ∗). It only remains to check
that Cmax(f ∗) = o(1) so that we can apply (23). Again, (25) is satisfied.

We now let c′0 = c0 − 1/n1/2 ≈ c0. Using the continuity of g and Wmax ≤ 1 we have W ∗
map ≥

(1 + o(1))W (f ∗) in (32) and we have C(f ∗) ≤ c′0 +K logn
n
≤ c0.

One final point. Our expressions for φ(λ) are only valid within a certain range. But because,
φ is concave and we have a vanishing derivative, we know that the values outside the range
cannot be maximal.
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4.2 From a mapping to an arborescence

Case 1:
Fix c0 and let c′0 = c0(1− ε) with ε = n−1/4 log n. Since c′0 ≈ c0, by (28) and (34), we have

W ∗
arb(c0) ≥ W ∗

map(c0) ≈ πn

8c0

≈ πn

8c′0
≈ W ∗

map(c
′
0) ≈ max

λ
φmap(λ, c

′
0).

Let the maximum on the right hand side be attained at some λ∗ and let λ∗∗ be the closest
discretized value. Let f ∗ be as defined in Section 3.4 and f ∗∗ minimise W (f) +λ∗∗C(f). Then,
we have from Lemma 10 and (23) that

W (f ∗) ≤ W ∗
map(c0) +Wmax +O(n−3)

C(f ∗) ≤ c′0 + Cmax.
(35)

We now argue that with high probability it is possible to modify f ∗ to obtain a feasible
arborescence A, that is of cost at most c0, having weight very close to W ∗

map.

By Lemmas 9 and 12, with probability at least 1−O(n−10), f ∗ has at most K log n cycles for
some universal constant K. Then the largest component of the digraph Df∗ , call it U , has at
least n

K logn
vertices.

We know from Corollary 8 that w.h.p. we do not use any edge of weight more than O((1 +
λ∗)
√

log n/n) in constructing f ∗. It follows, as in Karp and Steele [9], that given f ∗, we can

treat the edges of weight at least Ŵ = K(1 + λ∗)
√

log n/n as being independent samples

from [Ŵ , 1]. Similarly, edges of cost at least Ĉ = K(1 + 1/λ∗)
√

log n/n can be treated as

independent samples from [Ĉ, 1].

We consider two cases:

Case 1a: n1/2 ≤ c0 ≤ n/ω:
For each cycle, choose arbitrarily one vertex belonging to it, say v, remove its out-edge, break-
ing the cycle and put instead the minimum weight out-edge connecting it to the maximum
component U∗. This way f ∗ is transformed into an arborescence, call it A. The probability
that the added out edge weighs more than 2Ŵ is at most

(1− 2Ŵ )Ω(n/ logn) ≤ exp

{
−Ω

(
n

log n
·
(

1 +
n

c2
0

)√(
log n

n

))}
= o(n−10).

We have W ∗
map = Ω(n/c0) = Ω(ω) and (35) and Wmax, Cmax ≤ 1.

W (A) ≤ W (f ∗) + 2KŴ log n = (1 + o(1))W ∗
map.

C(A) ≤ c′0 + 1 +O(n−3) +K log n ≤ c0.

To justify the final estimate for W (A) we have used
λ∗
√

logn/n

n/c0
= O

(√
logn/n

c0

)
= o(1).

Case 1b: ω ≤ c0 ≤ n1/2:
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For each cycle, choose arbitrarily one vertex belonging to it, say v, remove its out-edge, breaking
the cycle and put instead the minimum cost out-edge connecting it to U∗. This way f ∗ is
transformed into an arborescence, call it A. The probability that the added out edge costs
more than 2Ĉ is at most

(1− 2Ĉ)Ω(n/ logn) ≤ exp

{
−Ω

(
n

log n
·
(

1 +
c2

0

n

)√(
log n

n

))}
= o(n−10).

We have W ∗
map = Ω(n/c0) = Ω(n1/2) and (35) and Wmax, Cmax ≤ 1.

W (A) ≤ W (f ∗) +K log n = (1 + o(1))W ∗
map.

C(A) ≤ c′0 + 1 +O(n−3) + 2KĈ log n ≤ c0.

To justify the final estimate for C(A) we have used
(λ∗)−1

√
logn/n

c0
= O

(
c0
√

logn/n

n

)
= o(1).

This finishes the proof of Case 1.

