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Abstract. In this paper, we consider the problem of partitioning a $mdata
sample drawn from a mixture @f product distributions. We are interested in the
case that individual features are of low average qualitsnd we want to use as
few of them as possible to correctly partition the sample.anelyze a spectral
technique that is able to approximately optimize the totahdize—the product
of number of data pointa and the number of featurds—needed to correctly
perform this partitioning as a function af~y for K > n. Our goal is motivated
by an application in clustering individuals according teitlpopulation of origin
using markers, when the divergence between any two of thelatigns is small.

1 Introduction

We explore a type of classification problem that arises incthrgext of computational
biology. The problem is that we are given a small sample & size.g., DNA ofn
individuals (think ofn in the hundreds or thousands), each described by the values
of K featuresor markers e.g., SNPs (Single Nucleotide Polymorphisms, thinksof
as an order of magnitude larger thah Our goal is to use these features to classify
the individuals according to their population of origin.afgres have slightly different
probabilities depending on which population the indivichelongs to, and are assumed
to be independent of each other (i.e., our data is a smalllegngmn a mixture ofk very
similar product distributions). The objective we consideto minimize the total data
sizeD = nK needed to correctly classify the individuals in the sampla &unction of
the “average quality® of the features, under the assumption that> n. Throughout

the paper, we usg/ andu{ as shorthands fqrgj) andul@ respectively.

Statistical Model: We havek probability spaces?y, . . ., £2;, over the se{0, 1}%. Fur-
ther, the componentdeature$ of » € (2, are independent anr,, [z; = 1] = pi

(1 <t <k 1<i< K).Hence, the probability spacés,, ..., {2, comprise the
distribution of the features for each of ttkepopulations. Moreover, the input of the
algorithm consists of a collectiom(xture) of n = Zle N, unlabeled samplesy,
points from{2;, and the algorithm is to determine for each data point fronchviof
2,...,8 it was chosen. In general we #ot assume thaiv, ..., N, are revealed
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to the algorithm; but we do require some bounds on theirivelaizes. An important

parameter of the probability ensembske, . . . , (2, is themeasure of divergence
i (vl —pi)?
= = 1
v 1§Isn<lt§k K (1)

between any two distributions. Note thatily measures the Euclidean distance be-
tween the means of any two distributions and thus repres$egitsseparation. Further,
let N = n/k (so if the populations were balanced we would havef each type) and
assume from now on th&tN < K. Let D = nK denote the size of the data-set. In
addition, letr? = max; ¢ pi(1 — pi) denote the maximum variance of any random bit.

The biological context for this problem is we are given DNAoirmation fromn
individuals fromk populations of origin and we wish to classify each indivibinéo
the correct category. DNA contains a series of markersa&&@NPs, each of which has
two variants (alleles). Given the population of origin ofiadividual, the genotypes can
be reasonably assumed to be generated by drawing allelegaendently from the ap-
propriate distribution. The following theorem gives a stiéfint condition for a balanced
(Ny = N») input instance whek = 2.

Theorem 1. (Zhou 06 [?])AssumeN; = N, = N. If K = Q(%) and KN =

(InNloglog Ny then with probabilityl — 1/ poly(NN), among all balanced cuts in
the complete graph formed amofgdV sample individuals, the maximum weight cut
corresponds to the partition of th&V individuals according to their population of
origin. Here the weight of a cut is the sum of weights acroksddes in the cut, and the
edge weight equals the Hamming distance between the birgeaftthe two endpoints.

Variants of the above theorem, based on a model that allowsamdom draws from
each SNP for an individual, are given i®,P]. In particular, notice that edge weights
based on the inner-product of two individuals’ bit vectoosrespond to the sample
covariance, in which case the max-cut corresponds to theaopartition [?] with
high probability. Finding a max-cut is computationallyraxttable; hence in the same
paper [?], a hill-climbing algorithm is given to find the correct pitidn for balanced
input instances but with a stronger requirement on the sizbsth K andn K.

A Spectral Approach: In this paper, we construct two simpler algorithms usingcspe
tral techniques, attempting to reproduce conditions ablwparticular, we study the
requirements on the parameters of the model (namely,, k, andK) that allow us to
classify every individual correctly and efficiently withgh probability.

The two algorithms CAssIFY and RRTITION compare as follows. Both algo-
rithms are based on spectral methods originally developgdaph partitioning. More
precisely, Theorem 2 is based on computing the singulaovetith the two largest
singular values for each of the x K input random matrix. The procedure is concep-
tually simple, easy to implement, and efficient in practi€er simplicity, Procedure
Classify assumes the separation parameisrknown to decide which singular vector
to examine; in practice, one can just try both singular vexcts we do in the sim-
ulations. Proof techniques for Theorem 2, however, arecdiffito apply to cases of
multiple populations, i.e% > 2. Procedure Partition is based on computing a rank-



approximation of the input random matrix and can cope withiture of a constant
number of populations. It is more intricate for both implartegion and execution than
Classify. It does not requirg as an input, while only requires that the constaris
given. We prove the following theorems.

Theorem 2. Letw = 22NuN2) gnd ., be a lower bound om. Lety be given.
Assume thal{ > 2nInn andk = 2. ProcedureCLASSIFY allows us to separate two

populations w.h.p., when > 2 ( o? ) whereo? is the largest variance of any

YWminW
random bit, i.eo? = max; ¢ pi(1 — pi). Thus if the populations are roughly balanced,
thenn > s suffices for some constant

This implies that the data required i3 = nK = O (Inno'/y?w?w?; ). Let P, =
(p')i=1....x, We have

[P1 = Pally = Ky =

g

K
> v - ph)? > Inn. (2)
=1

WminW

Theorem 3. Letw = 20N Ni) There is a polynomial time algorithPARTITION

that satisfies the following. Suppose tat> nlogn, v > K2, n > C;—Zz for some
large enough constar®, andw = §2(1). Then given the empirical x K matrix
comprising theK features for each of the individuals along with the parameté,
PARTITION separates thé populations correctly w.h.p.

Summary and Future Direction: Note that unlike Theorem 1, both Theorem 2 and
Theorem 3 require a lower bound eneven wherk = 2 and the input instance is bal-
anced. We illustrate through simulations to show that thés1ss not to be a fundamental
constraint of the spectral techniques; our experimengallte show that even when

is small, by increasind( so thatnK = £2(1/+?%), one can classify a mixture of two
populations using ideas in Procedure Classify with suctassreaching an “oracle”
curve, which is computed assuming that distributions amkm where success rate
means the ratio between correctly classified individuat/snExploring the tradeoffs
of n and K that are sufficient for classification, when sample size small, is both of
theoretical interests and practical value.

1.1 Related Work

In their seminal paper?], Pritchard, Stephens, and Donnelly presented a modelebas
clustering method to separate populations using genotgifze @hey assume that ob-
servations from each cluster are random from some parammatdel. Inference for
the parameters corresponding to each population is dontlyjevith inference for the
cluster membership of each individual, ahdh the mixture, using Bayesian methods.
The idea of exploiting the eigenvectors with the first twoegigalues of the adja-
cency matrix to partition graphs goes back to the work of leieff’], and has been
used in the heuristics for various NP-hard graph partitignproblems (e.g., 7). The
main difference between graph partitioning problems amddiassification problem



that we study is that the matrices occurring in graph partitig are symmetric and
hence diagonalizable, while our input matrix is rectangul@eneral. Thus, the contri-
bution of Theorem 2 is to show that a conceptually simple dficient algorithm based
on singular value decompositions performs well in the fraomi of a fairly general
probabilistic model, where probabilities for each of thefeatures for each of the
populations are allowed to vary. Indeed, the analysis A<3IFY requires exploring
new ideas such as the Separation Lemma and the normalizdtiba random matrix
X, for generating a large gap between top two singular valfi#iseoexpectation ma-
trix X and for bounding the angle between random singular vectmistizeir static
correspondents, details of which are included in Sectioiitl2 analysis in full version.

Procedure Partition and its analysis build upon the spletchniques of McSh-
erry [?] on graph partitioning, and an extension due to Coja-Ogf#aMcSherry pro-
vides a comprehensive probabilistic model and presentsarspalgorithm for solving
the partitioning problem on random graphs, provided thapagation condition similar
to (2) is satisfied. Indeed?] encompasses a considerable portion of the prior work on
Graph Coloring, Minimum Bisection, and finding Maximum Ql& Moreover, McSh-
erry’s approach easily yields an algorithm that solves tassification problem studied
in the present paper under similar assumptions as in Thedrpnovided that the algo-
rithm is given the parameteras an additional input; this is actually pointed out in the
conclusions of P]. In the context of graph partitioning, an algorithm thaedmot need
the separation parameter as an input was devised].ifhe main difference between
PARTITION and the algorithm presented if] [is that RRTITION deals with the asym-
metricn x K matrix of individuals/features, where& fdeals with graph partitioning
(i.e., a symmetric matrix).

