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Abstract. In this paper, we consider the problem of partitioning a small data
sample drawn from a mixture ofk product distributions. We are interested in the
case that individual features are of low average qualityγ, and we want to use as
few of them as possible to correctly partition the sample. Weanalyze a spectral
technique that is able to approximately optimize the total data size—the product
of number of data pointsn and the number of featuresK—needed to correctly
perform this partitioning as a function of1/γ for K > n. Our goal is motivated
by an application in clustering individuals according to their population of origin
using markers, when the divergence between any two of the populations is small.

1 Introduction

We explore a type of classification problem that arises in thecontext of computational
biology. The problem is that we are given a small sample of size n, e.g., DNA ofn
individuals (think ofn in the hundreds or thousands), each described by the values
of K featuresor markers, e.g., SNPs (Single Nucleotide Polymorphisms, think ofK
as an order of magnitude larger thann). Our goal is to use these features to classify
the individuals according to their population of origin. Features have slightly different
probabilities depending on which population the individual belongs to, and are assumed
to be independent of each other (i.e., our data is a small sample from a mixture ofk very
similar product distributions). The objective we consideris to minimize the total data
sizeD = nK needed to correctly classify the individuals in the sample as a function of
the “average quality”γ of the features, under the assumption thatK > n. Throughout
the paper, we usepji andµji as shorthands forp(j)

i andµ(j)
i respectively.

Statistical Model: We havek probability spacesΩ1, . . . , Ωk over the set{0, 1}K. Fur-
ther, the components (features) of z ∈ Ωt are independent andPrΩt [zi = 1] = pit
(1 ≤ t ≤ k, 1 ≤ i ≤ K). Hence, the probability spacesΩ1, . . . , Ωk comprise the
distribution of the features for each of thek populations. Moreover, the input of the
algorithm consists of a collection (mixture) of n =

∑k
t=1Nt unlabeled samples,Nt

points fromΩt, and the algorithm is to determine for each data point from which of
Ω1, . . . , Ωk it was chosen. In general we donot assume thatN1, . . . , Nt are revealed
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to the algorithm; but we do require some bounds on their relative sizes. An important
parameter of the probability ensembleΩ1, . . . , Ωk is themeasure of divergence

γ = min
1≤s<t≤k

∑K
i=1(p

i
s − pit)

2

K
(1)

between any two distributions. Note that
√
Kγ measures the Euclidean distance be-

tween the means of any two distributions and thus representstheir separation. Further,
letN = n/k (so if the populations were balanced we would haveN of each type) and
assume from now on thatkN < K. LetD = nK denote the size of the data-set. In
addition, letσ2 = maxi,t p

i
t(1 − pit) denote the maximum variance of any random bit.

The biological context for this problem is we are given DNA information fromn
individuals fromk populations of origin and we wish to classify each individual into
the correct category. DNA contains a series of markers called SNPs, each of which has
two variants (alleles). Given the population of origin of anindividual, the genotypes can
be reasonably assumed to be generated by drawing alleles independently from the ap-
propriate distribution. The following theorem gives a sufficient condition for a balanced
(N1 = N2) input instance whenk = 2.

Theorem 1. (Zhou 06 [?])AssumeN1 = N2 = N . If K = Ω( lnN
γ ) andKN =

Ω( lnN log logN
γ2 ) then with probability1 − 1/ poly(N), among all balanced cuts in

the complete graph formed among2N sample individuals, the maximum weight cut
corresponds to the partition of the2N individuals according to their population of
origin. Here the weight of a cut is the sum of weights across all edges in the cut, and the
edge weight equals the Hamming distance between the bit vectors of the two endpoints.

Variants of the above theorem, based on a model that allows two random draws from
each SNP for an individual, are given in [?,?]. In particular, notice that edge weights
based on the inner-product of two individuals’ bit vectors correspond to the sample
covariance, in which case the max-cut corresponds to the correct partition [?] with
high probability. Finding a max-cut is computationally intractable; hence in the same
paper [?], a hill-climbing algorithm is given to find the correct partition for balanced
input instances but with a stronger requirement on the sizesof bothK andnK.

A Spectral Approach: In this paper, we construct two simpler algorithms using spec-
tral techniques, attempting to reproduce conditions above. In particular, we study the
requirements on the parameters of the model (namely,γ,N , k, andK) that allow us to
classify every individual correctly and efficiently with high probability.

The two algorithms CLASSIFY and PARTITION compare as follows. Both algo-
rithms are based on spectral methods originally developed in graph partitioning. More
precisely, Theorem 2 is based on computing the singular vectors with the two largest
singular values for each of then × K input random matrix. The procedure is concep-
tually simple, easy to implement, and efficient in practice.For simplicity, Procedure
Classify assumes the separation parameterγ is known to decide which singular vector
to examine; in practice, one can just try both singular vectors as we do in the sim-
ulations. Proof techniques for Theorem 2, however, are difficult to apply to cases of
multiple populations, i.e.,k > 2. Procedure Partition is based on computing a rank-k



approximation of the input random matrix and can cope with a mixture of a constant
number of populations. It is more intricate for both implementation and execution than
Classify. It does not requireγ as an input, while only requires that the constantk is
given. We prove the following theorems.

Theorem 2. Let ω = min(N1,N2)
n andωmin be a lower bound onω. Let γ be given.

Assume thatK > 2n lnn andk = 2. ProcedureCLASSIFY allows us to separate two

populations w.h.p., whenn ≥ Ω
(

σ2

γωminω

)
, whereσ2 is the largest variance of any

random bit, i.e.σ2 = maxi,t p
i
t(1 − pit). Thus if the populations are roughly balanced,

thenn ≥ c
γ suffices for some constantc.

This implies that the data required isD = nK = O
(
lnnσ4/γ2ω2ω2

min

)
. Let Ps =

(pis)i=1,...,K , we have

‖P1 − P2‖2 =
√
Kγ =

√√√√
K∑

i=1

(pi1 − pi2)
2 ≥ σ

ωminω

√
lnn. (2)

Theorem 3. Letω = min(N1,...,Nk)
n . There is a polynomial time algorithmPARTITION

that satisfies the following. Suppose thatK > n logn, γ > K−2, n > Ckσ
2

γω for some
large enough constantCk, andω = Ω(1). Then given the empiricaln × K matrix
comprising theK features for each of then individuals along with the parameterk,
PARTITION separates thek populations correctly w.h.p.

Summary and Future Direction: Note that unlike Theorem 1, both Theorem 2 and
Theorem 3 require a lower bound onn, even whenk = 2 and the input instance is bal-
anced. We illustrate through simulations to show that this seems not to be a fundamental
constraint of the spectral techniques; our experimental results show that even whenn
is small, by increasingK so thatnK = Ω(1/γ2), one can classify a mixture of two
populations using ideas in Procedure Classify with successrate reaching an “oracle”
curve, which is computed assuming that distributions are known, where success rate
means the ratio between correctly classified individuals andN . Exploring the tradeoffs
of n andK that are sufficient for classification, when sample sizen is small, is both of
theoretical interests and practical value.

1.1 Related Work

In their seminal paper [?], Pritchard, Stephens, and Donnelly presented a model-based
clustering method to separate populations using genotype data. They assume that ob-
servations from each cluster are random from some parametric model. Inference for
the parameters corresponding to each population is done jointly with inference for the
cluster membership of each individual, andk in the mixture, using Bayesian methods.

The idea of exploiting the eigenvectors with the first two eigenvalues of the adja-
cency matrix to partition graphs goes back to the work of Fiedler [?], and has been
used in the heuristics for various NP-hard graph partitioning problems (e.g., [?]). The
main difference between graph partitioning problems and the classification problem



that we study is that the matrices occurring in graph partitioning are symmetric and
hence diagonalizable, while our input matrix is rectangular in general. Thus, the contri-
bution of Theorem 2 is to show that a conceptually simple and efficient algorithm based
on singular value decompositions performs well in the framework of a fairly general
probabilistic model, where probabilities for each of theK features for each of thek
populations are allowed to vary. Indeed, the analysis of CLASSIFY requires exploring
new ideas such as the Separation Lemma and the normalizationof the random matrix
X , for generating a large gap between top two singular values of the expectation ma-
trix X and for bounding the angle between random singular vectors and their static
correspondents, details of which are included in Section 2 with analysis in full version.

Procedure Partition and its analysis build upon the spectral techniques of McSh-
erry [?] on graph partitioning, and an extension due to Coja-Oghlan[?]. McSherry pro-
vides a comprehensive probabilistic model and presents a spectral algorithm for solving
the partitioning problem on random graphs, provided that a separation condition similar
to (2) is satisfied. Indeed, [?] encompasses a considerable portion of the prior work on
Graph Coloring, Minimum Bisection, and finding Maximum Clique. Moreover, McSh-
erry’s approach easily yields an algorithm that solves the classification problem studied
in the present paper under similar assumptions as in Theorem3, provided that the algo-
rithm is given the parameterγ as an additional input; this is actually pointed out in the
conclusions of [?]. In the context of graph partitioning, an algorithm that does not need
the separation parameter as an input was devised in [?]. The main difference between
PARTITION and the algorithm presented in [?] is that PARTITION deals with the asym-
metricn×K matrix of individuals/features, whereas [?] deals with graph partitioning
(i.e., a symmetric matrix).

There are two streams of related work in the learning community. The first stream
is the recent progress in learning from the point of view of clustering: given samples
drawn from a mixture of well-separated Gaussians (component distributions), one aims
to classify each sample according to which component distribution it comes from, as
studied in [?,?,?,?,?,?,?]. This framework has been extended to more general distri-
butions such as log-concave distributions in [?,?] and heavy-tailed distributions in [?],
as well as to more than two populations. These results focus mainly on reducing the
requirement on the separations between any two centersP1 andP2. In contrast, we
focus on the sample sizeD. This is motivated by previous results [?,?] stating that by
acquiring enough attributes along the same set of dimensions from each component
distribution, with high probability, we can correctly classify every individual.

While our aim is different from those results, wheren > K is almost universal
and we focus on casesK > n, we do have one common axis for comparison, the
ℓ2-distance between any two centers of the distributions. In earlier works [?,?], the
separation requirement depended on the number of dimensions of each distribution; this
has recently been reduced to be independent ofK, the dimensionality of the distribution
for certain classes of distributions [?,?]. This is comparable to our requirement in (2)
for the discrete distributions. For example, according to Theorem7 in [?], in order to
separate the mixture of two Gaussians,

‖P1 − P2‖2 = Ω

(
σ√
ω

+ σ
√

logn

)
(3)



is required. Besides Gaussian and Logconcave, a general theorem: Theorem6 in [?]
is derived that in principle also applies to mixtures of discrete distributions. The key
difficulty of applying their theorem directly to our scenario is that it relies on a con-
centration property of the distribution (Eq. (10) of [?]) that need not hold in our case.
In addition, once the distance between any two centers is fixed (i.e., onceγ is fixed
in the discrete distribution), the sample sizen in their algorithms is always larger than
Ω
(
K
ω log5K

)
[?,?] for log-concave distributions (in fact, in Theorem3 of [?], they dis-

card at least this many individuals in order to correctly classify the rest in the sample),
and larger thanΩ(Kω ) for Gaussians [?], whereas in our case,n < K always holds.
Hence, our analysis allows one to obtain a clean bound onn in the discrete case.