Case 2:
We have c0 = Ω(n) here and λ∗∗ = β∗∗ = Θ(1). We can therefore use (15) to argue that w.h.p.
max {Wmax(f ∗), Cmax(f ∗)} = O(

√
log n/n). We then can proceed as in Case 1b and use edges

e such that We, Ce ∈ [n−1/4, 2n−1/4] to transform f ∗ into an arborescence and w.h.p. change
weight and cost by o(1) only.

Case 3:
We have λ∗∗ = β∗∗n = Θ(n). We can therefore use (15) to argue that w.h.p. Cmax(f ∗) =
O(
√

log n/n). We proceed as in Case 1b and use edges e such that We ≤ 1, Ce ∈ [n−1/4, 2n−1/4]
to transform f ∗ into an arborescence. The extra cost in going from mapping f ∗ to an
arborescence A is O(n−1/4 log n) = o(1), thus C(A) ≤ c′0 + rn = c0(1 − ε) + rn, where
rn = O(

√
log n/n) +O(n−1/4 log n), so C(A) < c0 provided that ε is chosen such that εc0 > rn.

The extra weight is O(log n) which is much smaller than the optimal weight which is Ω(n)
w.h.p.

5 More general weights and costs

We now consider the case where we have We, Ce, e ∈ E(Kn) distributed as independent copies
of U s, s < 1, U ∼ Unif([0, 1]). We follow the same ideas as for s = 1, but there are technical
difficulties. Let us first though explain the need for the lower bound on c0 in Theorem 2, up
to a logarithmic factor.

Lemma 14. Let X1, X2, . . . , Xn be independent copies of U s and let Y = mini≤nXi. Then

EY ≈ Γ(s+ 1)n−s. (36)
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Proof.

Emin
i≤n

Xi =

∫ 1

t=0

Pr(U > t1/s)ndt

=

∫ 1

t=0

(1− t1/s)ndt

= s

∫ 1

t=0

(1− s)nss−1ds

= sB(n+ 1, s) Beta distribution

=
Γ(n+ 1)Γ(s+ 1)

Γ(n+ s+ 1)

≈ Γ(s+ 1)
(n/e)n

((n+ s)/e)n+s
Stirling’s approximation

=
Γ(s+ 1)es

(n+ s)s

(
n

n+ s

)n
≈ Γ(s+ 1)

ns
.

It follows from (36) that the expected weight of a minimum random mapping is asymptotically
equal to Γ(s + 1)n1−s. This being the expectation of the sum of n independent bounded
random variables distributed as Y in Lemma 14, we see from Hoeffding’s theorem [7] that it
is concentrated around its mean. This explains the relevance of the lower bound in (3), up to
the log n factor.

Our next task is get a version of Lemma 5 for our more general random variables.

Lemma 15. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be independent copies of U s. Suppose that(
log n

n

)s
� λ�

(
n

log n

)s
. (37)

Let

Cs = Γ(s/2 + 1)

(
Γ(2/s+ 1)

Γ(1/s+ 1)2

)s/2
.

Then

Emin
i≤n
{Xi + λYi} ≈

Csλ
1/2

ns/2
.

Proof. Let X, Y be independent copies of U . After some elementary computations we see the
following.

Case 1: λ > 1.

P (Xs + λY s ≤ t) =



∫ t1/s
x=0

(
t−xs
λ

)1/s
dx 0 < t < 1.∫ 1

x=0

(
t−xs
λ

)1/s
dx 1 < t < λ.

(t− λ)1/s +
∫ 1

x=(t−λ)1/s

(
t−xs
λ

)1/s
dx λ < t < 1 + λ

1 1 + λ < t.

(38)
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Only the first integral in the above seems computable at the moment and this restricts our
range for c0. We have

I1(t) =

∫ t1/s

x=0

(
t− xs

λ

)1/s

dx =
t2/s

sλ1/s

∫ 1

y=0

y1/s−1(1− y)1/sdy =
t2/s

λ1/s

Γ(1/s+ 1)2

Γ(2/s+ 1)
. (39)

For the remaining integrals, we only have lower bounds. Let Z = mini≤n {Xi + λYi}. Going
back to (10) we see that we need lower bounds to show that the contributions of these integrals
to E(Z) is negligible. We note also that we will only be concerned with small values of t in the
sequel and so we need to show that these integrals are large compared to the R.H.S. of (39).

Put Ds = Γ(1/s+1)2

Γ(2/s+1)
. Crudely, by the monotonicity in t of P (Xs + λY s ≤ t),

I3 ≥ I2 ≥ I1(1) =
1

λ1/s
Ds.