There are two streams of related work in the learning comtyunhe first stream
is the recent progress in learning from the point of view aefstéring: given samples
drawn from a mixture of well-separated Gaussians (compatistiibutions), one aims
to classify each sample according to which component digign it comes from, as
studied in ,7,?,?,2,2,7]. This framework has been extended to more general distri-
butions such as log-concave distributions ] and heavy-tailed distributions ir?],
as well as to more than two populations. These results fo@islynon reducing the
requirement on the separations between any two cetiteend P. In contrast, we
focus on the sample siz@. This is motivated by previous result®,P] stating that by
acquiring enough attributes along the same set of dimesdimm each component
distribution, with high probability, we can correctly ctfy every individual.

While our aim is different from those results, where> K is almost universal
and we focus on casds > n, we do have one common axis for comparison, the
{y-distance between any two centers of the distributions.altiex works [?,7], the
separation requirement depended on the number of dimessi@ach distribution; this
has recently been reduced to be independeht,dhe dimensionality of the distribution
for certain classes of distribution8,P]. This is comparable to our requirement in (2)
for the discrete distributions. For example, according h@edrem? in [?], in order to
separate the mixture of two Gaussians,

1Py Pall, = 2 (7 + o/own ©)



is required. Besides Gaussian and Logconcave, a genemakthe Theoren® in [?]

is derived that in principle also applies to mixtures of dite distributions. The key
difficulty of applying their theorem directly to our scerais that it relies on a con-
centration property of the distribution (Eq. (10) &) that need not hold in our case.
In addition, once the distance between any two centers id fixe., oncey is fixed
in the discrete distribution), the sample sizén their algorithms is always larger than
n (% log® K) [?,?] for log-concave distributions (in fact, in Theoreéhof [?], they dis-
card at least this many individuals in order to correctlysslfy the rest in the sample),
and larger tharﬂ(%) for Gaussians?], whereas in our case, < K always holds.
Hence, our analysis allows one to obtain a clean boundiorthe discrete case.

The second stream of work is under the PAC-learning framlewehere given a
sample generated from some target distributihrthe goal is to output a distribution
7y that s close tdZ in Kullback-Leibler divergencek L(Z|| Z; ), whereZ is a mixture
of product distributions over discrete domains or Gaussiar?,?,?,?,?,?]. They do
not require a minimal distance between any two distribugjdout they do not aim to
classify every sample point correctly either, and in gelmeguire much more data.

2 A Simple Algorithm Using Singular Vectors

As described in Theorem 2, we assume we have a mixture of tedaupt distributions.
Let N1, N> be the number of individuals from each population class.ddai is to cor-
rectly classify all individuals according to their distuifions. Letn = 2N = N; + No,
and refer to the case wheé¥y, = N, as the balanced input case. For convenience, let
us redefine K" to assume we hav®(logn) blocks of K features each (so the total
number of features is reall9 (K logn)) and we assume that each sefofeatures has
divergence at least. (If we perform this partitioning of features into blocks\adomly,
then with high probability this divergence has changed bly anconstant factor for
most blocks.) The high-level idea of the algorithm is nowepeat the following proce-
dure for each block of{ features: use th& features to create anx K matrix X, such
that each rowX;,7 = 1,...,n, corresponds to a feature vector for one sample point,
across itsK’ dimensions. We then compute the top two left singular veai@ru, of
X and use these to classify each sample. This classificatthrc@s some probability
of error f for each individual at each round, so we repeat the procdduesach of the
O(log n) blocks and then take majority vote over different runs. Batimd we require
K > nfeatures, so we ne&d(n log n) features total in the end.

In more detail, we repeat the following procedarog n) times. Letl’ = 13X\ /30,17,
wherewy,, is the lower bound on the minimum weighiin{ 2%, 22}, which is inde-
pendent of an actual instance. Lsget X ), so(X) be the top two singular values &f.

Procedure Classify: Given~y, N, wp;i,. Assume thatV > %

— Normalization: use thé& features to form a random x K matrix X; Each indi-
vidual random variabl&; ; is anormalizedrandom variable based on the original
Bernoullir.v.b; ; € {0,1} with Pr{b, ; = 1] = p] for X; € P, andPr[b; ; = 1] =

p3 for X; € Py, such thatX; ; = %31,



- Take top two Ieftsmgular vectors, up of X, whereu; = [u;1,...,uin],i = 1,2.
fs(X) > T = 1:‘,))—2N\/3wmm7, useus to partition the individuals witt) as
the threshold, i.e., partitiof € [n] according tous ; < 0 Orus ; > 0.
2. Otherwise, use; to partition, with mixture mean/ = Z?:l uj n as the
threshold.

Analysis of the Simple Algorithm: Our analysis is based on comparing entries in the
top two singular vectors of the normalized randemK matrix X, with those of a static
matrix X', where each entryt; ; = E[X; ;] is the expected value of the corresponding
entryinX. Hencevi = 1,..., Ni, X; = [uf, 3, ..., pf°], wherep] = 171 vj, and
1+p)
2

Vi= Ny +1,....n, X = [, p3,..., K], wherep) = ,Vj. We assume the
divergence is exactly among thek features that we have chosen in all calculations.

The inspiration for this approach is based on the followiagma, whose proof
is built upon a theorem that is presented in a lecture note gigl8an [?]. For a
n x K matrix A, let s;(A) > s2(4) > ... > s,(A) be singular values ofi. Let

ui, ..., Un, V1, ..., s, D€ then left and right singular vectors of, corresponding to
51(X), ..., sn(X) such that|u;||, = 1, ||v;]|, = 1, Vi. We denote the set of left and
right singular vectors ok’ with @y, ..., 4,, 01, ..., Up.

Lemma 4. Let X be the randomn x K matrix andX its expected value matrix. Let
A = X — X be the zero-mean random matrix. ldete the angle between two vectors:
[ui, vi], [wi, v;], where||[u, vi]||, = [|[wi, vi]]|, = 2 and [u, v] represents a vector that

is the concatenation of two vectaisv.

481 (A)

w; — Uil < ||[ug, vi] — [, V)|l = 20; = 2sin(0;) < ————,
o =l < W, v — [ 9) < goont),

(4)
wheregap(i, X') = minj; |s;(X) — s;(X)].

We first bound the largest singular valsig A) = s;(X — &) of (a; ;) with inde-
pendent zero-mean entries, which defines the Euclideamatmperorm

(@)l :==sup Q> asjay; Y a7 <1,y yi<1,. (5)
i

The behavior of the largest singular value ofrax m random matrices! with i.i.d.
entries is well studied. Latalé?’] shows that the weakest assumption for its regular
behavior is boundedness of the fourth moment of the entries) if they are not iden-
tically distributed. Combining Theorem 5 of Latala with tb@ncentration Theorem 6
by Meckes P] proves Theorem 7 that we neéd

Theorem 5. (Bounded Norm of Random Matrices [?])For any finiten x m matrix
A of independent mean zero r.vis; we have, for an absolute constait

1

4

Ell(aij)| <C max /ZEa”—i—max /ZE(L” ZEaﬁj . (6)
0,

"1 0ne can als One can also obtain an upper boundfy/n + K) on s1(A) using a theorem on by V],
through the construction@ + K) x (n + K) square matrix out of.



Theorem 6. (Concentration of Largest Singular Value: Boun@&d Range [?])For
any finiten x m, wheren < m, matrix A, such that entries, ; are independent r.v.
supported in an interval of length at mast then, for all¢,

Pr(|s1(A) — Msi(A)| > ] < de~t'/4D%. ©)

Theorem 7. (Largest Singular Value of a Mean-zero Random Maix) For any finite

n x K, wheren < K, matrix A, such that entrieg; ; are independent mean zero r.v.
supported in an interval of length at mast with fourth moment upper bounded By
then

Pr(si(A) > CBY*VK +4D\/7 + t} < get/4 (8)

for all t. Hencel| A|| < C; BY/*V/K for an absolute constardt; .

2.1 Generating a Large Gap ins1(X), s2(X)

In order to apply Lemma 4 to the top two singular vector&candX’ through

_ 451(X — X)
Jur = |, < T51(70) = 52 (0] 9)
Juz il < ot (10

min (|s1(X) — s2(X)|,|s2(X)])’

we need to first bounds; (X) — so(X)| away from zero, since otherwise, RHSs on
both (9) and (10) become unbounded. We then anagpé2, X') = min (|s1(X) — s2(X)], |s2(X)]).
Let us first define values, b, ¢ that we use throughout the rest of the paper:

K K K
a=> (i) b=> pkuk = (uh)* (11)

k=1 k=1 k=1

For the following analysis, we can assume thab, ¢ € [K/4, K], given thatX is
normalized in Procedure Classify.

