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Abstract

We are given a bipartite graph that contains at least one perfect matching and where each

edge is colored from a set Q = {c1,¢2,...,¢q}. Let
Qi = {e € E(G) : c(e) = ¢;}, where ¢(e) denotes the color of e. The perfect matching color profile
mep(G) is defined to be the set of vectors (mq,ma,...,my) € [n]? such that there exists a perfect

matching M such that |[M N Q;| = m;. We give bounds on the matching color profile for a
randomly colored random bipartite graph.

1 Introduction

We consider the following problem: we are given a random bipartite graph G in which each edge is
given a random color from a set @ = {c1,¢2,...,¢,}. An edge e is colored c(e) = ¢; with probability
a; where a;; > 0 is a constant. Let Q; = {e € E(Q) : ¢(e) = ¢;}, where c(e) denotes the color of e. The
perfect matching color profile mep(G) is defined to be the set of vectors (mq, mo, ..., m,) € [n|? such
that there exists a perfect matching M such that |M N Q;| = m;. We give bounds on the matching
color profile for a randomly colored random bipartite graph.

Randomly colored random graphs have been studied recently in the context of (i) rainbow matchings
and Hamilton cycles, see for example [2], [3], [7], [11]; (ii) rainbow connection see for example [5],
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[9], [10], [13], [12]; (iii) pattern colored Hamilton cycles, see for example [1], [6]. This paper can be
considered to be a contribution in the same genre. One can imagine a possible interest in the color
profile via the following scenario: suppose that A is a set of tools and B is a set of jobs where edge {a, b}
indicates that b can be completed using a. If colors represent people, then one might be interested in
equitably distributing jobs. L.e. determining whether (n/q,n/q,...,n/q) € mep(G). In any case, we
find the problem interesting.

We will consider G to be the random bipartite graph G, ,,, where p = log++“’, w = w(n) — oo where
w = o(logn). Erdés and Rényi [4] proved that G has a perfect matching w.h.p. We will prove the
following theorem: let oy, w,..., a4, B be positive constants such that oy + g +--- +a, = 1 and
B <1/q. Let

Qpin = min {o; : i € [q]}.

log n+w

Theorem 1. Let G be the random bipartite graph Gy, ,,, where p = , w=w(n) = oo where w =
o(logn). Suppose that the edges of G are independently colored with colors from C' = {c1,¢a,..., ¢4}
where P(c(e) = ¢;) = o, fore € E(G),i € [q]. Let my,ma,...,m, satisfy: (i) my +---+my, =n and
(i) m; > pn,i € [q]. Then w.h.p., there exists a perfect matching M in which exactly m; edges are
colored with c¢;;1 =1,2,...,q.

It is clear that w.h.p. (n,0,...,0) ¢ mcp(G). This is because the bipartite graph induced by edges
of color ¢ is distributed as Gy, 4, and this contains isolated vertices w.h.p. On the other hand, if

p > [I(IL"?) then w.h.p. mep(G) = [n]?. To see this, suppose that m; < my < ---m, < n. Suppose

we havemifnound a matching that uses m; edges of color ¢; for i > 0. Let n" =n —mq; —--- —m,;. Then
the random bipartite graph induced by vertices not in M and having edges of color ¢; has density at

least 4o . logndw log"nfw/ 2 and so has a perfect matching w.h.p.

QminM n'

Open Question: What is the threshold for mep(G) = [0, n|??

2 Structural Lemma

Suppose that the bipartition of V(G) is denoted A, B. For sets S C A, T C B we let ¢;(S,T) denote
the number of S : T" edges of color ¢;. We say that vertex u is ¢;-adjacent to vertex v if the edge {u, v}
exists and has color ¢;.

log n+w

2w = w(n) — oo where w = o(logn). Then w.h.p.

Lemma 2. Let p =

(a) S C AT C B and y,logn < |S| < ng = v,n/logn and |T| < a;n|S|logn where v, = n/(20c;)
implies that e;(S : T) < 2a;n|S|logn fori=1,2,...,q.

(b) There do not exist sets X C S C AT C B and i € [q] such that |S|,|T| > pn and |X| =
]S/ logn, v, = 10log(e/B) /i and such that each x € X is ¢;-adjacent to fewer than ;5 logn/10
vertices in T



(¢c) There do not exist sets X C S C AT C B and i € [q] such that |S|,|T| > n and | X| =|S|/logn

and a set Z C T, |Z| = ywn/logn such that each x € X is ¢;-adjacent to k = 10(;11(2271 vetices in Z.

(d) There do not exist sets S C A,T C B and i € [q] such that |S|,|T| > Bn such that there are more
than ~an/logn,vq = o% log (%) vertices in T that not c;-adjacent to a vertex in S.

(e) Fiz~,6 > 0 constants. Then w.h.p. there do not exist sets S,T with |S| = |T'| = yn/logn such
that e;(S,T) > 0|S|logn/loglogn.

(f) There do not exist sets S C A, T C B and i € [q] such that |S|,|T| > n/10 such that e;(S,T) = 0.

Proof
(a) The probability that the condition is violated can be bounded by
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(b) The probability that the condition is violated can be bounded by

e (O G
b

The factor e~*#%/* comes from applying a Chernoff bound.

(c) We can assume w.l.o.g. that |S| = |T'| = fn. The probability that the condition is violated can be
bounded by

() o) ) (o)™




(d) The probability that the condition is violated can be bounded by

n 2 pn nyqn/logn € Zro —aivd .
(ﬁn) (%n/ log n) (1 — a;p)? logn < ((B) e =o(1).