The second stream of work is under the PAC-learning framework, where given a
sample generated from some target distributionZ, the goal is to output a distribution
Z1 that is close toZ in Kullback-Leibler divergence:KL(Z||Z1), whereZ is a mixture
of product distributions over discrete domains or Gaussians [?,?,?,?,?,?,?]. They do
not require a minimal distance between any two distributions, but they do not aim to
classify every sample point correctly either, and in general require much more data.

2 A Simple Algorithm Using Singular Vectors

As described in Theorem 2, we assume we have a mixture of two product distributions.
LetN1, N2 be the number of individuals from each population class. Ourgoal is to cor-
rectly classify all individuals according to their distributions. Letn = 2N = N1 +N2,
and refer to the case whenN1 = N2 as the balanced input case. For convenience, let
us redefine “K” to assume we haveO(log n) blocks ofK features each (so the total
number of features is reallyO(K logn)) and we assume that each set ofK features has
divergence at leastγ. (If we perform this partitioning of features into blocks randomly,
then with high probability this divergence has changed by only a constant factor for
most blocks.) The high-level idea of the algorithm is now to repeat the following proce-
dure for each block ofK features: use theK features to create ann×K matrixX , such
that each rowXi, i = 1, . . . , n, corresponds to a feature vector for one sample point,
across itsK dimensions. We then compute the top two left singular vectors u1, u2 of
X and use these to classify each sample. This classification induces some probability
of errorf for each individual at each round, so we repeat the procedurefor each of the
O(log n) blocks and then take majority vote over different runs. Eachround we require
K ≥ n features, so we needO(n logn) features total in the end.

In more detail, we repeat the following procedureO(log n) times. LetT = 15N
32

√
3ωminγ,

whereωmin is the lower bound on the minimum weightmin{N1

2N ,
N2

2N }, which is inde-
pendent of an actual instance. Lets1(X), s2(X) be the top two singular values ofX .

Procedure Classify: Givenγ,N, ωmin. Assume thatN ≫ 1
γ ,

– Normalization: use theK features to form a randomn ×K matrixX ; Each indi-
vidual random variableXi,j is anormalizedrandom variable based on the original
Bernoulli r.v.bi,j ∈ {0, 1} with Pr[bi,j = 1] = pj1 for Xi ∈ P1 andPr[bi,j = 1] =

pj2 for Xi ∈ P2, such thatXi,j = b+1
2 .



– Take top two left singular vectorsu1, u2 ofX , whereui = [ui,1, . . . , ui,n], i = 1, 2.
1. If s2(X) > T = 15N

32

√
3ωminγ, useu2 to partition the individuals with0 as

the threshold, i.e., partitionj ∈ [n] according tou2,j < 0 or u2,j ≥ 0.
2. Otherwise, useu1 to partition, with mixture meanM =

∑n
i=1 u1,n as the

threshold.

Analysis of the Simple Algorithm: Our analysis is based on comparing entries in the
top two singular vectors of the normalized randomn×K matrixX , with those of a static
matrixX , where each entryXi,j = E[Xi,j ] is the expected value of the corresponding

entry inX . Hence∀i = 1, . . . , N1, Xi = [µ1
1, µ

2
1, . . . , µ

K
1 ], whereµj1 =

1+pj
1

2 , ∀j, and

∀i = N1 + 1, . . . , n, Xi = [µ1
2, µ

2
2, . . . , µ

K
2 ], whereµj2 =

1+pj
2

2 , ∀j. We assume the
divergence is exactlyγ among theK features that we have chosen in all calculations.

The inspiration for this approach is based on the following lemma, whose proof
is built upon a theorem that is presented in a lecture note by Spielman [?]. For a
n × K matrix A, let s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) be singular values ofA. Let
u1, . . . , un, v1, . . . , vn, be then left and right singular vectors ofX , corresponding to
s1(X), . . . , sn(X) such that‖ui‖2 = 1, ‖vi‖2 = 1, ∀i. We denote the set ofn left and
right singular vectors ofX with ū1, . . . , ūn, v̄1, . . . , v̄n.

Lemma 4. LetX be the randomn × K matrix andX its expected value matrix. Let
A = X −X be the zero-mean random matrix. Letθi be the angle between two vectors:
[ui, vi], [ūi, v̄i], where‖[ui, vi]‖2 = ‖[ūi, v̄i]‖2 = 2 and [u, v] represents a vector that
is the concatenation of two vectorsu, v.

‖ui − ūi‖2 ≤ ‖[ui, vi] − [ūi, v̄i]‖2 ≈ 2θi ≈ 2 sin(θi) ≤
4s1(A)

gap(i,X )
, (4)

wheregap(i,X ) = minj 6=i |si(X ) − sj(X )|.
We first bound the largest singular values1(A) = s1(X − X ) of (ai,j) with inde-

pendent zero-mean entries, which defines the Euclidean operator norm

‖(ai,j)‖ := sup





∑

i,j

ai,jxiyj :
∑

x2
i ≤ 1,

∑
y2
i ≤ 1




 . (5)

The behavior of the largest singular value of ann × m random matricesA with i.i.d.
entries is well studied. Latala [?] shows that the weakest assumption for its regular
behavior is boundedness of the fourth moment of the entries,even if they are not iden-
tically distributed. Combining Theorem 5 of Latala with theconcentration Theorem 6
by Meckes [?] proves Theorem 7 that we need1.

Theorem 5. (Bounded Norm of Random Matrices [?])For any finiten×m matrix
A of independent mean zero r.v.’sai,j we have, for an absolute constantC,

E ‖(ai,j)‖ ≤ C



max
i

√∑

j

Ea2
i,j + max

j

√∑

i

Ea2
i,j +




∑

i,j

Ea4
i,j





1
4



 . (6)

1 One can also obtain an upper bound ofO(
√

n + K) on s1(A) using a theorem on by Vu [?],
through the construction a(n + K) × (n + K) square matrix out ofA.



Theorem 6. (Concentration of Largest Singular Value: Bounded Range [?])For
any finiten × m, wheren ≤ m, matrixA, such that entriesai,j are independent r.v.
supported in an interval of length at mostD, then, for allt,

Pr[|s1(A) − Ms1(A)| ≥ t] ≤ 4e−t
2/4D2

. (7)

Theorem 7. (Largest Singular Value of a Mean-zero Random Matrix) For any finite
n ×K, wheren ≤ K, matrixA, such that entriesai,j are independent mean zero r.v.
supported in an interval of length at mostD, with fourth moment upper bounded byB,
then

Pr
[
s1(A) ≥ CB1/4

√
K + 4D

√
π + t

]
≤ 4e−t

2/4 (8)

for all t. Hence‖A‖ ≤ C1B
1/4

√
K for an absolute constantC1.

2.1 Generating a Large Gap ins1(X ), s2(X )

In order to apply Lemma 4 to the top two singular vectors ofX andX through

‖u1 − ū1‖2 ≤ 4s1(X −X )

|s1(X ) − s2(X )| (9)

‖u2 − ū2‖2 ≤ 4s1(X −X )

min (|s1(X ) − s2(X )| , |s2(X )|) , (10)

we need to first bound|s1(X ) − s2(X )| away from zero, since otherwise, RHSs on
both (9) and (10) become unbounded.We then analyzegap(2,X ) = min (|s1(X ) − s2(X )| , |s2(X )|).

Let us first define valuesa, b, c that we use throughout the rest of the paper:

a =

K∑

k=1

(µk1)2, b =

K∑

k=1

µk1µ
k
2 , c =

K∑

k=1

(µk2)2. (11)

For the following analysis, we can assume thata, b, c ∈ [K/4,K], given thatX is
normalized in Procedure Classify.

We first show that normalization ofX as described in Procedure Classify guarantees
that not only|s1(X ) − s2(X )| 6= 0, but there also exists aΘ(

√
NK) amount of gap

betweens1(X ) ands2(X ) in Proposition 8:

gap(X ) := |s1(X ) − s2(X )| = Θ(
√
NK). (12)

Proposition 8. For a normalized random matrixX , its expected value matrixX sat-
isfies 4c0

√
2NK
5 ≤ gap(X ) ≤

√
2NK, wherec0 = |b|√ac

K(a+c) is a constant, given that
a, b, c ∈ [K/4,K] as defined in (11). In addition,

√
KN

4
≤ s1(X ) ≤

√
2NK, and

√
NK

2
≤ s1(X ) + s2(X ) ≤

√
2NK. (13)



We next state a few important results that justify ProcedureClassify. Note that the
left singular vectors̄ui, ∀i of X are of the form[xi, . . . , xi, yi, . . . , yi]

T :

ū1 = [x1, . . . , x1, y1, . . . , y1]
T , and ū2 = [x2, . . . , x2, y2, . . . , y2]

T , (14)

wherexi repeatsN1 times andyi repeatsN2 times. We first show Proposition 9 regard-
ing signs ofxi, yi, i = 1, 2, followed by a lemma bounding the separation ofx2, y2. We
then state the key Separation Lemma that allows us to conclude that least one of top two
left singular vectors ofX can be used to classify data at each round. It can be extended
to cases whenk > 2.

Proposition 9. Letb as defined in (11): whenb > 0, entriesx1, y1 in ū1 have the same
sign whilex2, y2 in ū2 have opposite signs.

Lemma 10. |x2 − y2|2 ≤ Cmax

2N whereCmax =
(√

1
ω1

+
√

1
ω2

)2

≤ 4
ωmin

; |x2|2 ≥
Cx min

2N whereCxmin = ω2

4ω2
1+ω1ω2

; |y2|2 ≥ Cy min

2N whereCymin = ω1

4ω2
2+ω1ω2

.

Lemma 11. (Separation Lemma)Kγ = s1(X )2(x1 − y1)
2 + s2(X )2(x2 − y2)

2.

Proof. Let∆ := P1 − P2 as in Theorem 2, andb = [1, 0, . . . , 0,−1, 0, . . . , 0]T , where
1 appears in the first and−1 appears in theN1+1st positions. Then∆ = XTb = [µ1

1−
µ1

2, µ
2
1 −µ2

2, . . . , µ
K
1 −µK2 ]. GivenX = s1(X )ū1v̄

T
1 + s2(X )ū2v̄

T
2 , we thus rewrite∆

as:∆ = X T b = s1(X )v̄1ū
T
1 b+s2(X )v̄2ū

T
2 b = s1(X )v̄1(x1−y1)+s2(X )v̄2(x2−y2).

The lemma follows from the fact that‖∆‖2 =
√
Kγ andv̄1, v̄2 are orthonormal.

Combining Proposition 9, Lemma 10, (13), and Lemma 11, we have

Corollary 12. s2(X ) ≤
√

2NKγ√
cx min+

√
cy min

, and hencegap(2,X ) = min(s2(X ), |s1(X )−
s2(X )|) = s2(X ) for a sufficiently smallγ.