We first show that normalization &f as described in Procedure Classify guarantees
that not only|s; (X) — s2(X)| # 0, but there also exists @(+/ N K') amount of gap
betweens; (X) andsz(X) in Proposition 8:

gap(X) := [s1(X) — s2(X)[ = O(VNK). (12)

Proposition 8. For a normalized random matriX, its expected value matriX’ sat-
isfies 10v2NE < gap(X) < V2NK, wherecy = zlé)(‘;/f_f) is a constant, given that
a,b,c € [K/4, K] as defined in (11). In addition,

,/% < 51(X) < VANK, and\/g < 51(X) + s2(X) < VINE.  (13)



We next state a few important results that justify Procedilassify. Note that the
left singular vectorsi;, Vi of X are of the form{z;, ..., 2, vi,. ..,y ":
I a9

ﬂl = [xla"'axlayla"'ayl 9 andaQZ [an---7x27y21"'7y2

wherez; repeatdV; times andy; repeatsV, times. We first show Proposition 9 regard-
ing signs ofx;, y;, 7 = 1, 2, followed by a lemma bounding the separation:9fy,. We

then state the key Separation Lemma that allows us to coathad least one of top two

left singular vectors ofX can be used to classify data at each round. It can be extended
to cases whek > 2.

Proposition 9. Letb as defined in (11): whelh> 0, entriesz,, y; in 4, have the same
sign whilexs, 2 in 4y have opposite signs.

2
Lemma 10. |25 — y2|? < Smex whereCrpax = (‘/wi1 + w/w%) < o faef? >

Coia whereCl iy = 2 > Sumin \whereCl min = 17t—

2 2 4w§ +wiws "

40.)%:3)10.)2; |y2
Lemma 11. (Separation Lemma)K~y = s1(X)%(x1 — y1)? + s2(X)? (22 — y2)%.

Proof. Let A := P, — P, asin Theorem 2, anbl= [1,0,...,0,—1,0,...,0]7, where
1 appears in the first and1 appears in théV; + 1! positions. Themd = X7b = [ui —
Uay 3 — 3, ., i — pd]. GivenX = s1(X) 0] + s2(X)uz0d , we thus rewrited
as:A=XTph= Sl(X)l_)lﬂ{b—FSQ(X)l_)gﬂgb = Sl(X)’L_)l (.CCl —y1)+SQ(X)1_}2 (xg—yg).
The lemma follows from the fact thgt ||, = /K~ andv,, o, are orthonormal. =

Combining Proposition 9, Lemma 10, (13), and Lemma 11, wehav

Corollary 12. s3(X) < =2 — % and hencg@ap(2, X) = min(sy(X), |s1(X)—

s2(X)]) = s2(X) for a sufficiently smally.

Finally, we show that the probability of error at each rouoddach individual is at
mostf = 1/10, given the sample size as specified in Theorem 2. Hence by taking
majority vote over the different runs for each sample, ogogthm will find the correct
partition with probabilityl — 1/n2, given that at each round we take a setof> n
independent features. We leave the detailed analysisliadtgion.

3 The Algorithm PARTITION

3.1 Preliminaries

LetV = {1,...,n} be the set of alh individuals, and let) : V — {1,...,k} be
the map that assigns to each individual the population trigs to. SeV;, = ¢ ~1(#)
and N, = |V;|. Moreover, letE = (E,;)i1<v<n,1<i<k b€ then x K matrix with
entriesE,; = pfp(v). Foranyl <t < kwe letE"* = (pl),—1,. x be the row ofE
corresponding to any € V;. In addition, letA = (a,;) denote the empirical x K
input matrix. Thus, the entries @f equal the expectations of the entries/hf



As in Theorem 3, we let

=K' min [EY —EY|? I =K».
gl Join | 1% gl

Further, set\ = v/ Ko. Then the assumption from Theorem 3 can be rephrased as
Nminl’ > CpA? andl” > K1 (15)

whereC, signifies a sufficienly large number that depend& amly (the precise value
of Cj will be specified implicitly in the course of the analysis)s An the previous

section, by repeating the partitioning prockssn times, we may restrict our attention
to the problem of classifying a constant fraction of the widlials correctly. That is, it

is sufficient to establish the following claim.

Claim 13. There is a polynomial time algorithiRar ti t i on that satisfies the fol-
lowing. Suppose that (15) is true. Then whar ti ti on(A, k) outputs a partition
(S1,...,Sk) of V such that there exists a permutatiersuch that

k
> VirSoiy| < 0.001mmin.
1=1

(X, -, X, )ofX Moreover we let

X1 = 1 X¢]l

e RK IIEII 1

signify theoperator normof X. A rank k& approximationof X is a matrix X of rank
at mostk such that for any, x K matrix Y of rank at most we have|| X — X|| <

| X — Y|. Given X, a rankk approximationX can be computed as follows. Letting
p = rank X'), we compute the signular value decomposition

p
X = Z Né&inks
im1

here(¢;)1<i<, is an orthonormal family iR”, (;)1<.<, is an orthonormal family in
RK and we assume that the singular valdgare in decreasing order (.6, > --- >
Ap). This can be acccomphshed in polynomial time within anynewical percision.
ThenX = Zm‘“{k’p} &l is easily verified to be a rankapproximation.
In addition to the operator norm, we are going to work with fngbenius norm

1X1lF =

Although the following fact is well known, we provide its rifor completeness.

Lemma 14. If X has rankk, then|| X ||% < k| X%



Proof. Let X = Z " Mi&nl be a singular value decomposition as above. Then
k
X% = 2%27 = Z Aij (Gis &) (s my) -
0,J 4,j=1

Sincety, ..., & andny, ..., n are orthonormal families, we havg;, &;) = (n;,n;) =
Lif i = jand(&;, &) = (mi,m;) = 0if i # j. Hence|| X ||% = ¥, A2. This implies
the assertion, becauge < || X||forall1 <i<k. O

3.2 Description of the algorithm

Algorithm 15. PARTITION(A, k)
Input: A n x K matrix A and the parametér. Output: A partition Sy, ..., S of V.

1. Compute arank k approximation Aof A.
Forj=1,...,2log K do

2. Let I = K277 and compute Q) (v) = {w € V : || A, — A,|> < 0.017'?}
forallv e V. v v
Then, determine sets Q“) Q“) as follows: fori = 1,...,k do

3. Pick v € V' \ UiZ (J) such that QD )\ Uzl QY| is maximum.

Set QY = QU()\Ui=! @) and € = Q0T Lweq() Aw

4. Partition the entire set V' as follows: first, let S,f“ = Q,EJ) foralll <i<k.
Then, add each v € V' \ U, Q%J) to a set SY) such that ||A, — 7| is
minimum. N ‘
Setr; =31, %, oo 1A — 7|2,

5.  Let.J be such thatr* = r; is minimum. Return {7, ... 5\,

The basic idea behindaRTITION is to classify each individual € V' according
to its row vectorA, in the rankk approximationA. That is, two individuals), w are
deemed to belong to the same populatloﬂm, AwH2 < 0.017"%. Hence, RRTITION
tries to determine setSy, ..., S, such that for any twa, w in the same sef; the
distance| A, — A, | is small. To justify this approach, we show thhts “close” to the
expectatiorE of A in the following sense.

Lemma 16. There is a constar@ > 0 such thay", ., | A, — E, ||* < CkA? whp.

Proof. Since bothA andE have rank at most, and as thereford — EE has rank at most
2k, Lemma 14 yields

D N4, —E,|? = | A - E|} < 2k| A - E|>.
veV

Furthermorel|A — E|| < ||[A — A|| + |E — A| < 2||E — A||, becaused is a rank
k approximation ofA. As Theorem 7 implies thdtA — E||> < C\?/8 for a certain
constantC' > 0, we thus obtairy ", .\, [|A, — E,[|* < 8Kk||A — E[|* < CEA%. ]



Observe that Lemma 16 implies that fmosty we have||A, — E, |2 < 1076I, say.
For lettingz = [{v : [|[A, — E,||> > 107°T"}|, we get

10772 < Y |4, — By | < CRA,
veV

whencez < npni, due to our assumption that,;,I" > kA2. Thus, most rows oft
are close to the corresponding rows of éxpectednatrix E. Therefore, the separation

assumptiom > Cs—gz from Theorem 3 imlies that for most pairs of elements in dif-

ferent classes € V;, w € Vj the squared distanded,, — A, || will be large (at least
0.991", say). By contrast, for most paits v € V; of elements belonging to the same
class||A, — A, ||? will be small (at mos0.011", say), becausg, = E,,.

As the above discussion indicates, if the algorithm weremjivas an input paramter,
the procedure described in Steps 2—4 (wiltreplaced by/") would yield the desired
partition of V. The procedure described in Steps 2—4 is very similar to preetsal
partitioning algorithm from7].

However, sincd is not given to the algorithm as an input parameteRRTION
has to estimaté’ on its own. (This is the new aspect here in comparisiof?lcgnd this
fact necessitates a significantly more involved analy$isthis end, the outer loop goes
through2log K “candidate valuesI’;. These values are then used to obtain partitions

ng), ceey ,(f) in Steps 2—4. More precisely, Step 2 ugésto compute for each €
V the setQ(v) of elementsw such that| A, — A, < 0.017'?. Then, Step 3 tries
to compute “big” disjointQ{"’, ..., QY, where eactQ!” results from some)(v; ).
Further, Step 4 assigns all elementsot covered byp!"). ..., Q' to thatQ!?”) whose

“center vector"gfj ) is closest tad,. In addition, Step 4 computes an “error parameter”
r;. Finally, Step 5 outputs the partition that minimizes th@eparameter;.