Then

E(Z) =

∫ 1

t=0

(1− I1)ndt+

∫ λ

t=1

(1− I2)ndt+

∫ 1+λ

t=λ

(1− I3)ndt =∫ 1

t=0

(
1− t2/s

λ1/s
Ds

)n
dt+O

(
λe−Dsn/λ

1/s
)
. (40)

We substitute t =
(
sλ1/s

Dsn

)s/2
and estimate∫ 1

t=0

(
1− Dst

2/s

λ1/s

)n
dt ≤

∫ ∞
t=0

exp

{
−Dsnt

2/s

λ1/s

}
dt

=
sλ1/2

2(Dsn)s/2

∫ ∞
t=0

e−sss/2−1ds

=
Γ(s/2 + 1)Γ(2/s+ 1)s/2λ1/2

Γ(1/s+ 1)sns/2
.

On the other hand, if t0 = λ1/2

ns/4 logn
then

Is t0 ≤ 1?∫ 1

t=0

(
1− Dst

2/s

λ1/s

)n
dt ≥

∫ t0

t=0

(
1− Dst

2/s

λ1/s

)n
dt

=

∫ t0

t=0

exp

{
−Dsnt

2/s

λ1/s
+O

(
nt

4/s
0

λ2/s

)}
dt

≈
∫ t0

t=0

exp

{
−Dsnt

2/s

λ1/s

}
dt

=

∫ ∞
t=0

exp

{
−Dsnt

2/s

λ1/s

}
dt−O

(
exp

{
−Dsnt

2/s
0

λ1/s

})

=

∫ ∞
t=0

exp

{
−Dsnt

2/s

λ1/s

}
dt−O

(
exp

{
−Dsn

1/2

log2/s n

})
≈ Γ(s/2 + 1)Γ(2/s+ 1)s/2λ1/2

Γ(1/s+ 1)sns/2
.
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It remains to notice that thanks to the assumption on λ, the error term O
(
λe−Dsn/λ

1/s
)

is

small relative to the main term.

Case 2: λ ≤ 1. We have

Emin
i≤n
{Xi + λYi} = λEmin

i≤n
{λ−1Xi + Yi} ≈

Csλ
1/2

ns/2
.

Corollary 16. Under the assumptions of Lemma 15, we have

nEmin
i≤n
{Xi + λYi} ≈ Csλ

1/2n1−s/2. (41)

Our next task is to prove an appropriate version of Lemma 3.3.

Lemma 17. Let W(i,j) and C(i,j), i, j ≤ n, be i.i.d. copies of U s and suppose that (37) holds.
For Xi = minj{W(i,j) + λC(i,j)}, S =

∑
i≤nXi and ε = Ω(n−1/5), we have

P (|S − ES| > εES) = O(n−99). (42)

Moreover,

P
(
∃i : Xi > 10(1 + λ)n−s/2 logs/2 n

)
≤ n−99. (43)

Proof. We closely follow the argument of Lemma 3.3, making adjustments as necessary. Let
M = 10(1 + λ)n−s/2 logs/2 n and B be the event that for some i, Xi ≥M . We have,

P (|S − ES| > εES) ≤ P (B) + P ((|S − ES| > εES) ∧Bc) . (44)

First we bound P (B). By the union bound and independence,

P (B) ≤ nP (X1 ≥M) = n
[
P
(
W(1,1) + λC(1,1) ≥M

)]n
.

We use W(1,1) + λC(1,1) ≤ (1 + λ) max{W(1,1), C(1,1)} and note that since these variables are
distributed as U s, we have P

(
max{W(1,1), C(1,1)} ≥ u

)
= 1− u2/s for u < 1. We thus get

P (B) ≤ n

[
1− 102/s log n

n

]n
≤ ne−100 logn = n−99,

which establishes (43).

The second term in (44) can be bounded using Chernoff’s inequality because on Bc, Xi =
Xi1Xi≤M , that is S can be treated as a sum of n independent random variables X̃i = Xi1Xi≤M
with X̃i ∈ [0,M ]. Clearly X̃i ≤ Xi and S̃ =

∑
X̃i ≤ S, so

P ((|S − ES| > εES) ∧Bc) = P
(

(|S̃ − ES| > εES) ∧Bc
)
≤ P

(
|S̃ − ES| > εES

)
.