Finally, we show that the probability of error at each round for each individual is at
mostf = 1/10, given the sample sizen as specified in Theorem 2. Hence by taking
majority vote over the different runs for each sample, our algorithm will find the correct
partition with probability1 − 1/n2, given that at each round we take a set ofK > n
independent features. We leave the detailed analysis in full version.

3 The Algorithm PARTITION

3.1 Preliminaries

Let V = {1, . . . , n} be the set of alln individuals, and letψ : V → {1, . . . , k} be
the map that assigns to each individual the population it belongs to. SetVt = ψ−1(t)
andNt = |Vt|. Moreover, letE = (Evi)1≤v≤n,1≤i≤K be then × K matrix with
entriesEvi = piψ(v). For any1 ≤ t ≤ k we let EVt = (plt)l=1,...,K be the row ofE
corresponding to anyv ∈ Vt. In addition, letA = (avi) denote the empiricaln × K
input matrix. Thus, the entries ofE equal the expectations of the entries ofA.



As in Theorem 3, we let

γ = K−1 min
1≤i<j≤k

‖E
Vi − E

Vj‖2, Γ = Kγ.

Further, setλ =
√
Kσ. Then the assumption from Theorem 3 can be rephrased as

nminΓ > Ckλ
2 andΓ > K−1 (15)

whereCk signifies a sufficienly large number that depends onk only (the precise value
of Ck will be specified implicitly in the course of the analysis). As in the previous
section, by repeating the partitioning processlogn times, we may restrict our attention
to the problem of classifying a constant fraction of the individuals correctly. That is, it
is sufficient to establish the following claim.

Claim 13. There is a polynomial time algorithmPartition that satisfies the fol-
lowing. Suppose that (15) is true. Then whpPartition(A, k) outputs a partition
(S1, . . . , Sk) of V such that there exists a permutationσ such that

k∑

i=1

|Vi△Sσ(i)| < 0.001nmin.

Let X = (xij)1≤i≤n,1≤j≤K be an × K matrix. ByXi we denote thei’th row
(Xi1, . . . , XiK) of X . Moreover, we let

‖X‖ = max
ξ∈RK :‖ξ‖=1

‖Xξ‖

signify theoperator normof X . A rank k approximationof X is a matrixX̂ of rank
at mostk such that for anyn × K matrix Y of rank at mostk we have‖X − X̂‖ ≤
‖X − Y ‖. GivenX , a rankk approximationX̂ can be computed as follows. Letting
ρ = rank(X), we compute the signular value decomposition

X =

ρ∑

i=1

λiξiη
T
i ;

here(ξi)1≤i≤ρ is an orthonormal family inRn, (ηi)1≤i≤ρ is an orthonormal family in
RK , and we assume that the singular valuesλi are in decreasing order (i.e.,λ1 ≥ · · · ≥
λρ). This can be acccomplished in polynomial time within any numerical percision.

ThenX̂ =
∑min{k,ρ}

i=1 λiξiη
T
i is easily verified to be a rankk approximation.

In addition to the operator norm, we are going to work with theFrobenius norm

‖X‖F =

√√√√
n∑

i=1

K∑

j=1

x2
ij .

Although the following fact is well known, we provide its proof for completeness.

Lemma 14. If X has rankk, then‖X‖2
F ≤ k‖X‖2.



Proof. LetX =
∑k
i=1 λiξiη

T
i be a singular value decomposition as above. Then

‖X‖2
F =

∑

i,j

x2
ij =

k∑

i,j=1

λiλj 〈ξi, ξj〉 〈ηi, ηj〉 .

Sinceξ1, . . . , ξk andη1, . . . , ηk are orthonormal families, we have〈ξi, ξj〉 = 〈ηi, ηj〉 =

1 if i = j and〈ξi, ξj〉 = 〈ηi, ηj〉 = 0 if i 6= j. Hence,‖X‖2
F =

∑k
i=1 λ

2
i . This implies

the assertion, becauseλi ≤ ‖X‖ for all 1 ≤ i ≤ k. �

3.2 Description of the algorithm

Algorithm 15. PARTITION(A, k)
Input: A n×K matrixA and the parameterk. Output:A partitionS1, . . . , Sk of V .

1. Compute a rank k approximation bA of A.
For j = 1, . . . , 2 log K do

2. Let Γj = K2−j and compute Q(j)(v) = {w ∈ V : ‖ bAw − bAv‖2 ≤ 0.01Γ 2
j }

for all v ∈ V .
Then, determine sets Q

(j)
1 , . . . , Q

(j)
k as follows: for i = 1, . . . , k do

3. Pick v ∈ V \ Si−1
l=1 Q

(j)
l such that |Q(j)(v) \ Si−1

l=1 Q
(j)
l | is maximum.

Set Q
(j)
i = Q(j)(v) \ Si−1

l=1 Q
(j)
l and ξ

(j)
i = 1

|Q
(j)
i |

P
w∈Q

(j)
i

bAw.

4. Partition the entire set V as follows: first, let S
(j)
i = Q

(j)
i for all 1 ≤ i ≤ k.

Then, add each v ∈ V \ Sk

l=1 Q
(j)
l to a set S

(j)
i such that ‖ bAv − ξ

(j)
i ‖ is

minimum.
Set rj =

Pk

i=1

P
v∈S

(j)
i

‖ bAv − ξ
(j)
i ‖2.

5. Let J be such that r∗ = rJ is minimum. Return S
(J)
1 , . . . , S

(J)
k .

The basic idea behind PARTITION is to classify each individualv ∈ V according
to its row vectorÂv in the rankk approximationÂ. That is, two individualsv, w are
deemed to belong to the same population iff‖Âv−Âw‖2 ≤ 0.01Γ 2. Hence, PARTITION

tries to determine setsS1, . . . , Sk such that for any twov, w in the same setSj the
distance‖Âv − Âw‖ is small. To justify this approach, we show thatÂ is “close” to the
expectationE of A in the following sense.

Lemma 16. There is a constantC > 0 such that
∑

v∈V ‖Âv − Ev‖2 ≤ Ckλ2 whp.

Proof. Since bothÂ andE have rank at mostk, and as thereforêA−E has rank at most
2k, Lemma 14 yields

∑

v∈V
‖Âv − Ev‖2 = ‖Â− E‖2

F ≤ 2k‖Â− E‖2.

Furthermore,‖Â − E‖ ≤ ‖Â − A‖ + ‖E − A‖ ≤ 2‖E − A‖, becauseÂ is a rank
k approximation ofA. As Theorem 7 implies that‖A − E‖2 ≤ Cλ2/8 for a certain
constantC > 0, we thus obtain

∑
v∈V ‖Âv − Ev‖2 ≤ 8k‖A− E‖2 ≤ Ckλ2.



Observe that Lemma 16 implies that formostv we have‖Âv − Ev‖2 ≤ 10−6Γ , say.
For lettingz = |{v : ‖Âv − Ev‖2 > 10−6Γ}|, we get

10−6Γz ≤
∑

v∈V
‖Âv − Ev‖2 ≤ Ckλ2,

whencez ≪ nmin due to our assumption thatnminΓ ≫ kλ2. Thus, most rows of̂A
are close to the corresponding rows of theexpectedmatrixE. Therefore, the separation
assumptionn > Ckσ

2

γω from Theorem 3 imlies that for most pairs of elements in dif-

ferent classesv ∈ Vi, w ∈ Vj the squared distance‖Âv − Âw‖2 will be large (at least
0.99Γ , say). By contrast, for most pairsu, v ∈ Vi of elements belonging to the same
class‖Âv − Âw‖2 will be small (at most0.01Γ , say), becauseEv = Ew.

As the above discussion indicates, if the algorithm were givenΓ as an input paramter,
the procedure described in Steps 2–4 (withΓj replaced byΓ ) would yield the desired
partition of V . The procedure described in Steps 2–4 is very similar to the spectral
partitioning algorithm from [?].

However, sinceΓ is not given to the algorithm as an input parameter, PARTITION

has to estimateΓ on its own. (This is the new aspect here in comparision to [?], and this
fact necessitates a significantly more involved analysis.)To this end, the outer loop goes
through2 logK “candidate values”Γj . These values are then used to obtain partitions

Q
(j)
1 , . . . , Q

(j)
k in Steps 2–4. More precisely, Step 2 usesΓj to compute for eachv ∈

V the setQ(v) of elementsw such that‖Âw − Âv‖ ≤ 0.01Γ 2
j . Then, Step 3 tries

to compute “big” disjointQ(j)
1 , . . . , Q

(j)
k , where eachQ(j)

i results from someQ(vi).

Further, Step 4 assigns all elementsv not covered byQ(j)
1 , . . . , Q

(j)
k to thatQ(j)

i whose

“center vector”ξ(j)i is closest toÂv. In addition, Step 4 computes an “error parameter”
rj . Finally, Step 5 outputs the partition that minimizes the error parameterrj .

Thus, we need to show that eventually picking the partition whose error termrj is
minimum yields a good approximation to the ideal partitionV1, . . . , Vk. The basic rea-
son why this is true is that the “empirical” meanξ(j)i should approximate the expectation

E
Vi for classVi well iff Q(j)

i is a good approximation ofVi. Hence, ifQ(j)
1 , . . . , Q

(j)
k is

“close” toV1, . . . , Vk, then

rj =

k∑

i=1

∑

v∈S(j)
i

‖Âv − ξ
(j)
i ‖2

will be about as small as‖Â−E‖2
F (cf. Lemma 16). In fact, the following lemma shows

that if Γj is “close” to the idealΓ , thenrj will be small.

Lemma 17. If 1
2Γ ≤ Γj ≤ Γ , thenrj ≤ C0k

3λ2 for a certain constantC0 > 0.

We defer the proof of Lemma 17 to Section 3.3. Furthermore, the next lemma shows
that any partition such thatrj is small yields a good approximation toV1, . . . , Vk.

Lemma 18. Let S1, . . . , Sk be a partition andξ1, . . . , ξk a sequence of vectors such
that

∑k
i=1

∑
v∈Si

‖ξi − Âv‖2 ≤ C0k
3λ2. Then there is a bijectionΞ : {1, . . . , k} →

{1, . . . , k} such that the following holds.



1. ‖ξi − E
VΞ(i)‖2 ≤ 0.001Γ 2 for all i = 1, . . . , k, and

2.
∑k

i=1 |Si△VΞ(i)| < 0.001nmin.

The proof of Lemma 18 can be found in Section 3.4.
Proof of Claim 13.Since the rankk approximationÂ can be computed in polynomial
time (within any numerical precision),Partition is a polynomial time algorithm.
Hence, we just need to show thatK−1 ≤ Γ ≤ K; for thenPartitionwill eventually
try aΓj such that12Γ ≤ Γj ≤ Γ , so that the claim follows from Lemmas 17 and 18. To
see thatK−1 ≤ Γ ≤ K, recall that we explicitly assume thatΓ > K−1. Furthermore,
all entries of the vectorsEVi lie between0 and1, whenceΓ = maxi<j ‖E

Vi −E
Vj‖2 ≤

K. �

3.3 Proof of Lemma 17

Suppose that12Γ ≤ Γj ≤ Γ . To ease up the notation, we omit the superscriptj; thus,

we letSi = S
(j)
i , Qi = Q

(j)
i for 1 ≤ i ≤ k, andQ(v) = Q(j)(v) for v ∈ V (cf. Steps

2–4 ofPartition). The following lemma shows that there is a permutationπ such
thatξi is “close” toE

Vπ(i) for all 1 ≤ i ≤ k, and that the setsQi are “not too small”.