Thus, we need to show that eventually picking the partitibrose error term; is
minimum yields a good approximation to the ideal partitidn. . ., V.. The basic rea-
son why this is true is that the “empirical” mea&"i) should approximate the expectation
EV: for classV; well iff QEJ) is a good approximation df;. Hence, ifQ§J)7 . QS) is
“close”toV4,..., Vi, then

SN A -7

i=1 ,Uesl(j)

Ty

will be about as small aj$2— E|% (cf. Lemma 16). In fact, the following lemma shows
that if I'; is “close” to the ideal”, thenr; will be small.

Lemma 17.If 31" < I'; < I', thenr; < Cok3\? for a certain constan€’, > 0.

We defer the proof of Lemma 17 to Section 3.3. Furthermoe next lemma shows
that any partition such thai is small yields a good approximationta, ..., V.

Lemma 18. Let S, ..., Sk be a partition andsy, ..., & a sequence of vectors such
that 1 | 37, cs. 16 — Au]|? < Cok3A%. Then there is a bijectiof® : {1,...,k} —
{1, ..., k} such that the following holds.



1. ||& —EV=® |2 <0.0012 foralli=1,...,k, and
2. Zf:l |Si AV=(5)] < 0.0017miy.

The proof of Lemma 18 can be found in Section 3.4.

Proof of Claim 13.Since the rank approximationd can be computed in polynomial
time (within any numerical precisionlpar ti ti on is a polynomial time algorithm.
Hence, we just need to show thidt ! < I < K; forthenPar t i t i on will eventually
try al; such tha%F < I; < I', so that the claim follows from Lemmas 17 and 18. To
see thatk —! < I < K, recall that we explicitly assume that> K —!. Furthermore,
all entries of the vectoiB" lie betweer) and1, whencel” = max;; |[EVi —EVi||? <

K. O

3.3 Proof of Lemma 17

Suppose tha%F < I'; < I'. To ease up the notation, we omit the supersgriphus,
we letS; = 59, Q; = QY for1 < i < k, andQ(v) = QW (v) forv € V' (cf. Steps
2-4 of Par ti ti on). The following lemma shows that there is a permutatiosuch
that¢; is “close” toEV=® for all 1 < i < k, and that the set§; are “not too small”.

Lemma 19. Suppose tha%l“ < Ij < I'. There is a bijectionr : {1,...,k} —
{1,...,k} such that for each < i < k we haveQ;| > 1|V, ;| and||¢; —EV=o |2 <
0.17".

Proof. For1 <4 < k we chooser (i) so that|Q; N Vy(;| is maximum. We shall prove
below that for alll <[ < k we have

1§ — V=0 ||* < 0.1, (16)
Qi > max{|Vi| i € {1,... .k} \7({1,...,1 = 1})} = 0.01nmin,(17)
|Ql N Vﬂ(l)| Z |Ql| - 0-01nmin- (18)

These three inequalities imply the assertion. To seesthsia bijection, let us assume
thatr(l) = w(I’) for two indicesl < [ < I’ < k. Indeed, suppose that min 7~ 1(1).
Then|Q:| > |Vﬂ.(l)| — 0.01ny, by (17), and thU$V,T(l) \ Q| < 0.1nyi, by (18). As
Q; N Qy = ) by construction, we obtain the contradiction

17) (18)
O.99nmin S |Ql’| S 11|Ql’ n Vﬂ-(l)l S 11|Vﬂ-(l) \ Ql| S 0-11nmin-

Finally, asr is bijective, (17) entails thaQ);| > 0.9V, forall 1 < < k. Hence, due
to (18) we obtaif@; N Vi| > 0.9|Qi| > 1|V, )|, as desired.

The remaining task is to establish (16)—(18). We proceedbudtion oni. Thus,
let us assume that (16)—(18) hold for &k L; we are to show that then (16)—(18) are
true forl = L as well. As a first step, we establish (17). To this end, carsictlasd/;
suchthat ¢ 7({1,...,L—1})andletZ; = {v € V; : || A, — E,||*> <0.0017"}. Then
0.0011(|Vi| = | Zi]) < vz, |1 Av — Eu|? < | A — B[} < CkA? (cf. Lemma 16)
whence the assumption (15) éhyields

|Zl| > |V1| — 0.01nmin, (19)



provided thaCy, is sufficiently large. Moreover, for all € Z; we have
Q) ={weV: |4, — A,|*> <0.01I}} D Z,, (20)

because we are assuming thiat> I"/2. In addition, letw € @, for somel < L; since
our choice ofi ensures that € V; # V;(;), we have

VI < |EYO —E,y|| < By — Aufl + | Aw = Aol + 16 — Aul + & — EV0(R1)

Now, the construction in Step 3 #farti ti on ensures thaﬂﬁ — &l < 0.1VT.
Furthermore|| ¢, —EV=0 || < /T'/3 by induction (cf. (16)), ang A, —E,|| <0.1VT,

because € Z;. Hence, (21) entails thatd,, — A,| > 0.1v/T, so thatw & Q(v).
Consequently, (20) yields

Z;NQ=0foralll < L. (22)

Finally, letv;, signify the element chosen by Step 3R&r t i t i on to construct) .

Then by constructiof | = |Q(vL) \ U Qi > |Q( )\U ' Qi|. Therefore,

e ><22>
QL] > 1Q(v) \ U Qi 12 S V3| = 0.01mmim.

As this estimate holds for azllgz ({1 —1}), (17) follows.

Thus, we know thag);, is “big”. As a next step, we prove (18), i.e., we show that
Q1 “mainly” consists of vertices iV (z). To this end, lett < i < k be such that
|EV: — 4, || is minimum. LetY’ = Q. \ Vi. Then forallw € Y we have|E, — A,, || >
|EV: — A,||. Further, since/T" < ||E,, A, |+ |EY — 4, || <
2|[E, — A, ||, we conclude thafE,, — 4,, ||> > 1I". On the other hand, as € Q.
we have||4,, — A,, |2 < 0.011". Therefore, we obtaifjA,, — E,||> > 0.1I" for all
w €Y, sothat

~ ~ L 16
0YIT< Y A, —Eul2 < IA-E|3 < el (23)

weyY
Hence, due to our assumption (15) 6h (23) yields thatlY’| < 0.01n;,. Conse-
quently, (17) entails thal; N Q| > 0.99|Qy|, so thati = =(L). Hence, we obtain
QLN Vi)l =1Qr NVi| =1Qr \ Y| > |QL| — 0.01nmiy,, thereby establishing (18).
Finally, to show (16), we note that by constructi¢y, — A,, |2 < 0.01I" and
| Ay — Ay, |2 < 0.0l forallw e QrLNVy(r) (cf. Step 3 ofPar ti ti on). Therefore,

QL N Vil - [Bqry — €Ll
< 3 Z HfL _AUL||2+ ”Aw _A'UL||2+ ”Aw _]E7T(L)H2
’LUEQLI'TV#(L)
< 0.06I1QL N Vil + 34— E[%
Lemma 16
0.061Qr N VW(L)| + 3Ck)\2. (24)

Since|@Qr N ZW(L)| > 0.9nmin due to (17) and (18), (24) entails tHe () — {2 []* <
0.071" + 82~ < 0.17". Thus, (16) follows. O



In the sequel, we shall assume without loss of generality e mapsw from
Lemma 19 is just the identity, i.er(i) = ¢ for all ;. Bootstrapping on the estimate
& —EYi||?2 < 0.1 for 1 < i < k from Lemma 19, we derive the following stronger
estimate.

Corollary 20. Forall 1 < i < k we have||¢; — E
E,||%.

Proof. By the Cauchy-Schwarz inequality,

2 <100Qi| 7MY e, 1Ay —

1/2

e —EY [ = Qi ™ | Yo Av —EY|| <[@i 72 | 3 A, —EV 2| (25)
vEQ; vEQ;
Furthermore, a§¢; — EV#||2 < 0.11" by Lemma 19, for alb € Q; \ V; we have

%)y < /3, (26)

140 = EV* < 2(| A0 — &l|* + [l — EY

because the construction @f; in Step 3 ofParti ti on ensures thaﬂﬁv &% <
0.017". Hence, adE, — EV¢||2 > I', (26) implies that| A, — E, || > 0.1]|4, — EV:
Therefore, the assertion follows from (25). ]
Corollary 21. Forall v € S; \ V; we havel|A, — & < 3|4, — E,||.
Proof. Leti # [ and consider a € S; N V;. We shall establish below that

HA\U - 51“ S ||A\v - §l|| (27)
Thenby Lemma 194, —&| < || A, —E, |+ ||E,—&| < ||A,—E,||+vT/3, and thus
VT < By —EVS|| < |4, — &l + & — BV || + | A, — B, || < 2||A, — B, || + 2VT.