(e) The probability that the condition is violated can be bounded by

n ? 72n2/(10g TL)2 pdn/loglogn <
yn/logn on/loglogn -

(elogn)%”/log" (,VQGIOglOgn>5n/loglogn
B P =o(1).
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(f) The probability that the condition is violated can be bounded by

22n(1 _p)62n2/100 _ 0(1)‘

3 Proof of Theorem (1

Proof Assume from now on that the high probability conditions of Lemma [2] are in force. Let M
be a perfect matching and let pu; = [MNQ;| for ¢ € [g]. Suppose that p; > my > fn and fn < ps < ma.
We show that we can find another matching M’ such that |[M'NQ1| = p1—1 and [M'NQ2| = p2+1. We
do this by finding an alternating cycle with edge sequence C' = (eq, f1,. .., €, fr) and vertex sequence
(x1 € Ayy1 € B,xa,...,2s,yp,x1) such that (1) e; = {z;,vi} € M, (i) f; = {yi,zi1} & M,i € [{],
(ili) e; € Q1 and (iv) E(C) \ {e1} C Q2. Repeating this for pairs of colors, one over-subscribed and
one under-subscribed we eventually achieve our goal. It is sufficient to consider this case, seeing as
we can always w.h.p. find a matching that has been randomly colored with ~ a;n edges of color ¢;,
i=1,2,...,q.

Next let A; = V(M NQ;)NAand B, = V(MNQ;)NBfori e [g] and for S C A let N;(S) =
{be B:3a€S st .{ab} € Q;} and N;(a) = N;({a}). Then let

agﬁlogn}

D[/) = {a S A2 . |N2(CL) ﬂBQ| > 10

, 10logn
Do—{CLEAll|N2(a)ﬂM(A2\DO)|§kO— & }

log logn
It follows from Lemma [2b) that

Yot
M(As\ D) < )
M (A2\ D)l < 35

It then follows from Lemma (c) that if Wy = Ay \ Dy then

n

[Wo| <

logn’



We now define a sequence of sets Wy, Wi, ... where W is obtained from W; by adding a vertex of
Ay \ W; for which |Ny(a) N M (W;)| > ko. Now consider S = Wy, T' = M (W}) for some ¢t > 1. Then we

have
n

S| =T <t+ I and ey (S, T) > tky.

ogn

Given Lemma [(e) with § = 5,7 = 2, we see that this sequence stops with ¢ = t* < 4n/logn. So we
now let Ry = Ay \ Wy«. We note that

5n
|Ro| > Bn — ]
ogn @)
|
a € Ry implies |Ny(a) N M(Ry)| > %S)gn — k.

We now fix some ay € Ry and define a sequence of sets Xy, Yy, X3, Y1,... where X; C Ry and Y; C Bs.
We let Xy = {ap} and then having defined X;,i > 0 we let

Y; = No(X;) and X, 4 = <M‘1(Y,~) \ UX]-> N Ry.

J<i
We claim that for i > 0,

agﬁlogn|

implies that | X;,1| > 5%

n
Xl < ——— X;l. 3
[Xil < 200logn | (3)

We verify below. Assuming its truth, there exists a smallest k£ such that

Qs fin
X5l > . 4
Starting with }A/O = {by} where by = M(ay) € Ro, we can similarly construct a sequence of sets

Y1, X1, ... where )?j C M~ (Ry) and }A/J C Ry. Here Ry is the equivalently defined set to Ry in B,.
We can assume that by € Ry, because of the sizes of the sets Ry, Ry. More precisely, by , there will
be o(n) choices for ay for which by ¢ Ry. Having defined Y; we let

X; = Ny(Y;) and Yy = (M()A(i) \ Ufg) N Ro.

J<i

and then let ?i+1 =M ()A(l) The equivalent of will be

~ n o ~ asflogn ~
V| < ——— lies that |Yi | > ———|Y;|.
Assuming its truth, there exists ¢ such that
S agfn
Y, > . 6



It follows from Lemma (f) that at least 9/10 of the vertices of A; have a cy-neighbor in Ry and at
least 9/10 of the vertices of By have a co-neighbor in Ry. We deduce from this that there is a pair
xo € A1,y0 = M(x¢) € By such that Ny(xg) NRy 0 and No(yo) N Ry # (). This defines an alternating
cycle xg, ug, P1, bo, ag, Ps, vo, Yo, xg. Here ug is a co-neighbor of xg in Ry and P, is (the reversal of) a
path from wuy to by and P, is the path from ay to vy € X, vg € Na(yo). This completes the proof of
Theorem [1I

Verification of , : We have by the assumption ag € Ry that

a3 logn
10

Now suppose that 1 < |X;| < n/(200logn). Then, by (2),

X = v > ~ o(logn)

(B logn)| X
10+0(1)

ea(Xi 1 (No(Xi) \ M(A2\ Ro))) >

Applying Lemma [2|(a) we see that

_ (sBlogn)|X;

[Na(Xi) \ M (A2 \ Ro)| > 0+ol) (7)

Because the sets X7, Xo, ... expand rapidly, the total size of | i< X is small compared with the R.H.S
of and follows. The argument for is similar. a

4 Concluding Remarks

We have established that w.h.p. mep(G) is almost all of [0,n]? and posed the question of findng the
exact threshold for mep(G) = [0,n]9. It seems technically feasible to extend our results to randomly
colored G, ,. We leave this for future research. It would be of some interest to analyse other spanning
subgraphs from this point of view e.g. Hamilton cycles.
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