Lemma 19. Suppose that12Γ ≤ Γj ≤ Γ . There is a bijectionπ : {1, . . . , k} →
{1, . . . , k} such that for each1 ≤ i ≤ k we have|Qi| ≥ 1

2 |Vπ(i)| and‖ξi−E
Vπ(i)‖2 ≤

0.1Γ .

Proof. For1 ≤ i ≤ k we chooseπ(i) so that|Qi ∩ Vπ(i)| is maximum. We shall prove
below that for all1 ≤ l ≤ k we have

‖ξl − E
Vπ(l)‖2 ≤ 0.1Γ, (16)

|Ql| ≥ max{|Vi| : i ∈ {1, . . . , k} \ π({1, . . . , l − 1})} − 0.01nmin,(17)

|Ql ∩ Vπ(l)| ≥ |Ql| − 0.01nmin. (18)

These three inequalities imply the assertion. To see thatπ is a bijection, let us assume
thatπ(l) = π(l′) for two indices1 ≤ l < l′ ≤ k. Indeed, suppose thatl = minπ−1(l).
Then|Ql| ≥ |Vπ(l)| − 0.01nmin by (17), and thus|Vπ(l) \ Ql| ≤ 0.1nmin by (18). As
Ql ∩Ql′ = ∅ by construction, we obtain the contradiction

0.99nmin

(17)
≤ |Ql′ |

(18)
≤ 1.1|Ql′ ∩ Vπ(l)| ≤ 1.1|Vπ(l) \Ql| ≤ 0.11nmin.

Finally, asπ is bijective, (17) entails that|Ql| ≥ 0.9Vπ(l) for all 1 ≤ l ≤ k. Hence, due
to (18) we obtain|Ql ∩ Vl| ≥ 0.9|Ql| ≥ 1

2 |Vπ(l)|, as desired.
The remaining task is to establish (16)–(18). We proceed by induction onl. Thus,

let us assume that (16)–(18) hold for alll < L; we are to show that then (16)–(18) are
true forl = L as well. As a first step, we establish (17). To this end, consider a classVi
such thati 6∈ π({1, . . . , L− 1}) and letZi = {v ∈ Vi : ‖Âv −Ev‖2 ≤ 0.001Γ}. Then
0.001Γ (|Vi| − |Zi|) ≤

∑
v∈Vi\Zi

‖Âv − Ev‖2 ≤ ‖Â− E‖2
F ≤ Ckλ2 (cf. Lemma 16)

whence the assumption (15) onΓ yields

|Zi| ≥ |Vi| − 0.01nmin, (19)



provided thatCk is sufficiently large. Moreover, for allv ∈ Zi we have

Q(v) = {w ∈ V : ‖Âv − Âw‖2 ≤ 0.01Γj} ⊃ Zi, (20)

because we are assuming thatΓj ≥ Γ/2. In addition, letw ∈ Ql for somel < L; since
our choice ofi ensures thatv ∈ Vi 6= Vπ(l), we have
√
Γ ≤ ‖E

Vπ(l) − Ev‖ ≤ ‖Ev − Âv‖ + ‖Âw − Âv‖ + ‖ξl − Âw‖ + ‖ξl − E
Vπ(l)‖.(21)

Now, the construction in Step 3 ofPartition ensures that‖Âw − ξl‖ ≤ 0.1
√
Γ .

Furthermore,‖ξl−E
Vπ(l)‖ ≤

√
Γ/3 by induction (cf. (16)), and‖Âv−Ev‖ ≤ 0.1

√
Γ ,

becausev ∈ Zi. Hence, (21) entails that‖Âw − Âv‖ > 0.1
√
Γ , so thatw 6∈ Q(v).

Consequently, (20) yields

Zi ∩Ql = ∅ for all l < L. (22)

Finally, let vL signify the element chosen by Step 3 ofPartition to constructQL.
Then by construction|QL| = |Q(vL) \⋃L−1

l=1 Ql| ≥ |Q(v) \⋃L−1
l=1 Ql|. Therefore,

|QL| ≥ |Q(v) \
L−1⋃

l=1

Ql|
(20), (22)
≥ |Zi|

(19)
≥ |Vi| − 0.01nmin.

As this estimate holds for alli 6∈ π({1, . . . , L− 1}), (17) follows.
Thus, we know thatQL is “big”. As a next step, we prove (18), i.e., we show that

QL “mainly” consists of vertices inVπ(L). To this end, let1 ≤ i ≤ k be such that

‖E
Vi−ÂvL‖ is minimum. LetY = QL\Vi. Then for allw ∈ Y we have‖Ew−ÂvL‖ ≥

‖E
Vi − Âv‖. Further, since

√
Γ ≤ ‖Ew − E

Vi‖ ≤ ‖Ew − ÂvL‖ + ‖E
Vi − ÂvL‖ ≤

2‖Ew − ÂvL‖, we conclude that‖Ew − ÂvL‖2 ≥ 1
4Γ . On the other hand, asw ∈ QL,

we have‖Âw − ÂvL‖2 ≤ 0.01Γ . Therefore, we obtain‖Âw − Ew‖2 ≥ 0.1Γ for all
w ∈ Y , so that

0.1|Y |Γ ≤
∑

w∈Y
‖Âw − Ew‖2 ≤ ‖Â− E‖2

F

Lemma 16
≤ ckλ

2. (23)

Hence, due to our assumption (15) onΓ , (23) yields that|Y | < 0.01nmin. Conse-
quently, (17) entails that|Vi ∩ QL| ≥ 0.99|QL|, so thati = π(L). Hence, we obtain
|QL ∩ Vπ(L)| = |QL ∩ Vi| = |QL \ Y | ≥ |QL| − 0.01nmin, thereby establishing (18).

Finally, to show (16), we note that by construction‖ξL − ÂvL‖2 ≤ 0.01Γ and
‖Âw−ÂvL‖2 ≤ 0.01Γ for allw ∈ QL∩Vπ(L) (cf. Step 3 ofPartition). Therefore,

|QL ∩ Vπ(L)| · ‖Eπ(L) − ξL‖2

≤ 3
∑

w∈QL∩Vπ(L)

‖ξL − ÂvL‖2 + ‖Âw − ÂvL‖2 + ‖Âw − Êπ(L)‖2

≤ 0.06Γ |QL ∩ Vπ(L)| + 3‖Â− E‖2
F

Lemma 16
≤ 0.06Γ |QL ∩ Vπ(L)| + 3ckλ

2. (24)

Since|QL ∩ Vπ(L)| ≥ 0.9nmin due to (17) and (18), (24) entails that‖Eπ(L) − ξL‖2 ≤
0.07Γ + 6ckλ

2

nmin
≤ 0.1Γ . Thus, (16) follows. �



In the sequel, we shall assume without loss of generality that the mapπ from
Lemma 19 is just the identity, i.e.,π(i) = i for all i. Bootstrapping on the estimate
‖ξi − E

Vi‖2 ≤ 0.1Γ for 1 ≤ i ≤ k from Lemma 19, we derive the following stronger
estimate.

Corollary 20. For all 1 ≤ i ≤ k we have‖ξi − E
Vi‖2 ≤ 100|Qi|−1

∑
v∈Qi

‖Âv −
Ev‖2.

Proof. By the Cauchy-Schwarz inequality,

‖ξi − E
Vi‖ = |Qi|−1

∥∥∥∥∥∥

∑

v∈Qi

Âv − E
Vi

∥∥∥∥∥∥
≤ |Qi|−1/2




∑

v∈Qi

‖Âv − E
Vi‖2




1/2

.(25)

Furthermore, as‖ξi − E
Vi‖2 ≤ 0.1Γ by Lemma 19, for allv ∈ Qi \ Vi we have

‖Âv − E
Vi‖2 ≤ 2(‖Âv − ξi‖2 + ‖ξi − E

Vi‖2) ≤ Γ 1/3, (26)

because the construction ofQi in Step 3 ofPartition ensures that‖Âv − ξi‖2 ≤
0.01Γ . Hence, as‖Ev − E

Vi‖2 ≥ Γ , (26) implies that‖Âv − Ev‖ ≥ 0.1‖Âv − E
Vi‖.

Therefore, the assertion follows from (25).

Corollary 21. For all v ∈ Si \ Vi we have‖Âv − ξi‖ ≤ 3‖Âv − Ev‖.
Proof. Let i 6= l and consider av ∈ Si ∩ Vl. We shall establish below that

‖Âv − ξi‖ ≤ ‖Âv − ξl‖. (27)

Then by Lemma 19‖Âv−ξi‖ ≤ ‖Âv−Ev‖+‖Ev−ξl‖ ≤ ‖Âv−Ev‖+
√
Γ/3, and thus√

Γ ≤ ‖Ev −E
Vi‖ ≤ ‖Âv − ξi‖+ ‖ξi −E

Vi‖ + ‖Âv −Ev‖ ≤ 2‖Âv −Ev‖ + 2
3

√
Γ .

Consequently, we obtain‖Âv − Ev‖ ≥ 1
6

√
Γ , so that the assertion follows from the

estimate

‖Âv−ξi‖
(27)
≤ ‖Âv−ξl‖ ≤ ‖Âv−Ev‖+‖Ev−ξl‖

Lemma 19
≤ ‖Âv−Ev‖+

√
Γ

3
≤ 3‖Âv−Ev‖.

Finally, we prove (27). Ifv ∈ Si ∩ Vl \Qi, then the construction ofSi in Step 4 of
Partition guarantees that‖Âv − ξi‖ ≤ ‖Âv − ξl‖, as claimed. Thus, assume that
v ∈ Qi ∩ Vl. Then

‖Âv − ξi‖ ≤ 0.15
√
Γ [by the definition ofQi in Step 3],

max{‖ξi − E
Vi‖, ‖ξl − Ev‖} ≤ 1

3

√
Γ [by Lemma 19],

‖E
Vi − Ev‖ ≥

√
Γ .

Therefore, if‖Âv − ξl‖ < ‖Âv − ξi‖, then we would arrive at the contradiction
√
Γ ≤ ‖E

Vi − Ev‖ ≤ ‖E
Vi − ξi‖ + ‖Ev − ξl‖ + ‖ξi − ξl‖

≤ 2

3

√
Γ + ‖Âv − ξi‖ + ‖Âv − ξl‖ <

2

3

√
Γ + 2‖Âv − ξi‖ ≤ 0.99

√
Γ .

Thus, we conclude that‖Âv − ξl‖ ≥ ‖Âv − ξi‖, thereby completing the proof.