Consequently, we obtaif\d, — E,[| > 1T, so that the assertion follows from the
estimate

-~ 27 ~ Lemmal9 \/]_" -~
||Av_§i|| < ||Av_§l|| < HAU_EUH'i'”Ev_ng < HAv_Ev”"'T < 3||AU_EU||'
Finally, we prove (27). I € S; NV, \ Q, then the construction df; in Step 4 of
Par ti ti on guarantees thatd, — &|| < ||A, — &/|, as claimed. Thus, assume that

v € Q;NV.. Then
A, — &l < 0.15VT [by the definition ofQ; in Step 3]
max{l& BV |, g~ B} < VT [by Lemma19]
IEY — Eo|| > VT
Therefore, if| A, — & || < || A, — &]|, then we would arrive at the contradiction
VT < |EY — B, || < |[EY — &l + B, — &l + 1€ — &l
< 2VT 414~ &l + 1A~ &ll < VT +2) A, — &) <0.99VT.

Thus, we conclude thatd, — &|| > || A, — & ||, thereby completing the proof. =



Proofof Lemma 17. SincéQ;| > 3|Vi| by Lemma 19, we have the estimate
k R k N
SO MA-alr<2Y Y [1Ae—Eul? + B, - &)
i=1 wesS;NV; i=1 wesS;NV;

k
Cor.20 |SiﬂVi|
< 2A-E[F+200) X

i=1 ¢

> A, - E,|* < 500] 4 - E|28)
vEQR;

Furthermore, by Corollary 21
k R k R R
Yoo A -alP<9d] > A —E?<9A-E[F  (29)
i=1veS;\V; i=1veS;\V;
SinceH/Al— E||% < CkA? by Lemma 16, the bounds (28) and (29) imply the assertion.

3.4 Proof of Lemma 18

SetSy, = S, NV, forl < a,b < k. Moreover, foreach < a < kletl < 7(a) <k
be such tha EV~ — &, || is minimum. Then for alb # 7(a) we have

VT < |EV @ —EY|| < BV — & + |EY - & < 2E™ — &, (30)

so that|EY> — &,|| > v/T'/2. Therefore, by our assumption thet? | 3, .« [1& —
XUHQ < Cok3A2, we have

I-,k
T2 2. ISal

< D |Swl - IBY —&?
a=11<b<k:b#m(a) a,b=1
k
< 2> > By — AP+ |4, — &alf?
a,b=1vES,
~ k ~
< 2QA-ElF+2)> > A -4l
a,b=1vES,,
Lemma 16
< 4Gk +200k3 N < CREP N2, (31)
Hence,
k
8 2]{33)\2
SN ISulVawl= > 28wl < COF < 0.001nmin,  (32)
a=1 1<a,b<k:b#£m(a)

provided thatCy, is sufficiently large (cf. (15)). Combining (31) and (32), wbtain
Bagin | EV=(0) — £,]|2 < S0 N Vi(a)] - [|E(a) — &all> < c2k3X%, whence
2c2k3\?

min

[Er(a) — &l < <0.001I" foralll <a <k, (33)



provided thatCy, is large enough. Thus, we have established the first two jpérts
the lemma. In addition, observe that (32) implies thas bijective (because the sets
Si,..., Sk are pairwise disjoint anf/,| > nmi, forall 1 < a < k). Finally, the third
assertion follows from the estimate

k k
D 1Sa BV —EV=@ |2 < 23 [Sep| (B — &|? + IV — &%)
a,b=1 a,b=1
@) &
< 8 [Swl- [EV® — &P
a,b=1

(31)
< 8C2E3A? < 0.0011 iy,

where we assume once more thatis sufficiently large.

4 Experiments

We illustrate the effectiveness of spectral techniquesgusimulations. In particular,
we explore the case when we have a mixture of two populatiwashow that when
NK > 1/4%andK > 1/~, either the first or the second left singular vectoXoghows
an approximately correct partitioning, meaning that thecsas rate is well above/2.
The entry-wise expected value matdkis: amongK /2 featuresp! > pi and for the
other halfp} < pj suchtha¥i, pi,p} € {152 + £, 152 + £}, wheree = 0.1a. Hence
~ = o2. We report results on balanced cases only, but we do obdeavenbalanced
cases show similar tradeoffs. For each populafipithe success rate is defined as the
number of individuals that are correctly classified, ileeytbelong to a group that is
the majority of that group, versus the size of the populati®n

Each point on the SVD curve corresponds to an average ratel 0¢rials. Since
we are interested in exploring the tradeoff\gfK in all ranges (e.g., wheN << K
or N >> K), rather than using the threshdltin Procedure Classify that is chosen in
case bothV, K > 1/~, to decide which singular vector to use, we try bathandus
and use the more effective one to measure the success raehdfial. For each data
point, the distribution ofX is fixed across all trials and we generate an independent
Xaonx i for each trial to measure success rate based on the mordiveffetassifier
between:; andus.

One can see from the plot that whé&h < 1/, i.e., whenK = 200 and400, no
matter how much we increa9é, the success rate is consistently low. Note &iat100
of success rate is equivalent to a total failure. In contrasenN is smaller tharl /+,
as we increasé&’, we can always classify with a high success rate, where iergén
NK > 1/4?is indeed necessary to see a high success rate. In partitidaurves
for K = 5000, 2500, 1250 show the sharpness of the threshold behavior for increasing
sample size: from below1/K~? to above. For each curve, we also compute the best
possible classification one could hope to make if one knevdiaace which features
satisfiedp} > p, and which satisfied! < p,. These are the horizontal(ish) dotted lines



above each curve. The fact that the solid curves are apprgatiese information-
theoretic upper bounds shows that the spectral technigueerisctly using the available
information.

y=0.0016, Balanced case

o
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Fig. 1. Plots show success rate as a functiombfor several values of(, wheny = (0.04).
Each point is an average over 100 trials. Horizontal linesg¢les”) indicate the information-
theoretically best possible success rate for that valug ¢fiow well one could do if one knew
in advance which features satisfigtl > p5 and which satisfieg? < pi; they are not exactly
horizontal because they are also an average over 100 ruersical bars indicate the value of
for which NK = 1/42.
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A Detailed Analysis for the Simple Algorithm

In this section, we first prove a proposition regarding, c as defined in (11). We next
provide the proofto Theorem 7 regarding the largest simgallie of( X — ). We then
use Lemma 4 to bound the number of individuals that we misifiaat each round in
Section A.2. We finish by showing that with high probabilitye can correctly classify
all individuals by taking majority vote oved(log N) different runs.

Throughout the rest of the paper, we useY, H to represent random matrices,

whereH = X X7 andY = { 0 X

XT 0 ] . We useX, Y, H to represent the corresponding



static matrices. Let us substituieb, c in H = X X7, where the blocks ift{ from top
to bottom and from left to right are of siz&f; x N1, N1 X Na, Ny x N7 andNy x No
respectively:

a ...ab...b
o T a ...a b e b
H=xa" = b...bc...c (34)
b ...bc...c ON XN
Proposition 22. For any choices ofi¥, ac > b?; By definition,
K
a—|—c—2b:Zo¢z, whereay, = |y — pb|. (35)
1=1
Proof. a 4+ ¢ — 2b = ", o7 holds by definition.
K K K 2
ac—b> = "(uf)* > (u5)* — <Z(u’fu§)>
k=1 k=1 k=1
=3 bk > ((hed)? + (b)) — | D (kb)) + > 20l
k=1 j#k k=1 j#k
= (uid)? + (Wl ph)? — 2ubplpd i = (kb — i ph)* > 0.
J#k j#k
[ ]

Remark 23.Both matrices oft and X XT have rank at most two. Whenr: = b%, H
has rankl.

A.1 Proof of Theorem 7

Proofof Theorem 7. By having an upper bound on both maximum vaegiand fourth
moment of any entry, we have the following corollary of Therors.

Corollary 24. (Largest Singular Value: Bounded Fourth Moment [?]) For any finite
nxm, wheren < m, matrix of independent mean zero r.4;s;, such that the maximum
variances of any entry is at most, and each entry has a finite fourth momeénhtve
have

E llai)ll < C (o(Vm+ Vi) + mnB)/4) < CBYVm  (36)
for an absolute constart.

Remark 25.The requirement that? is upper bounded is not essential. The conclusion
in Corollary 24 works so long as fourth moment is boundedsby



LetMs; (A) be the median aof; (A). Following a calculation from¥], we have
[Els1(A)] — M1 (A)] < E[[s1(A) — Ms1(A)]]
/ (51 (A) — Misi (A)] > £]dt

34/ —t*/4D* 1y — 4AD/7,

whereD < 1 for Bernoulli random variables that we consider. This aaws to con-
clude Theorem 7. [ ]

A.2 Correctness of Classification for the Simple Algorithm

We now prove correctness of our algorithm. We first show hoehimosel” for Proce-
dure Classify. LetB denote the fourth moment bound for a single random variable i
the mean zero random matk — X’; for the type of normalized Bernoulli r.v.s that we
care abouty/B is in the order ot2, whereo? is defined in Theorem 2.