By the Chernoff bound

P
(
|S̃ − ES̃| > εES̃

)
≤ 2 exp

{
−ε

2ES̃
3M

}
.
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Note that
|S̃ − ES| ≤ |S̃ − ES̃|+ |ES − ES̃|.

and

|ES − ES̃| =
∣∣∣E∑Xi1Xi>M

∣∣∣ ≤ (1 + λ)E
∑

1Xi>M ≤ (1 + λ)nP (X1 > M)

= O(n−90),

thanks to (43). Moreover, by Corollary 16, ES = Ω(n1−s/2λ1/2) thus

|ES − ES̃| ≤ 1

2
εES

and we get

P
(
|S̃ − ES| > εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES̃

)
≤ 2 exp

{
−ε

2ES̃
12M

}
.

Finally, observe that since λ1/2

1+λ
≥ 1

2
max{λ, λ−1}1/2 � 1

2

(
logn
n

)s/2
,

ES̃
M
≥ ES

2M
≈ Csnλ

1/2

20(1 + λ) logs/2 n
= Ω

(
n1−s/2).

So
P (|S − ES| > εES,Bc) ≤ 2e−Ω(n9/10−s/2).

In view of (44), this combined with (43) finishes the proof of (42).

In place of Corollary 8 we have

Corollary 18. Let Mn denote the minimum weight of a mapping with weights We + λCe, e ∈
E( ~Kn), with λ as in Lemma 17. Then with probability 1−O(n−90),

Mn ≈ Csn
1−s/2λ1/2 and Wmax = O((1 + λ)n−s/2 logs/2 n) = o(Mn).

Proof. This follows from Lemmas 15 and 17.

The results of Sections 3.4, 3.5 and 3.6 carry over. We now establish

Lemma 19. Assuming (3), we have that w.h.p.,

max
λ

φmap(λ, c0) ≈ C2
sn

2−s

4c0

. (45)

Proof. We have (
log n

n

)s
� λ�

(
n

log n

)s
and n1−s log n� c0 �

n

log1/2 n
. (46)
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Now consider the function
Csn

1−s/2λ1/2 − c0λ. (47)

This is a concave function of λ and it will be maximised when

Csn
1−s/2λ−1/2/2 = c0 or λ =

C2
sn

2−s

4c2
0

, (48)

and we note that this value of λ is consistent with (46).

Substituting for λ in (47) and simplifying, we see that (45) holds.

Equations (3) and (45) imply that w.h.p. maxλ φmap(λ, c0) � n1−s. So, we can as in Section
4.1 argue with c0 replaced by c′0 = c0 − 1 and deduce from (33) that

W ∗
map(c0) ≈ C2

sn
2−s

4c0

w.h.p.

Proceeding as in Section 4.2 we see that w.h.p.

W ∗
arb(c0) = W ∗

map(c0) +O(log n)

and this completes the proof of Theorem 2.

5.1 A coupling argument

We follow an argument from Janson [8]. We will asssume that We, Ce have the distribution
function Fw(t) = Pr(X ≤ t), of a random variable X, that satisfies F (t) ≈ at1/s, s ≤ 1 as
t→ 0. The constant a > 0 can be dealt with by scaling and so we assume that a = 1 here. For
a fixed edge and say, We, we consider random variables W<

e ,W
>
e such that W<

e is distributed
as U s+εn and W>

e is distributed as U s−εn , where εn = 1/10 log n. (This choice of εn means that
ns+εn = e1/10ns.) Then suppose that X has the distribution F−1(U). We couple X,W<,W>

by generating a copy Ue of U and then putting W<
e = F−1

< (Ue) = log
(

1
1−u

)s−εn
. F> is defined

similarly. The coupling ensures that W<
e ≤ We ≤ W>

e as long as We ≤ εn.

Given the above set up, it only remains to show that w.h.p. edges of length We > εn or cost
Ce > εn are not needed for the upper bounds proved above. We can ignore the lower bounds,
because they only increase if we exclude long edges. But this follows from Corollary 18.

6 Conclusion

We have determined the asymptotic optimum value to Problem (1) w.h.p. The proof is con-
structive in that we can w.h.p. get an asymptotically optimal solution (1) by computing
arborescence A of the previous section. When weights and costs are uniform [0, 1], our theo-
rem covers almost all of the possibilities for c0, although there are some small gaps between
the 3 cases. Our results for more general distributions have a more limited range and further
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research is needed to extend this part of the paper. We have also considered more general
classes of random variable and here we have a more limited range for c0.

The present result assumes that cost and weight are independent. It would be more reasonable
to assume some positive correlation. This could be the subject of future research. One could
also consider more than one constraint.
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