Proofof Lemma 17. Since|Qi| ≥ 1
2 |Vi| by Lemma 19, we have the estimate

k∑

i=1

∑

w∈Si∩Vi

‖Âw − ξi‖2 ≤ 2

k∑

i=1

∑

w∈Si∩Vi

[
‖Âw − Ew‖2 + ‖Ew − ξi‖2

]

Cor. 20
≤ 2‖Â− E‖2

F + 200
k∑

i=1

|Si ∩ Vi|
|Qi|

∑

v∈Qi

‖Âv − Ev‖2 ≤ 500‖Â− E‖2
F .(28)

Furthermore, by Corollary 21

k∑

i=1

∑

v∈Si\Vi

‖Âv − ξi‖2 ≤ 9
k∑

i=1

∑

v∈Si\Vi

‖Âv − Ev‖2 ≤ 9‖Â− E‖2
F . (29)

Since‖Â− E‖2
F ≤ Ckλ2 by Lemma 16, the bounds (28) and (29) imply the assertion.

3.4 Proof of Lemma 18

SetSab = Sa ∩ Vb for 1 ≤ a, b ≤ k. Moreover, for each1 ≤ a ≤ k let 1 ≤ π(a) ≤ k
be such that‖E

Vπ(a) − ξa‖ is minimum. Then for allb 6= π(a) we have
√
Γ ≤ ‖E

Vπ(a) − E
Vb‖ ≤ ‖E

Vπ(a) − ξa‖ + ‖E
Vb − ξa‖ ≤ 2‖E

Vb − ξa‖, (30)

so that‖E
Vb − ξa‖ ≥

√
Γ/2. Therefore, by our assumption that

∑k
i=1

∑
v∈Si

‖ξi −
Âv‖2 ≤ C0k

3λ2, we have

Γ

4

k∑

a=1

∑

1≤b≤k:b6=π(a)

|Sab| ≤
k∑

a,b=1

|Sab| · ‖E
Vb − ξa‖2

≤ 2

k∑

a,b=1

∑

v∈Sab

‖Ev − Âv‖2 + ‖Âv − ξa‖2

≤ 2‖Â− E‖2
F + 2

k∑

a,b=1

∑

v∈Sab

‖Âv − ξa‖2

Lemma 16
≤ 4C0k

3λ2 + 2C0k
3λ2 ≤ C2

0k
3λ2. (31)

Hence,

k∑

a=1

|Sa△Vπ(a)| =
∑

1≤a,b≤k:b6=π(a)

2|Sab| ≤
8c20k

3λ2

Γ
≤ 0.001nmin, (32)

provided thatCk is sufficiently large (cf. (15)). Combining (31) and (32), weobtain
nmin

2 ‖E
Vπ(a) − ξa‖2 ≤ |Sa ∩ Vπ(a)| · ‖Eπ(a) − ξa‖2 ≤ c20k

3λ2, whence

‖Eπ(a) − ξa‖2 ≤ 2c20k
3λ2

nmin
≤ 0.001Γ for all 1 ≤ a ≤ k, (33)



provided thatCk is large enough. Thus, we have established the first two partsof
the lemma. In addition, observe that (32) implies thatπ is bijective (because the sets
S1, . . . , Sk are pairwise disjoint and|Va| ≥ nmin for all 1 ≤ a ≤ k). Finally, the third
assertion follows from the estimate

k∑

a,b=1

|Sab| · ‖E
Vπ(a) − E

Vπ(b)‖2 ≤ 2

k∑

a,b=1

|Sab|
(
‖E

Vπ(a) − ξa‖2 + ‖E
Vπ(b) − ξa‖2

)

(30)
≤ 8

k∑

a,b=1

|Sab| · ‖E
Vπ(b) − ξa‖2

(31)
≤ 8C2

0k
3λ2 ≤ 0.001Γnmin,

where we assume once more thatCk is sufficiently large.

4 Experiments

We illustrate the effectiveness of spectral techniques using simulations. In particular,
we explore the case when we have a mixture of two populations;we show that when
NK > 1/γ2 andK > 1/γ, either the first or the second left singular vector ofX shows
an approximately correct partitioning, meaning that the success rate is well above1/2.
The entry-wise expected value matrixX is: amongK/2 features,pi1 > pi2 and for the
other half,pi1 < pi2 such that∀i, pi1, pi2 ∈ { 1+α

2 + ǫ
2 ,

1−α
2 + ǫ

2}, whereǫ = 0.1α. Hence
γ = α2. We report results on balanced cases only, but we do observe that unbalanced
cases show similar tradeoffs. For each populationP , the success rate is defined as the
number of individuals that are correctly classified, i.e., they belong to a group thatP is
the majority of that group, versus the size of the population|P |.

Each point on the SVD curve corresponds to an average rate over 100 trials. Since
we are interested in exploring the tradeoffs ofN,K in all ranges (e.g., whenN << K
orN >> K), rather than using the thresholdT in Procedure Classify that is chosen in
case bothN,K > 1/γ, to decide which singular vector to use, we try bothu1 andu2

and use the more effective one to measure the success rate at each trial. For each data
point, the distribution ofX is fixed across all trials and we generate an independent
X2N×K for each trial to measure success rate based on the more effective classifier
betweenu1 andu2.

One can see from the plot that whenK < 1/γ, i.e., whenK = 200 and400, no
matter how much we increaseN , the success rate is consistently low. Note that50/100
of success rate is equivalent to a total failure. In contrast, whenN is smaller than1/γ,
as we increaseK, we can always classify with a high success rate, where in general,
NK > 1/γ2 is indeed necessary to see a high success rate. In particular, the curves
for K = 5000, 2500, 1250 show the sharpness of the threshold behavior for increasing
sample sizen from below1/Kγ2 to above. For each curve, we also compute the best
possible classification one could hope to make if one knew in advance which features
satisfiedpi1 > pi2 and which satisfiedpi1 < pi2. These are the horizontal(ish) dotted lines



above each curve. The fact that the solid curves are approaching these information-
theoretic upper bounds shows that the spectral technique iscorrectly using the available
information.
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Fig. 1. Plots show success rate as a function ofN for several values ofK, whenγ = (0.04)2.
Each point is an average over 100 trials. Horizontal lines (“oracles”) indicate the information-
theoretically best possible success rate for that value ofK (how well one could do if one knew
in advance which features satisfiedpi

1 > pi
2 and which satisfiedpi

1 < pi
2; they are not exactly

horizontal because they are also an average over 100 runs). Vertical bars indicate the value ofN
for whichNK = 1/γ2.
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A Detailed Analysis for the Simple Algorithm

In this section, we first prove a proposition regardinga, b, c as defined in (11). We next
provide the proof to Theorem 7 regarding the largest singular value of(X−X ). We then
use Lemma 4 to bound the number of individuals that we misclassify at each round in
Section A.2. We finish by showing that with high probability,we can correctly classify
all individuals by taking majority vote overO(logN) different runs.

Throughout the rest of the paper, we useX,Y , H to represent random matrices,

whereH = XXT andY =

[
0 X
XT 0

]
. We useX ,Y, H to represent the corresponding



static matrices. Let us substitutea, b, c in H = XX T , where the blocks inH from top
to bottom and from left to right are of size:N1 ×N1, N1 ×N2, N2 ×N1 andN2 ×N2

respectively:

H = XX T =





a . . . a b . . . b
. . .
a . . . a b . . . b
b . . . b c . . . c
. . .
b . . . b c . . . c





2N×2N

. (34)

Proposition 22. For any choices ofµki , ac ≥ b2; By definition,

a+ c− 2b =

K∑

i=1

α2
k, whereαk = |µk1 − µk2 |. (35)

Proof. a+ c− 2b =
∑

k α
2
k holds by definition.

ac− b2 =

K∑

k=1

(µk1)2
K∑

k=1

(µk2)2 −
(

K∑

k=1

(µk1µ
k
2)

)2

=

K∑

k=1

(µk1µ
k
1)2 +

∑

j 6=k
((µk1µ

j
2)

2 + (µj1µ
k
2)2) −




K∑

k=1

(µk1µ
k
1)2 +

∑

j 6=k
2µk1µ

k
2µ

j
1µ
j
2





=
∑

j 6=k
(µk1µ

j
2)

2 + (µj1µ
k
2)2 − 2µk1µ

k
2µ

j
1µ

j
2 =

∑

j 6=k
(µk1µ

j
2 − µj1µ

k
2)

2 ≥ 0.

Remark 23.Both matrices ofX andXX T have rank at most two. Whenac = b2, H
has rank1.

A.1 Proof of Theorem 7

Proofof Theorem 7. By having an upper bound on both maximum variance and fourth
moment of any entry, we have the following corollary of Theorem 5.

Corollary 24. (Largest Singular Value: Bounded Fourth Moment [?]) For any finite
n×m, wheren ≤ m, matrix of independent mean zero r.v.’sai,j , such that the maximum
variances of any entry is at mostσ2, and each entry has a finite fourth momentB we
have

E ‖(ai,j)‖ ≤ C
(
σ(
√
m+

√
n) + (mnB)1/4

)
≤ CB1/4

√
m (36)

for an absolute constantC.

Remark 25.The requirement thatσ2 is upper bounded is not essential. The conclusion
in Corollary 24 works so long as fourth moment is bounded byB.



Let Ms1(A) be the median ofs1(A). Following a calculation from [?], we have

|E[s1(A)] − Ms1(A)| ≤ E[|s1(A) − Ms1(A)|]

=

∫ ∞

0

Pr[|s1(A) − Ms1(A)| ≥ t]dt

≤ 4

∫ ∞

0

e−t
2/4D2

dt = 4D
√
π,

whereD ≤ 1 for Bernoulli random variables that we consider. This allows us to con-
clude Theorem 7.

A.2 Correctness of Classification for the Simple Algorithm

We now prove correctness of our algorithm. We first show how tochooseT for Proce-
dure Classify. LetB denote the fourth moment bound for a single random variable in
the mean zero random matrixX −X ; for the type of normalized Bernoulli r.v.s that we
care about,

√
B is in the order ofσ2, whereσ2 is defined in Theorem 2.

LetNγ be a large enough constant. Lets1(X−X ) ≤ C0

√
K, whereC0 = C1B

1/4

as defined in Theorem 7 and let the threshold

T =
√
C3KNγ ≥ 15C0

√
K, (37)

which requires that

C3Nγ ≥ 225C2
0 , whereC3 satisfies(41). (38)

Following Lemma 32, (56), (58), and Proposition 30, we have

|s2(X ) − s2(X)| ≤ s1(X −X ) ≤ C0

√
K. (39)

We have two cases,

1. Whens2(X) ≤ T , by Lemma 10 and the fact thats2(X ) ≤ s2(X)+s1(X−X ) ≤
T + C0

√
K ≤ 16T

15 , we have

s2(X )2|x2 − y2|2 ≤ 256T 2

225

Cmax

2N
≤ 128C3KγCmax

225
≤ 128C3Kγ4

225ωmin
(40)

for Cmax as defined in Lemma 10. We wants2(X )2|x2 − y2|2 ≤ 3Kγ
4 . This holds

so long as128C3KγCmax

225 ≤ 128C3Kγ4
225ωmin

≤ 3Kγ
4 , which is true if

C3 ≤ 675ωmin

2048
; thus we takeC3 =

675ωmin

2048
from this point on. (41)

It follows from Lemma 11 thats1(X )2|x1 − y1|2 ≥ Kγ
4 . Hence by (13)

|x1 − y1| ≥
√
Kγ

2s1(X )
≥

√
Kγ

2
√

2NK
≥ 1

2

√
γ

2N
. (42)



Thus the condition of Theorem 26 holds withc2 = 1
2 , so long as

Nγ ≥ 2048C2
1

√
B

3ωmin
, (43)

due to (38) and (41); This is a weaker condition than (54) forf < 1
2 .