Let N+ be a large enough constant. lset X — X') < Cyv/K, whereCy = C, BY/4
as defined in Theorem 7 and let the threshold

T = \/C5KN~ > 15CoVK, (37)
which requires that
C3Nvy > 225C2, whereC; satisfies(41). (38)

Following Lemma 32, (56), (58), and Proposition 30, we have
|52(X) — 52(X)| < s1(X — &) < CoVK. (39)
We have two cases,

1. Whensy(X) < T, by Lemma 10 and the fact that(X) < so(X) 451 (X —X) <
T + CovVK < 1L, we have

25672 Cinax _ 128C3K7Cinax _ 128C3 K4
225 2N 225 = 225Wmimn

$52(X)?|z2 — yof® < (40)
for Ciuax as defined in Lemma 10. We wast(X)?|z2 — y2|? < ”fT”. This holds
so long astZ2CaltnCme < L8Ca K < 3K \yhich is true if

225wmin

675 min 675 min
C3 < d ; thus we take”'; = d

S 5018 2048 from this pointon.  (41)

It follows from Lemma 11 that; (X)?|z; — y1]? > %. Hence by (13)

lz1 —y1]| > \/(_) 2\/\/:>%\/— (42)




Thus the condition of Theorem 26 holds with = % so long as

_ 2048C2VB

, (43)

3Wmin
due to (38) and (41); This is a weaker condition than (54)ffer %
2. Whensy(X) > T, we havesy(X) > s2(X) —s1(X — X) > T — CovVK > HL;

This satisfies the condition of Theorem 28, with= %0_3 = /2,

Let us first denote the first singular vecigrand its “noise” vector as follows:

u?:(x+51,...,x+5N1,y+7'1,...,y+TN2), eT:(51,...,51\[1,7'1,...,7'1\[2).

It turns out that we only need to use the mixture mean

Zz 1(x+5)+21 1(7J+7'z)

M =
2N

(44)

to decide which side to put a node, i.e., to partitios [2V] according tou; ; < M
oruy,; > M, given thatN; /N; is a constant; Misclassifying any entry will contribute
2 (5%) amount tol|@; — w4 |5
Theorem 26. Assume w.l.o.g. thaV; < N, and2N < K. Letw; = N;/2N and

= N3/2N. Supposer; — y1| > c2./ 5% for some constant, = 5. By requiring

N > 20;35 VB asin (43), and

1
3

2c2 02 . 2¢202 2502\/
Ny > 20170, or equivalently2N > 2610 5 = >,
Jesywiws fEywaw?  feEywaw?

(45)

wherec; = 50\/15# for C specified in Theorem 7 ang specified in Proposition 8,

we can classify the two population using the mixture m&awith the error factor at
mostf for Ny, N, respectivelywhp.

By Lemma 4 and Theorem 7, we immediately have the followiadnel

72 < 4o’

Claim. Forc; chosen as in Theorem 2|5 = SV 62 + 02 72 < 47

i=1"1

1
Proof. Given thate; = % such that”; appears in Theorem 7 amg appears in
Proposition 8,

2624—27

lur — @1y ~ 261 ~ 2sin(6y)

_ds(X -X) 4G YBVKE  co

< = .
gap(l,X) ~ 4¢V2NK/5 /N

This allows us to conclude the claim. [ |




We need the following lemma, proof of which appears in Apped

Lemma 27. Assume tha2 N < K and Condition (45) in Theorem 26, we have

No(1— 7)) |y — | Ni(1— )|y — |
2N 2N '

Proofof Theorem 26. Recall thatthe largast u» have the formofz, ..., x,y,...,y],
wherez repeatsV; times andy repeatsV, times; hence w.l.0.g., assume thak y,
we have

|M —z| > o ly—M|= (46)

; ; 2 2 Nic3y 2

Vi, s.t. x 4+ 6; > M, it contributess; > |M — z|” >~ SN to [e]l5, (47)
] ) N2 2

Vi,s.t.y —1; < M, it contributess? > |M — y|? >~ 82]\6[237 to[lef2.  (48)

Hence the total number of entries that goes ahtvérom P, and those goes below
M from P, can not be too many since their total contribution is uppearrioed by
lel|3 = [[uy — @ ]|35. Let4; be the number of misclassified entries frovy, i.e., those
described in (47), by Lemma 4,

Ngc%’y 2 2 0%02
b {N3 S OIM —z|” < lefl; < . (49)
Thus giventhaty, > 232" > 299" - hence it suffices to guarantee thiat< 259~ <
12 Ty 2 Fddy < 22 <

[Ny
We next bound the number of entries frdfpthat goes below/, which can not be
too many either; let; be the number of misclassified entries frdéi

Nic2y 9 clo?
lo 81N23 < Lo|M —y)* < ell; < =, (50)
hence by requiring
2c202
Ny > —1 51
P fwidy’ 59
it suffices to guarantee thét < jﬁcgi < fNs.
272
Condition (51) is equivalent to
N. 2 2 2
Nl = 21 > a7 5 (52)
w2 fW1w2CQ”Y
Thus by requiring
2 2 2
Ny > 26170, (53)
fe3ywawr
we have satisfied all requirements. [ ]

Combining Lemma 4 and Corollary 12, we have



2
Claim. Given thats;(X) > cay/KN7, [Jup — @[3 < 1220050 < 190G

This allows us to prove the following theorem. Let the clfisation error factor be

the number of misclassified individuals from one group owtaltamount of people in
that group.

Theorem 28. AssumeV; < N, and2N < K. Letw; = N;/2N andwy = No/2N.
Let s2(X) > c5/KN7v, Wherecs = =4/220n and wyy is the minimum possible
weight allowed by the algorithm. By requiring

2 2
o > 2900 (ﬂ + 1) -6 <70 ) : (54)
Wminfy \ w1 frywminwi

we can classify the two population usigo separate components iy, with error
factor at mostf for both Py, P, whp.

Proof. Let ¢, {5 be the number of misclassified entries frdnand P, respectively;

thley each contribute at Ieagw, and% amount to|juz — u2l|,, and hence by
Claim A.2,

Cly min o 16C2K _ 16C?
l < - < < . 55
oON = luz = sl < AKN~vy ~ 2N~y (55)
Hencel; < 232003_ < fN; given thatV > 1203 (4ﬂ + 1).
€370z min Cgf’)’ w2
2
Similarly, by Claim A.2, we havé, Sz < [l — s |3 and thugy < 220— <
77Cy min
%2 so long asV > }j;?j (45—f + 1); the bound or2 NV follows by plugging inc; =
3
l 3Wmin ||

—
[=2)

min
Finally,

Theorem 29. Given a set ofi > 2 (L) individuals, by trying Procedure Clas-

¥ fwwmin

sify forlog n rounds, with probability of error at each round for each imitiual being

f = 1/10, where each round we take a setf > n independent features, and by
taking majority vote over the different runs for each samele algorithm will find the
correct partition with probabilityl — 1/n2.

Proof. A sample is put in the wrong side with a probability10 at each round. Let
&; be the event that samplés misclassified for more thadog n times, thusPr[&;] =

(%)log" < 1/n332; hence by union bound, with probability— 1/»2, none of the N
individuals is misclassified. [ |

B More Proofs for the Simple Algorithm Classify

B.1 Proof of Lemma 4

Letuy,...,un,v1,...,v, be then left and right singular vectors of, corresponding
t0 51(X) > s2(X) > ... > s,(X), we have fovi, ||u;[|, = 1, ||vi]|, = 1 such that
XTUZ' = SZ(X)UZ andle- = SZ(X)UZ



Before we prove Lemma 4, given anx K matrix X, wheren < K, let us first
defined = X X7 and a block matrix

Y_{O X (56)

T .
X0 0 ](2N+K)><(2N+K)

Recall that singular values of a realx K matrix X are exactly the nonnegative
square roots of the largest eigenvalues df = X X7, i.e, s;(X) = \/\i(H),Vi =
1,...,n, given that

Hu; = XX Tu; = 5(X) Xv; = s2(X ). (57)

Hence the left singular vectors, . . ., u,, of X are eigenvectors dff correspondingto
Xi(H) = s(X).
We next show that the first eigenvalues oY and their corresponding eigenvectors:

g R B R F R ol R R
and hence

Proposition 30. The largestn eigenvalues o™ are s;(X), ..., s,(X) with corre-
sponding eigenvectors,;, v;],Vi = 1,...,n, whereu;, v;, Vi, are left and right sin-
gular vectors ofX corresponding ta; (X).

In fact both+s,(X) are eigenvalues df , which is irrelevantProofof Lemma 4. We
first state a theorem, whose statement appears in a lecttedyn®pielman ], with

a slight modification (off by a factor on RHS). Our proof foidltheorem is included
here for completeness. It is known that for any real symmetatrix, there exist a set
of n orthonormal eigenvectors.

Theorem 31. (Modified Version of Spielman [?])For A and M being two symmetric
matrices andE = M — A. Let A\ (A) > A (A4) > ... > X\, (A) be eigenvalues of
A, with orthonormal eigenvectors,, ve, ..., v, and letA; (M) > (M) > ... >
An (M) be eigenvalues o¥/ and wy,ws, ..., w, be the corresponding orthonormal
eigenvectors oM, with 8; = Z(v;, w;). Then

1B = Ailly _ |1Elly +14d _ _21IE],
gap(i,A) ~ gap(i,A) ~ gap(i, A)
wheregap(i, A) = min;; [Ai(4) — Aj(4)] and A; = A\ (M) — Ai(A).