2. Whens2(X) ≥ T , we haves2(X ) ≥ s2(X)− s1(X −X ) ≥ T −C0

√
K ≥ 14T

15 ;

This satisfies the condition of Theorem 28, withc3 = 14
√
C3

15 = 7
16

√
3ωmin

2 .

Let us first denote the first singular vectoru1 and its “noise” vectorǫ as follows:

uT1 = (x+ δ1, . . . , x+ δN1 , y + τ1, . . . , y + τN2) , ǫ
T = (δ1, . . . , δN1 , τ1, . . . , τN2) .

It turns out that we only need to use the mixture mean

M =

∑N1

i=1(x+ δi) +
∑N2

i=1(y + τi)

2N
(44)

to decide which side to put a node, i.e., to partitionj ∈ [2N ] according tou1,j < M
or u1,j ≥ M , given thatN1/N2 is a constant; Misclassifying any entry will contribute
Ω
(
γ

2N

)
amount to‖ū1 − u1‖2

2.

Theorem 26. Assume w.l.o.g. thatN1 ≤ N2 and 2N ≤ K. Let ω1 = N1/2N and
ω2 = N2/2N . Suppose|x1 − y1| ≥ c2

√
γ

2N for some constantc2 = 1
2 . By requiring

N ≥ 2048C2
1

√
B

3γωmin
as in (43), and

N1 ≥ 2c21σ
2

fc22γω1ω2
, or equivalently2N ≥ 2c21σ

2

fc22γω2ω2
1

=
25C2

1

√
B

fc22γω2ω2
1

, (45)

wherec1 = 5C1B
1/4

√
2c0σ

for C1 specified in Theorem 7 andc0 specified in Proposition 8,
we can classify the two population using the mixture meanM with the error factor at
mostf for N1, N2 respectivelywhp.

By Lemma 4 and Theorem 7, we immediately have the following claim.

Claim. For c1 chosen as in Theorem 26,‖ǫ‖2
2 =

∑N1

i=1 δ
2
i +

∑N2

i=1 τ
2
i ≤ c21σ

2

N .

Proof. Given thatc1 = 5C1

1
4
√
B√

2c0σ
such thatC1 appears in Theorem 7 andc0 appears in

Proposition 8,
√√√√

N1∑

i=1

δ2i +

N2∑

i=1

τ2
i = ‖u1 − ū1‖2 ∼ 2θ1 ∼ 2 sin(θ1)

≤ 4s1(X −X )

gap(1,X )
≤ 4C1

1
4

√
B
√
K

4c0
√

2NK/5
=

c1σ√
N
.

This allows us to conclude the claim.



We need the following lemma, proof of which appears in Appendix C.

Lemma 27. Assume that2N ≤ K and Condition (45) in Theorem 26, we have

|M − x| ≥ N2(1 −√
γ) |y − x|

2N
, |y −M | ≥ N1(1 −√

γ) |y − x|
2N

. (46)

Proofof Theorem 26. Recall that the largestū1, ū2 have the form of[x, . . . , x, y, . . . , y],
wherex repeatsN1 times andy repeatsN2 times; hence w.l.o.g., assume thatx < y,
we have

∀i, s.t. x+ δi > M, it contributesδ2i > |M − x|2 ≥≈ N2
2 c

2
2γ

8N3
to ‖ǫ‖2

2 , (47)

∀i, s.t. y − τi < M, it contributesδ2i > |M − y|2 ≥≈ N2
2 c

2
2γ

8N3
to ‖ǫ‖2

2 . (48)

Hence the total number of entries that goes aboveM from P1, and those goes below
M from P2 can not be too many since their total contribution is upper bounded by
‖ǫ‖2

2 = ‖u1 − ū1‖2
2. Let ℓ1 be the number of misclassified entries fromN1, i.e., those

described in (47), by Lemma 4,

ℓ1
N2

2 c
2
2γ

8N3
≤ ℓ1|M − x|2 ≤ ‖ǫ‖2

2 ≤ c21σ
2

N
. (49)

Thus given thatN1 ≥ 8c21σ
2

fc22γ
≥ 2c21σ

2

fω2
2c

2
2γ

; hence it suffices to guarantee thatℓ1 ≤ 2c21σ
2

ω2
2c

2
2γ

≤
fN1.

We next bound the number of entries fromP2 that goes belowM , which can not be
too many either; letℓ2 be the number of misclassified entries fromP2,

ℓ2
N2

1 c
2
2γ

8N3
≤ ℓ2|M − y|2 ≤ ‖ǫ‖2

2 ≤ c21σ
2

N
, (50)

hence by requiring

N2 ≥ 2c21σ
2

fω2
1c

2
2γ
, (51)

it suffices to guarantee thatℓ2 ≤ 2c21σ
2

ω2
2c

2
2γ

≤ fN2.
Condition (51) is equivalent to

N1 =
N2ω1

ω2
≥ 2c21σ

2

fω1ω2c22γ
, (52)

Thus by requiring

N1 ≥ 2c21σ
2

fc22γω2ω1
, (53)

we have satisfied all requirements.

Combining Lemma 4 and Corollary 12, we have



Claim. Given thats2(X ) ≥ c3
√
KNγ, ‖u2 − ū2‖2

2 ≤ 16s1(X−X )2

s2(X )2 ≤ 16C2
0K

c23KNγ
.

This allows us to prove the following theorem. Let the classification error factor be
the number of misclassified individuals from one group over total amount of people in
that group.

Theorem 28. AssumeN1 ≤ N2 and2N ≤ K. Letω1 = N1/2N andω2 = N2/2N .

Let s2(X ) ≥ c3
√
KNγ, wherec3 = 7

16

√
3ωmin

2 andωmin is the minimum possible

weight allowed by the algorithm. By requiring

2N ≥ 360C2
0

ωminfγ

(
ω2

ω1
+ 1

)
= Θ

(
σ2

fγωminω1

)
, (54)

we can classify the two population using0 to separate components inu2, with error
factor at mostf for bothP1, P2 whp.

Proof. Let ℓ1, ℓ2 be the number of misclassified entries fromP1 andP2 respectively;
they each contribute at leastCx min

2N , and Cy min

2N amount to‖u2 − ū2‖2, and hence by
Claim A.2,

ℓ1
Cxmin

2N
≤ ‖u2 − ū2‖2

2 ≤ 16C2
0K

c23KNγ
≤ 16C2

0

c23Nγ
. (55)

Henceℓ1 ≤ 32C2
0

c23γCx min
≤ fN1 given thatN ≥ 16C2

0

c23fγ

(
4ω1

ω2
+ 1
)

.

Similarly, by Claim A.2, we haveℓ2Cx min

2N ≤ ‖u2 − ū2‖2
2 and thusℓ2 ≤ 32C2

0

c23γCy min
≤

N2

f so long asN ≥ 16C2
0

c23fγ

(
4ω2

ω1
+ 1
)

; the bound on2N follows by plugging inc3 =

7
16

√
3ωmin

2 .

Finally,

Theorem 29. Given a set ofn ≥ Ω
(

σ2

γfωωmin

)
individuals, by trying Procedure Clas-

sify for logn rounds, with probability of error at each round for each individual being
f = 1/10, where each round we take a set ofK > n independent features, and by
taking majority vote over the different runs for each sample, our algorithm will find the
correct partition with probability1 − 1/n2.

Proof. A sample is put in the wrong side with a probability1/10 at each round. Let
Ei be the event that samplei is misclassified for more thanlog n times, thusPr[Ei] =(

1
10

)logn ≤ 1/n3.32; hence by union bound, with probability1−1/n2, none of the2N
individuals is misclassified.

B More Proofs for the Simple Algorithm Classify

B.1 Proof of Lemma 4

Let u1, . . . , un, v1, . . . , vn be then left and right singular vectors ofX , corresponding
to s1(X) ≥ s2(X) ≥ . . . ≥ sn(X), we have for∀i, ‖ui‖2 = 1, ‖vi‖2 = 1 such that
XTui = si(X)vi andXvi = si(X)ui.



Before we prove Lemma 4, given ann × K matrixX , wheren < K, let us first
defineH = XXT and a block matrix

Y =

[
0 X
XT 0

]

(2N+K)×(2N+K)

. (56)

Recall that singular values of a realn × K matrixX are exactly the nonnegative
square roots of then largest eigenvalues ofH = XXT , i.e,si(X) =

√
λi(H), ∀i =

1, . . . , n, given that

Hui = XXTui = si(X)Xvi = s2i (X)ui. (57)

Hence the left singular vectorsu1, . . . , un ofX are eigenvectors ofH corresponding to
λi(H) = s2i (X).

We next show that the firstn eigenvalues ofY and their corresponding eigenvectors:

Y

[
ui
vi

]
=

[
0 X
XT 0

] [
ui
vi

]
=

[
Xvi
XTui

]
=

[
si(X)ui
si(X)vi

]
= si(X)

[
ui
vi

]
, (58)

and hence

Proposition 30. The largestn eigenvalues ofY are s1(X), . . . , sn(X) with corre-
sponding eigenvectors[ui, vi], ∀i = 1, . . . , n, whereui, vi, ∀i, are left and right sin-
gular vectors ofX corresponding tosi(X).

In fact both±si(X) are eigenvalues ofY , which is irrelevant.Proofof Lemma 4. We
first state a theorem, whose statement appears in a lecture note by Spielman [?], with
a slight modification (off by a factor on RHS). Our proof for this theorem is included
here for completeness. It is known that for any real symmetric matrix, there exist a set
of n orthonormal eigenvectors.

Theorem 31. (Modified Version of Spielman [?])For A andM being two symmetric
matrices andE = M − A. Let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) be eigenvalues of
A, with orthonormal eigenvectorsv1, v2, . . . , vn and letλ1(M) ≥ λ2(M) ≥ . . . ≥
λn(M) be eigenvalues ofM andw1, w2, . . . , wn be the corresponding orthonormal
eigenvectors ofM , with θi = ∠(vi, wi). Then

θi ∼ sin(θi) ≤
‖E −∆iI‖2

gap(i, A)
≤ ‖E‖2 + |∆i|

gap(i, A)
≤ 2 ‖E‖2

gap(i, A)
(59)

wheregap(i, A) = minj 6=i |λi(A) − λj(A)| and∆i = λi(M) − λi(A).

Let us apply Theorem 31 to the symmetric matrixY in (56). In particular, we only
compare the firstn eigenvectors ofY of Y. For the numerator of RHS of (59), we have
E = Y −Y, and‖E‖2 = ‖Y − Y‖2 = s1(Y −Y) by a derivation similar to (58), where
eigenvectors ofE are concatenations of left and right singular vectors ofX − X ; For
the denominator, we have by Proposition 30,gap(i,Y) = minj 6=i |λi(Y) − λj(Y)| =
minj 6=i |si(X ) − sj(X )| .

We first prove the following claim.



Claim. For any symmetricn × n matrixA, let λi, ∀i = 1, . . . , n be eigenvalues ofA
with orthonormal eigenvectorsv1, v2, . . . , vn, for all y ⊥ vi,

‖(A− λi)y‖2 ≥ min
j 6=i

|λi − λj | ‖y‖2 . (60)

Proof. Let us first assumey ⊥ vi and writey =
∑n
j=1,j 6=i cjvj , thus we have‖y‖2 =√∑n

j=1,j 6=i c
2
j and

‖(A− λi)y‖2 =

∥∥∥∥∥∥

n∑

j=1,j 6=i
cj(A− λi)vj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

n∑

j=1,j 6=i
cj(λj − λi)vj

∥∥∥∥∥∥
2

=

√√√√
n∑

j=1,j 6=i
c2j |λj − λi|2

≥ min
j 6=i

|λi − λj |

√√√√
n∑

j=1,j 6=i
c2j = min

j 6=i
|λi − λj | ‖y‖2 .

Proofof Theorem 31. Let us construct a vectory that is orthogonal tovi as follows:

y = wi − (vTi wi)vi (61)

By Claim B.1, we have

‖(A− λi(A))y‖2 ≥ min
j 6=i

|λi(A) − λj(A)| ‖y‖2 , (62)

and hence

‖y‖2 ≤ ‖(A− λi(A))y‖2

minj 6=i |λi(A) − λj(A)| (63)

On the other hand,

‖(A− λi(A))y‖2 =
∥∥(A− λi(A))(wi − (vTi wi)vi)

∥∥
2

= ‖(A− λi(A))wi‖2

= ‖(M − E − λi(A))wi‖2

= ‖(λi(M) − λi(A))wi − Ewi‖2

= ‖(∆iI − E)wi‖2 ≤ ‖E −∆iI‖2

≤ ‖E‖2 + |∆i|



Finally, given that‖w‖2 = 1,

sin(θi) =
‖y‖2

‖w‖2

≤ ‖(A− λi(A))y‖2

minj 6=i |λi(A) − λj(A)|

≤ ‖E‖2 + |∆i|
gap(i, A)

.

Lemma 32. ∀i = 1, ..., n, |∆i| ≤ ‖E‖2.

Proof. Let Sj be a subspace of dimensionj. Recall the following definitions ofλi for
a matrix:

λi(M) = inf
SN−i+1

sup
x∈SN−i+1,‖x‖2=1

xTMx. (64)

In the following, letSvN−i+1 be the subspace that is orthogonal to the subset of orthonor-
mal eigenvectorsv1, . . . , vi−1 of symmetric matrixA. Note that this is theN − i + 1
dimensional subspace that achieves the minimum of the maximum of vTAv over all
unit-length vectorsv in the particular subspace.

λi(M) = inf
SN−i+1

sup
x∈SN−i+1,‖x‖2=1

xTMx ≤ sup
x∈Sv

N−i+1,‖x‖2=1

xTMx

≤ sup
x∈Sv

N−i+1,‖x‖2=1

xT (A+ E)x

≤ sup
v∈Sv

N−i+1,‖v‖2=1

vTAv + sup
x∈Rn,‖x‖2=1

|xTEx|

= λi(A) + ‖E‖2 .

For the other direction, letSwN−i+1 be the subspace that is orthogonal to the subset of
orthonormal eigenvectorsw1, . . . , wi−1 of symmetric matrixM . Note that this is the
N−i+1 dimensional subspace that achieves the minimum of the maximum ofwTMw
over all unit-length vectorsw in the particular subspace.

λi(A) = inf
SN−i+1

sup
x∈SN−i+1,‖x‖2=1

xTAx ≤ sup
x∈Sw

N−i+1,‖x‖2=1

xTAx

≤ sup
x∈Sw

N−i+1,‖x‖2=1

xT (M + (−E))x

≤ sup
w∈Sw

N−i+1,‖w‖2=1

wTMw + sup
x∈Rn,‖x‖2=1

xT (−E)x

≤ sup
w∈Sw

N−i+1,‖w‖2=1

wTMw + sup
x∈Rn,‖x‖2=1

|xT (−E)x|

= λi(M) + ‖E‖2 ,

where‖E‖2 = ‖−E‖2.
Thus we have−‖E‖2 ≤ λi(M) − λi(A) ≤ ‖E‖2, and hence|∆i| ≤ ‖E‖2.

Therefore,sin(θi) ≤ ‖E‖2+|∆i|
gap(i,A) ≤ 2‖E‖2

gap(i,A) .



B.2 Some Propositions Regarding the Static Matrices

For static matrixH = XX T andY =

[
0 X
X T 0

]
, we define

gap(H) = |λ1(H) − λ2(H)|,

gap(Y) = |λ1(Y) − λ2(Y)| =
gap(H)

λ1(Y) + λ2(Y)
,

Proposition 33. For static matrixY, let

gap(Y) = |λ1(Y) − λ2(Y)| =
gap(H)

λ1(Y) + λ2(Y)
, (65)

we have
√

max{N1a,N2c} ≤ λ1(Y) ≤
√
N1a+N2c√

N1a+N2c ≤ λ1(Y) + λ2(Y) ≤
√

2(N1a+N2c)√
N1N2(ac− b2)

N1a+N2c
≤ λ2(Y) ≤

√
2N1N2(ac− b2)

N1a+N2c

Thus we have

gap(Y) = Θ

(
gap(H)√
N1a+N2c

)
= Θ

(√
(N1a+N2c)2 − 4N1N2(ac− b2)√

N1a+N2c

)
.

Proof. We first show the following:

Proposition 34. For static matrixH = XX T as in (34), Letλ1(H), λ2(H) be the
non-zero eigenvalues ofH, and denotegap(H) = |λ1(H) − λ2(H)|.

λ1(H) =
N1a+N2c+

√
(N1a−N2c)2 + 4N1N2b2

2
, (66)

λ2(H) =
N1a+N2c−

√
(N1a−N2c)2 + 4N1N2b2

2
, (67)

|N1a−N2c| ≤ gap(H) ≤ N1a+N2c, (68)

whereλ2(H) = 0, whenac = b2 andgap(H) = N1a+N2c.

Proof. Let H = XX T . Rank ofH is at most 2. Therefore there exists at most two
non-zero eigenvaluesλ1, λ2 for H, with corresponding nonzero eigenvectorsv1, v2 be-
ing constant on each population. This is true because if we multiply H = XX T by
a permutation matrixP to exchange two rows among the same population, we have
PHvi = λiPvi, ∀i = 1, 2; given thatPHvi = Hvi, we deduce thatPvi = vi for
non-zeroλi. Hencevi must be constant on each population.

Let the top two eigenvectorv1, v2 be of form[x, . . . , x, y, . . . , y], wherex repeats
N1 times andy repeatsN2 times; Note that they corresponds toū1 andū2 of X follow-
ing a derivation similar to (57).



We thus have the following equations:

N1ax+N2by = λx, (69)

N1bx+N2cy = λy, (70)

which can be written in a matrix form:
[
N1a− λ N2b
N1b N2c− λ

] [
x
y

]
= 0 (71)

Given that [
x
y

]
6= 0,

the matrix is not one-to-one and therefore

D

[
N1a− λ N2b
N1b N2c− λ

]
= 0.

By solving(N1a− λ)(N2c− λ) −N1N2b
2 = 0, we getλ1(H), λ2(H) andgap(H).

We next derive an upper bound ongap(H).

gap(H) =
√

(N1a−N2c)2 + 4N1N2b2 (72)

=
√

(N1a+N2c)2 − 4N1N2ac+ 4N1N2b2 (73)

≤
√

(N1a+N2c)2 (74)

≤ N1a+N2c, (75)

wherea, c ≥ 0 andac ≥ b2 as in Proposition 22.
It is easy to see that

gap(H) ≥ |N1a−N2c|, (76)

given thatb2 ≥ 0.

Thus we have

max{N1a,N2c} ≤ λ1(H) ≤ N1a+N2c, (77)

0 ≤ λ2(H) ≤ min{N1a,N2c}, (78)

λ1(H) + λ2(H) = N1a+N2c, (79)

λ1(H)λ2(H) = N1N2(ac− b2), (80)

Given that two largest eigenvalues ofY, λ1(Y) =
√
λ1(H) andλ2(Y) =

√
λ1(H) for

Y =

[
0 X

X T 0

]
, by Proposition 34 and the following fact:

√
(λ1(Y)2 + λ2(Y)2) ≤ λ1(Y) + λ2(Y) =

√
2(λ1(Y)2 + λ2(Y)2), (81)

we get all inequalities.



B.3 Proofs of Proposition 8 and 9

Proof of Proposition 8. We rewrite Proposition 33 given that, for anormalizedX ,
gap(H) ≥ 8c0NK

5 , as Proposition 36 andλj(Y) = sj(X ). In particular,

gap(X ) = gap(Y) =
gap(H)

λ1(Y) + λ2(Y)
(82)

≥ gap(H)√
N1a+N2c

≥ 8c0NK

5
√

2NK
(83)

≥ 4
√

2NK

5
. (84)

For the upper bound ongap(X ), we have that

gap(X ) = gap(Y) =
gap(H)

λ1(Y) + λ2(Y)
(85)

≤ N1a+N2c√
N1a+N2c

(86)

≤
√
N1a+N2c ≤

√
2NK (87)

Definition 35. For our application, we have∀k, 1 ≥ pk1 , p
k
2 ≥ 0, and

X =





1+p11
2

1+p21
2 . . .

1+pK
1

2
. . .

1+p11
2

1+p21
2 . . .

1+pK
1

2
1+p12

2
1+p22

2 . . .
1+pK

2

2
. . .

1+p12
2

1+p22
2 . . .

1+pK
2

2





2N×K

(88)

It is easy to see that with this normalized random matrix,λ1(H) = λ2(H) is not
possible, given thata, b, c ∈ [K/4,K]; furthermore,gap(H) = Θ(NK) as in the
Proposition 36.

Proposition 36. GivenH = XX T anda, b, c as in (11) for any expected value mean
matrixX , which is not necessarily normalized,

gap(H) =
√

(N1a−N2c)2 + 4N1N2b2 ≥ 8c0NK

5
, (89)

wherec0 = |b|√ac
K(a+c) .

Hence for a normalizedX , gap(H) = Θ(NK) given thata, b, c ∈ [K/4,K].