6’i ~ sin(@i) S

(59)

Let us apply Theorem 31 to the symmetric mafrixn (56). In particular, we only
compare the first eigenvectors ot” of . For the numerator of RHS of (59), we have
E=Y-Y,and|E|, = ||Y — V||, = s1(Y =) by aderivation similar to (58), where
eigenvectors ofr are concatenations of left and right singular vector&of X'; For
the denominator, we have by Proposition 88p(¢, Y) = min,x; |\ (Y) — A; (V)| =
min;; |5i(X) — s;(X)]. L

We first prove the following claim.



Claim. For any symmetria: x n matrix 4, let \;,Vi = 1,...,n be eigenvalues oft

with orthonormal eigenvectois, vs, . .., v,, forally L v;,
(A = Xo)yll, > rgi&gllki = Al lylly - (60)

Proof. Let us first assumg L v; and writey = >-7_, ., c;jv;, thus we havdly||, =

\/ Z] 1,j#i CJ and

1A= Nylly =1 D (A=)
=157 9
= Z cj(Aj = Ai)v;
=157 )
=0 D A=\
J=1,5#i

Z e = min|A; — A flyll, -

J=1,j#i
| ]

Proofof Theorem 31. Let us construct a vectathat is orthogonal te; as follows:

y:wi_(zTU’Z)z (61)
By Claim B.1, we have
(A= Xi(A)ylly > min Ii(A) = A (A [yl (62)
and hence
(A = Xi(A)yll,
Yllo S — (63)
Wl < TR A) = 2y (A

On the other hand,

1A = XAy, = [[(A = xi(4)

(wi = (v wi)vi)

( )
= [[(A = Ai(A))will,
= [I(M = E = Xi(A))wil
= [[(Aa(M) = Ai(A)wi — Bwi,

= (Al = Bywill, < [|E = Ai],
< [1E[ly + A



Finally, given thaf|w||, = 1,
lyll, o [ItA = Ai(A)yll,
Jwlly ™ minj;i |Ai(A) — A; (4)]
Bl + 14
gap(i, A)
Lemma32. Vi =1,...,n, |A;| < [|E|,.

sm(@z) =

Proof. Let S; be a subspace of dimensignRecall the following definitions oX; for
a matrix:

Ai(M) = inf sup Mz, (64)
SN-i+1 geSN it |z, =1
Inthe following, letS};_; , be the subspace thatis orthogonal to the subset of orthonor-
mal eigenvectors;, ..., v;_; of symmetric matrix4A. Note that this is théV — ¢ + 1

dimensional subspace that achieves the minimum of the mawiof v~ Av over all
unit-length vectors in the particular subspace.

Ai(M) = inf sup eT Mz < sup T Mz
SN—i+1 €SN _ip1,|ll,=1 €S8R il =1
< sup 2T (A+ E)x
165&7i+1,\\x\\2:1
< sup vl Av + sup |27 Bx|
VESY_iypsllvll,=1 wER™, ||zl =1
=Xi(A) + [|E],.

For the other direction, lefy;_; , be the subspace that is orthogonal to the subset of
orthonormal eigenvectors, . .., w;_; of symmetric matrix)/. Note that this is the

N —i+1 dimensional subspace that achieves the minimum of the mawiofw” Mw

over all unit-length vectors in the particular subspace.

Ai(A) = inf sup T Az < sup ' Ax

SN—it+1 TESN —it1,llz|[,=1 zGS}“\L}iiJA,Htz:l

< sup zT(M 4 (—E))z
165%7i+1,||z||2:1

< sup w? Mw + sup J:T(—E):c
w65%7i+1,||w||2:1 zER™,||z||,=1

< sup w? Mw + sup |7 (—E)x|
wESY _pllwll,=1 TER™, ||z]|,=1

= Mi(M) +|[Elly,

where||E|, = [|=E]],-

Thus we have- ||E||, < (M) — X\i(A) < ||[E||,, and hencgd;| < [|E||,. [ |

(0, 1 Ello+] Al 21 E]
Thereforegin(6;) < A < gan(iA)-




B.2 Some Propositions Regarding the Static Matrices

0 X

For static matrix{ = X X7 and) = [XT 0

] , we define

gap(H) = [A1(H) = A2 (H)],

G2p(Y) = [ (¥) ~ ()] = 1 o
Proposition 33. For static matrix)/, let
gap(9) = [\ (V) ~ (V)| = ) (5)

we have

vmax{Nia, Nac} < A1 (Y) < v/Nia+ Nac

\ N16L+ NQC S )\1(3)) + )\2()7) < 4/ 2(N16L + NQC)

Ny Ny(ac — b2 2N1Ns(ac — b2
MNafac = B%) _ \ (y) < ([ 2Nalac — BF)
Nya + Nsc Nia + Nac

Thus we have

Proof. We first show the following:

Proposition 34. For static matrix# = X7 as in (34), Let\;(H), \2(H) be the
non-zero eigenvalues &f, and denotgap(H) = |A1(H) — A2 (H)|.

o Nla + NQC+ \/(Nla — N20)2 + 4N1N2b2

M (H) 5 ; (66)

Nia + Nac — /(N1a — Noc)Z + 4N7 Nob2
ra(r) = 1ot Nae = = 20)" + ANV Nab? (67)
|N1a — N20| < gap(H) < Nija + NQC, (68)

where)s(H) = 0, whenac = b andgap(H) = Nya + Nac.

Proof. Let H = XXT. Rank of H is at most 2. Therefore there exists at most two
non-zero eigenvalues, \s for H, with corresponding nonzero eigenvectoysvs be-
ing constant on each population. This is true because if wigiplyuH = X X7 by
a permutation matrix° to exchange two rows among the same population, we have
PHv; = \Pv;, Vi = 1,2; given thatPHv; = Hv;, we deduce thaPv;, = v; for
non-zera\;. Hencev; must be constant on each population.

Let the top two eigenvectar , v2 be of form[z, ..., z,y,...,y|, wherez repeats
N times andy repeatsV, times; Note that they correspondsitpandis, of X follow-
ing a derivation similar to (57).



We thus have the following equations:

Niaz + Noby = Az,
N1bx + Nacy = Ay,

which can be written in a matrix form:

Nla—/\ Ngb €T -0
Nlb NQC—)\ Yy o

o

the matrix is not one-to-one and therefore

Given that

Nla—/\ Ngb o
D|: Nlb NQC—)\:| =0

(69)
(70)

(71)

By solving(Nia — \)(Nac — A) — N1 Nab? = 0, we geth; (H), A2 (H) andgap(H).

We next derive an upper bound gap(H).

gap(H) = /(N1a — Nac)? + 4N, Nyb2

= /(N1a + Nac)2 — 4Ny Naac + 4N; Nob?

S (N16L+NQC)2
< Nia + Nac,

wherea, ¢ > 0 andac > b? as in Proposition 22.
Itis easy to see that

gap(H) > |Nia — Nac|,
given thath? > 0.

Thus we have

max{Nia, Nac} < A\1(H) < Nia + Nac,
0 < A2(H) < min{Nia, Nac},

A1 (H) + /\Q(H) = Nyja + Nac,
M (H)A2(H) = NN (ac — b?),

(72)
(73)
(74)
(75)

(76)

(77)
(78)
(79)
(80)

Given that two largest eigenvalues®f A (V) = /A1 (H) andA2 (V) = /A1 (H) for

xT 0

y= [ 0 X} , by Proposition 34 and the following fact:

V()2 +22(0)2) < M)+ 22() = V20 () + 2()?),

we get all inequalities.

(81)



B.3 Proofs of Proposition 8 and 9

Proof of Proposition 8. We rewrite Proposition 33 given that, fon@malized’,
gap(H) > 8«XNE as Proposition 36 antl; (V) = s;(X). In particular,

gap(H)
ap(X) = ga = 82
gap(X) = gap(Y) MO+ M) (82)
gap(H) 8coNK
> > 83
~ VNia+ Nyc ~ 5V2NK (63)
> 4\/25NK' (84)
For the upper bound agap(X'), we have that
gap(H)
ap(X) =ga = 85
gap(X) = gap(Y) MO M) (85)
Nia + Noc
< 86
- AV Nla + NQC ( )
< V/Nia+ Nyc < V2NK (87)
[
Definition 35. For our application, we havek, 1 > p¥, pk > 0, and
i 1+p} 1+p? 1+p{( )
i s

1'+.p'} 14p7 1+pK

X=1121152 1ox (88)
e
1.+.p.; 14p3 14ps
L 2 2 e 2 Jd2NxK

It is easy to see that with this normalized random matxip(H{) = A2(H) is not
possible, given that, b, ¢ € [K/4, K]; furthermoregap(H) = ©(NK) as in the
Proposition 36.