Proof. For a tighter lower bound ofgap(H) than the obvious|N1a − N2c|, let us
assume w.l.o.g. thatN2c ≥ N1a. Thus we have

N2 ≥ 2N
a

a+ c
(90)

We differentiate two cases:



– Balanced case:N1a ≥ 4
25N2c.

– Imbalanced case:N1a ≤ 4
25N2c.

For balanced case: we haveN1 ≥ 4
25
N2c
a and hence

gap(H) ≥
√

4N1N2b2 ≥ 4N2|b|
5

√
c

a

≥ 8N |b|
5

a

a+ c

√
c

a
≥ 8N |b|

5

√
ac

a+ c

=
8c0NK

5
,

whereN2 ≥ 2N a
a+c as in (90).

For the imbalanced case, given that
√
ac ≥ |b| by Proposition 22,

gap(H) ≥
√

(N1a−N2c)2 ≥ 21

25
N2c

≥ 42

25

Nac

a+ c
≥ 8

5

N |b|√ac
a+ c

≥ 8c0NK

5
.

Finally, for a normalized random matrixX and itsX , we havec0 being a constant
and combing with the upper bound ofgap(H) ≤ N1a +N2c ≤ 2NK concludes that
gap(H) = Θ(NK).

Proof of Proposition 9. By (57),̄u1, ū2 are the first and second eigenvectors ofH
corresponding toλ1(H) andλ2(H). Let x, y be entries that correspond toP1, P2 re-
spectively in the first or second eigenvectors ofH. By (69) and (70), we have

y

x
=
λ−N1a

N2b
=

N1b

λ−N2c
. (91)

In addition, given anyb 6= 0, we havegap(H) > |N1a − N2c| and henceλ1(H) >
max{N1a,N2c} > λ2(A). Therefore, forb > 0, yx ≥ 0 for first eigenvector and≤ 0
for v2. and forb < 0, it is the opposite.

B.4 Proof of Lemma 10

Proof of Lemma 10. We first show that|x2|, |y2| are within a constant factor of each
other, given thatω1/ω2 = N1

N2
is a constant.

Proposition 37. For a normalizedX , whereN1, N2, a, b 6= 0, x2, y2 in the second top
left singular vector̄u2 satisfy

2N2

N1
≥ |x2|

|y2|
≥ N2

2N1
(92)



Proof. By (69) and given the upper bound ongap(H) in (68),

|y2|
|x2|

=
N1a− λ2

N2b
=
N1a−N2c+ gap(H)

2N2b
≤ N1a

N2b
, (93)

and hence|x2|
|y2| ≥

N2b
N1a

. By (70) and (68), we have

|x2|
|y2|

=
N2c− λ2

N1b
=
N2c−N1a+ gap(H)

2N1b
≤ N2c

N1b
(94)

We finish the proof by observing that

1

2
≤ a

b
≤ 2,

1

2
≤ c

b
≤ 2, (95)

due to the fact that12 ≤ µj
1

µj
2

≤ 2, ∀j = 1, . . . ,K for µji ∈ [1/2, 1] in a normalizedX ,

and the following lemma:

Lemma 38. If 0 < cmin ≤ ai

bi
≤ cmax, ∀i = 1, . . . , n, whereai, bi > 0, thencmin ≤

Pn
i=1 ai

Pn
i=1 bi

≤ cmax.

Proof.

cmin =

∑n
i=1 cminbi∑n
i=1 bi

≤
∑n

i=1 ai∑n
i=1 bi

≤
∑n

i=1 cmaxbi∑n
i=1 bi

= cmax (96)

Let x = x2 andy = y2. By Proposition 37,|y| ≤ 2N1|x|
N2

and

1 = N1x
2 +N2y

2 ≤ N1x
2 +N2

(
2|x|N1

N2

)2

≤ x2

(
4N2

1 +N1N2

N2

)
, (97)

hence forCxmin = ω2

4ω2
1+ω1ω2

,

x2 ≥ ω2

4ω2
1 + ω1ω2

1

2N
. (98)

Looking in the other direction, by Proposition 37,|x| ≤ 2|y|N2

N1
,

1 = N1x
2 +N2y

2 ≤ N2y
2 +N1

(
2|y|N2

N1

)2

≤ y2

(
N2N1 + 4N2

2

N1

)
,

and hence for a givenCymin = ω1

4ω2
2+ω1ω2

,

|y|2 ≥ ω1

4ω2
2 + ω1ω2

1

2N
. (99)



On the other hand, by Proposition 37, we have|y| ≥ N1|x|
2N2

, we have

1 = N1x
2 +N2y

2 ≥ N1x
2 +N2

( |x|N1

2N2

)2

≥ x2

(
N2

1 + 4N1N2

4N2

)
,

and thus

x2 ≤ 4ω2

ω2
1 + 4ω1ω2

1

2N
. (100)

Looking in the other direction, by Proposition 37,|x| ≥ |y|N2

2N1
,

1 = N1x
2 +N2y

2 ≥ N2y
2 +N1

( |y|N2

2N1

)2

≥ y2

(
4N2N1 +N2

2

4N1

)
,

and hence|y|2 ≤ 4ω1

ω2
2+4ω1ω2

1
2N . Hence we have that

|x− y|2 = (|x| + |y|)2 ≤
(√

4ω2

ω2
1 + 4ω1ω2

1

2N
+

√
4ω1

ω2
2 + 4ω1ω2

1

2N

)2

≤ 1

2N

(√
4ω2

ω2
1 + 4ω1ω2

+

√
4ω1

ω2
2 + 4ω1ω2

)2

,

andCmax = (
√

1
ω1

+
√

1
ω2

)2. Hence

Cmax ≤
(√

4ω2

ω2
1 + 4ω1ω2

+

√
4ω1

ω2
2 + 4ω1ω2

)2

≤
(√

1

ω1
+

√
1

ω2

)2

.

C Proof of Lemma 27

Recall that the largest left singular vectorsu1, u2 has the form of[x, . . . , x, y, . . . , y],
wherex repeatsN1 times andy repeatsN2 times.Proof of Lemma 27. Let us define
the following random variables,

δ =
1

N1

N1∑

i=1

δi, τ =
1

N2

N2∑

i=1

τi, (101)

such that by Claim A.2,

|δ| =

∣∣∣∣∣
1

N1

N1∑

i=1

δi

∣∣∣∣∣ ≤
1

N1

N1∑

i=1

|δi| ≤

√
N1

∑N1

i=1 δ
2
i

N1
≤ c1σ√

N1N

|τ | =

∣∣∣∣∣
1

N2

N2∑

i=1

τi

∣∣∣∣∣ ≤
1

N2

N2∑

i=1

|τi| ≤

√
N2

∑N2

i=1 τ
2
i

N2
≤ c1σ√

N2N



and hence

max(|N1δ|, |N2τ |) ≤
c1σ

√
N2√
N

(102)

given that we always assume thatN2 > N1. A natural classifier to separate individuals
would be:x+y2 when we useu1; but we do not have access tox andy. Recall that

M =

∑N1

i=1(x+ δi) +
∑N2

i=1(y + τi)

2N
=
N1x+N2y

2N
+
N1δ +N2τ

2N
.

We are now ready to show that whenN1, N2 are large enough, we see enough separation
between the mixture sample mean and bothx andy. We first prove the following claims.

Claim. xN1δ + yN2τ = − ‖ǫ‖2
2

2 .

Proof. This claim is obvious given that‖u1‖2 = ‖ū1‖2 = 1, andū1, u1, ǫ all being
real vectors,

‖u1‖2
2 = ‖ū1‖2

2 + ‖ǫ‖2
2 + 2 < ū1, ǫ >= ‖ū1‖2

2 + ‖ǫ‖2
2 + 2xN1δ + yN2τ. (103)

We next use 1√
2N

|xN1δ + yN2τ | to obtain a bound on
∣∣N1δ+N2τ

2N

∣∣, given that

1√
2N

|xN1δ + yN2τ | ≤
‖ǫ‖2

2

2
√

2N
≤ c21σ

2

2N
√

2N
; (104)

Claim. LetN1 ≤ N2, andω1 = N1

2N andω2 = N2

2N , and given thatN1 ≥ max
(

2c21σ
2

c2γ
,

8c21σ
2

γ
ω2

ω1

)
,

we have
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣ ≤
N1 |y − x| √γ

2N
(105)

Proof. We next derive a bound onN1δ+N2τ
2N . By Separation Lemma 11, we have|x− y| =

c2
√

γ
2N for a constantc2 = 1/2, and thus we havemax(x,y)√

2N
> 1

2N . Therefore,

|xN1δ + yN2τ |√
2N

=
|max(x, y)(N1δ +N2τ) + (x− max(x, y))N1δ + (y − max(x, y))N2τ |√

2N

≥ |max(x, y)| (N1δ +N2τ)√
2N

− |x− y|max(|N1δ|, |N2τ |)√
2N

Thus we have, given (102), (104) and (106),
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣ ≤
|max(x, y)|√

2N
|(N1δ +N2τ)|

≤ |xN1δ + yN2τ |√
2N

+
|x− y|max(|N1δ|, |N2τ |)√

2N

≤ c21σ
2

2N
√

2N
+
c2
√
γ

2N
c1σ

√
N2

N

≤ N1c2γ

2N
√

2N
≤ N1|y − x|√γ

2N
,



where

c21σ
2

2N
√

2N
<

N1c2γ

4N
√

2N
, holds so long asN1 ≥ 2c21σ

2

c2γ
, and (106)

c2
√
γc1σ

2N

√
N2

N
<

N1c2γ

4N
√

2N
. holds so long asN1 ≥ 8c21σ

2

γ

ω2

ω1
, so that (107)

N1 ≥ 2
√

2c1σ
√
N2√

γ
, (108)

Both conditions are guaranteed by (45) in Theorem 26.

This allows us to conclude that
∣∣∣∣
N1x+N1δ +N2y +N2τ

2N
− N1x+N2y

2N

∣∣∣∣ =

∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≤
(

min{N1, N2}√γ
2N

)
|x− y| .

Given that|y − x| = c2
√
γ/

√
2N as shown in the Separation Lemma 11, we have

∣∣∣∣
N1x+N1δ +N2y +N2τ

2N
− x

∣∣∣∣ =

∣∣∣∣
N2(y − x)

2N
+
N1δ +N2τ

2N

∣∣∣∣

≥
∣∣∣∣
N2(y − x)

2N

∣∣∣∣−
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≥ N2 |y − x|
2N

− min{N1, N2}√γ |y − x|
2N

≥ (1 −√
γ)N2 |y − x|
2N

,

and similarly,
∣∣∣∣y −

N1x+N1δ +N2y +N2τ

2N

∣∣∣∣ =

∣∣∣∣
N1(y − x)

2N
− N1δ +N2τ

2N

∣∣∣∣

≥
∣∣∣∣
N1(y − x)

2N

∣∣∣∣−
∣∣∣∣
N1δ +N2τ

2N

∣∣∣∣

≥ N1 |y − x|
2N

− min{N1, N2}√γ |y − x|
2N

≥ (1 −√
γ)N1 |y − x|
2N

.