Proposition 36. GivenH = X7 anda, b, c as in (11) for any expected value mean
matrix X, which is not necessarily normalized,

gap(H) = \/(Nia — Nxc)? + 4N  Npb? > 800? K (89)

b|\/ac
wherecy = I‘((ll‘l/;)

Hence for a normalized’, gap(H) = ©(NK) given thata, b, ¢ € [K/4, K].
Proof. For a tighter lower bound ofap(#) than the obviougNia — Nac|, let us
assume w.l.0.g. thd¥sc > Nya. Thus we have

a
a—+c

Ny > 2N (90)

We differentiate two cases:



— Balanced caseVia > 4 Nac.

— Imbalanced caseVia < 5t Nac.

For balanced case: we haxg > % Nac and hence

a

gap(H) > VAN Nyb? > %ﬂbl\ﬁ
a

>8]\7|b| a \/?>8N|b|\/ﬁ
- 5 a+4+cVa~ 5 a+c

. SCoNK
5 Y

whereN, > QN#LC asin (90).
For the imbalanced case, given thatc > |b| by Proposition 22,

gap(H) > 4/ (Nla— NQC)2 > %NQC

42 Nac S 8 N|b|/ac

25a4+c 5 a+c
SCONK

275 .

Finally, for a normalized random matriX and itsX’, we havery being a constant
and combing with the upper bound @ép(H) < Nia + Nac < 2N K concludes that
gap(H) = O(NK). [

Proof of Proposition 9. By (57)#1, us are the first and second eigenvectorsHof
corresponding to\; (1) and A2 (H). Let x, y be entries that correspond 1, P, re-
spectively in the first or second eigenvectorg6fBy (69) and (70), we have

Yy A — Nla Nlb

_—= = . 91

x Ngb A— NQC ( )
In addition, given any # 0, we havegap(H) > |N1a — Nac| and hence\; (H) >
max{Nia, Noc} > Xa(A). Therefore, fob > 0, £ > 0 for first eigenvector anek 0
for vy. and forb < 0, it is the opposite. [ ]

B.4 Proof of Lemma 10

Proof of Lemma 10. We first show théts|, |y2| are within a constant factor of each
other, given that; /ws = %—; is a constant.

Proposition 37. For a normalizedY’, whereN, Ny, a, b # 0, 2, y2 in the second top
left singular vectori, satisfy

2N2>@> Ny

— — 92
Nl - |1j2| - 2N1 ( )



Proof. By (69) and given the upper bound gap(H) in (68),

@ _ Nla— AQ _ Nla — N20+ gap(H) < E (93)
|I2| Ngb 2N2b - Ngb’

and henc “" > 422. By (70) and (68), we have

|lwa| — Nac= Ay Nac— Nia+gap(H) _ Nac

= = < —= 94
|y2| Ni1b 2N1b — Nib ( )
We finish the proof by observing that
1 a 1 c
< 2<2 —<-<2 95
2 b7 2 b7 (%5)

due to the fact tha% < “1 <2,¥Vj=1,...,K for Mf € [1/2,1] in a normalizedY,
and the following Iemma

Lemma 38. If 0 < cimin < 3+ < Cmax, Vi = 1,...,n, wherea;, b; > 0, thencyi, <
Sisa '

0 S Cmax-
i= 1
Proof.
len — Zi:}lcmmbz S 27:”:1 a”L < Zi:LCmaXb _ Cmdx (96)
Zi:l bz Zi:l bz Zi_l b
[ |
[ |
Letz = x5 andy = y,. By Proposition 37}y| < QN”””‘ and
20z Ny \ 2 ANZ 4+ NN,
1= Niz? + Noy? < Niz? + N, & < 22 27+ MV , (97)
Ny N
hence forC,, jin = Wfﬁ’
2 wo 1
> = 98
~ 4w? + wiwse 2N (%8)
. o " 2|y| NV
Looking in the other direction, by Proposition 37| < %
20y|N2 \ ? NyN; + 4N2
1 = Niz? + Noy? < Noy? + Ny & <42 NolVy + 4Ny ’
N N
and hence for a give@ly in = m,
w1 1
ly|* > (99)

- 4w2 + wiws IN’



On the other hand, by Proposition 37, we haye> Nizl '\we have

2N2 !
N2 N2 4+ 4NN,
L= Nia? + Noy? > Nia® + N, (N7 g2 (NE+ ANNG
e ey = MmN (e ) 2 AN, ’
and thus
4w 1
2o 100
- w% + dwiwo 2N ( )
Looking in the other direction, by Proposition 37| > ‘g‘]\],\f ,
No\ 2 AN,N; + N2
1= Niz? + Noy? > Noy? + N [y N2 S g2 (22T N
e faym = Nyt M\ BN ) 2 AN, ’
and hencey|? < mﬁ. Hence we have that
2
4w 1 4w 1
_ ]2 = 2 < o2 it S
|$ 1/| (|I| + |y|) - (\/w% + 40)1&)2 2N + w% + 4w1w2 2N
2
1 4w2 4&]1
<o 2 + 2 )
2N wi + dwiws wi + dwiwo
andChax = (/= + 1/ =)2. Hence
wi w2
4 4 ’ T 1y’
Omax S 2 v2 + 2 nt S ( - + _) .
wi + dwiwe w3 + dwiwo w1 wa
[ ]
C Proof of Lemma 27
Recall that the largest left singular vectaers us has the form ofx, ..., z,y,..., ],

wherex repeatsV; times andy repeatsV, times.Proofof Lemma 27. Let us define
the following random variables,

1 & R
0= — i, T=— T, 101
P S o
such that by Claim A.2,
Ny N N1 o2
1 1 121'—1 i c1o
==Y 6l <=> |6l < <
9] N1; ngl | Ny VNN
N2 N2 N2 2
1 1 N2Zi:1 T c1o
= 27| = w2

~ Ny = - No - VNoN



and hence

ma.X(|N16|,|N2T|) S T (102)

given that we always assume tiét > N;. A natural classifier to separate individuals
would be:””Tﬂ’ when we use; but we do not have accessit@ndy. Recall that

C104/ N2
N

Vit (@ +8) + 302 (y+7) _ Nia+ Nay 4 M8+ Not
2N 2N 2N ’

We are now ready to show that whah, N> are large enough, we see enough separation
between the mixture sample mean and bho#mdy. We first prove the following claims.

M =

2
Claim. £N16 + yNoT = —%.

Proof. This claim is obvious given thalu: ||, = [|@:[l, = 1, and, us, € all being
real vectors,

lually = i3 + [lell3 + 2 < @1, € >= [[anll; + llel5 + 22N:6 + yNor. (103)

]
We next useﬁ |xN16 + yN,| to obtain a bound op* 2227 | given that
1 (Bl cio?
—— |eN16 + yNar| < 2 <1 : 104
Vo | v + yNer| 22N ~ 2NN (104)
Claim. Let Ny < Ny, andw; = 2% andw, = 22, and given thatv, > 2c30? 8cio®
aim. Let N; < Ny, andw; = 33 andwy = 53, and given 1 Zmax | = Ty )
we have
N6+ No7| _ Nily—z|\/y
< 105
’ oN |~ 2N (105)

Proof. We nextderive a bound o#t5E2T | By Separation Lemma 11, we have— y| =
c2+/ 5% fora constant; = 1/2, and thus we havé‘% > ﬁ Therefore,

|tN1d + yNor|  |max(x,y)(N16 + Nao7) + (2 — max(z,y))N1d + (y — max(x,y))NaT|

V2N V2N
S lmax(z, y)| (N10 + No7) |z — y[max(|N16], |Na7])
- V2N V2N
Thus we have, given (102), (104) and (106),
N152—|]—VN27' < |ma\>/<;i]\;y)| (N1 + No7)|
< |xN16 + yNor]| n | — y| max(|N14|, | Na7|)
V2N V2N

2 2
< cio n 02\/7010 &
2NV2N 2N N
Nicoy < Nily — z|\/y
~ 2NV2N 2N ’




where

0%02 Nicoy

2NV2N  4AN+v2N

2
, holds so long agv; > ¢ , and (106)

=N

N, N 8cto?
eviag [No o Nien pogssolongas > 29792 sothat  (107)
ON N " 4NV2N 7w

> 2\/5010'\/ NQ
- ﬁ Y

Both conditions are guaranteed by (45) in Theorem 26. [ ]

Ny (108)

This allows us to conclude that

Nyix + Ni6 + N2y+N27' _ N1ZC+N27J
2N 2N

. N15 + NQT
B 2N

o (mnl Y

Given thatly — x| = c2,/7/V2N as shown in the Separation Lemma 11, we have

N1$+N1§+N2y+NQT_$ . Ng(y—l')+N15+N2T
2N N 2N 2N

Ng(y—x) _ N15—|—N2T

- 2N 2N

o Naoly—=|  min{Ny, No}\ /7]y — 2|

- 2N 2N

L 0= y)Naly— o]

- 2N b

and similarly,

_ Niz + N1 + Noy + Not
2N

o ‘Nl(y—:zr) . N15+N27'
2N 2N

N15+N27'
_‘ 2N

Y

Ni(y —z)
2N

> Nl |y — .I'| _ min{Nl,Ng}ﬂ|y — .I'|
- 2N 2N

L (0= \ANify—al

- 2N '




