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Abstract. We study two natural models of randomly generated con-
straint satisfaction problems. We determine how quickly the domain size
must grow with n to ensure that these models are robust in the sense
that they exhibit a non-trivial threshold of satisfiability, and we deter-
mine the asymptotic order of that threshold. We also provide resolution
complexity lower bounds for these models. One of our results immedi-
ately yields a theorem regarding homomorphisms between two random
graphs.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a broadly studied generalization
of k-SAT. A CSP consists of a set of variables, each of which may receive a value
from {1, ...,m} and a set of constraints, each of which restricts the values that
certain subsets of the variables may receive. In this paper, we focus on the binary
case, meaning that each constraint is on two variables and lists a set of ordered
pairs of values that the two variables may not take.

Over the past several years, much research has gone into the study of random
models of CSP’s (see eg. [10, 19, 12, 25, 31, 32]). Many different models have been
studied. In each model, one first takes a random graph (or in the non-binary
case, a random hypergraph) whose vertices are the n variables and then puts a
constraint on each pair of variables that is joined by an edge. The random graph
is always one of the two standard models: Gn,M where we choose a uniformly
random set of M edges, and Gn,p where each of the

(

n
2

)

possible edges is selected
with probability p, independently of the selection of any other edges. In this
paper we will use Gn,p but, as usual, it is straightforward to show that all of
our theorems also hold for Gn,M when M = p

(

n
2

)

. Where the CSP models differ
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most notably from each other is in the way that the constraint is chosen for each
edge. In this paper, we will focus on two of the most natural ways to do this.

When researchers examine a random model of CSP, they almost always start
by looking at the satisfiability threshold; i.e. a value p∗ and constants c1 < c2

such that choosing p = c1p
∗ results in a problem that is whp1 satisfiable, while

choosing p = c2p
∗ results in a problem that is whp unsatisfiable. (We do not

address the more specific notion of a sharp threshold in this paper.)
Most of the work done thus far both on specific models of random CSP’s

(eg. [14, 3, 27]) and on families of models (eg. [12, 25, 26]) have focussed on the
case where the domain size, m, is constant. Our paper focuses on the case where
m → ∞ with n. There has been some previous work on this case (eg. [31, 32, 15,
16, 29, 18]), but not nearly as much as has been done on the constant domain
case.

In [2] it was noted that with constant domain sizes, Model A, below, has a
fatal flaw which prevents it from exhibiting an interesting satisfiability threshold
(described in more detail below). In one of the first studies of a model with
non-constant domain size, Xu and Li[31] proved (amongst other things) that
if the domain size is m = n1/2+ε, then Model A does not have the fatal flaw
and does indeed exhibit a non-trivial satisfiability threshold. One of our main
contributions is to determine just how high the domain size has to be in order
for Model A to exhibit such a threshold. It is easy to see that our second model,
Model B, exhibits such a threshold for any domain size m → ∞.

Our second contribution is that we determine, up to a constant multiple, the
locations of these thresholds. We were surprised to discover the the threshold
for Model B is asymptotically much higher than that of Model A, despite a
superficial similarity.

Our final contribution is to prove lower bounds on the resolution complexity
for both models.

Next, we will describe our models and results more formally. We will find it
convenient to represent our constraints using a m×m 0-1 constraint matrix where
the (i, j)th entry is 1 if the constraint permits the pair (i, j) and 0 otherwise.

1.1 Model A

In the first model, for each edge we select a random constraint by forbidding
each of the m2 possible pairs of values with probability p2.

Model A: The underlying graph G is Gn,p1
for some p1 = p1(n) < 1 where

p1 6= o(1/n). For each edge e of G there is a random m × m constraint matrix
Me where Me(i, j) = 1 or 0 independently with probability p2 or q2 = 1 − p2

respectively, for some constant 0 < p2 < 1.
Ruling out the possibility p1 = o(1/n) is of technical help. We don’t mind

ruling out this possibility, since when p1 = o(1/n), the model creates CSP’s that
are a.s. trivial in the following sense: the graph Gn,p1

is very sparse, and consists

1 We say that a property holds whp (with high probability) if its probability tends
to 1 as n → ∞.



of a collection of small vertex-disjoint trees in which all but o(n) of the vertices
have degree 0.

We define d = np1 to be (approximately) the average number of constraints
that a vertex lies in.

Given m, p2 we wish to determine the satisfiability threshold, i.e. the range
of p1 over which the random model moves from whp satisfiable to whp unsat-
isfiable. It is often easy to get an upper bound on this range using a standard
first moment analysis. We can do so for Model A, as follows:

Fact: For p1 ≥ 2 ln m
q2n , the random CSP is unsatisfiable whp.

The proof follows easily by noting that the expected number of satisfying

solutions is mn (1 − p1q2)(
n
2).

Inspired by a familiar pattern of similar random models, it is tempting to
assume that ln m

n is the asymptotic order of a satisfiability threshold and so
hypothesize that:

Hypothesis A: There is some constant c > 0 so that for p1 ≤ c ln m
n , the

random CSP is satisfiable whp.
See [19] for a lengthy list of papers in which the authors fell to the temptation

of assuming an equivalent hypothesis. In [2], it was observed that for most of
those papers, and in fact whenever m, p2 are both constants, the hypothesis is
wrong. In fact, if p1 ≥ ω(n)/n2 for any ω(n) that tends to infinity with n, then
almost surely the random CSP is trivially unsatisfiable in the sense that it has
an edge whose constraint forbids every pair of values; we call such an edge a
blocked edge. This is the “fatal flaw” alluded to earlier.

In [31] it was shown (amongst other things) that Hypothesis A holds when
m = nα for any constant α > 1

2 . Here, we determine, up to a multiplicative
factor of (1 + o(1)) exactly how high m must be in order for Hypothesis A to
hold:

Theorem 1. (a) For any constant ε > 0, if m ≤ (1 − ε)
√

ln nd/ ln(1/q2) then
provided nd → ∞, the random CSP has a blocked edge whp.

(b) For any constant ε > 0, if m ≥ (1 + ε)
√

ln nd/ ln(1/q2) then there is some
constant c > 0 so that for p1 ≤ c ln m

n , the random CSP is satisfiable whp.
Furthermore, an assignment can be found in O(mn) time whp.

Note that the “breakpoint” between Cases (a) and (b) occurs when m = O(
√

ln n).
In case (b), Hypothesis A holds, and so ln m

n is, indeed, the order of the satis-
fiability threshold. In case (a), whp the fact that the random CSP is unsatisfi-
able can be demonstrated easily by examining a single edge. We show that for
m ≥ (ln n)1+ε for any ε > 0, this is far from the case. In particular, we show
that whp there is no short resolution proof of unsatisfiability when p1 is of the
same asymptotic order as the threshold of satisfiability.

Theorem 2. If m ≥ (ln n)1+ε, d = c ln m, for any constants ε, c > 0, then whp
the resolution complexity of the random CSP is 2Ω(n/m).

The resolution complexity of various models of random boolean formula has
been well-studied, starting with [11], and continuing through [4],[5],[3] and other



papers. This line of inquiry was extended to random models of CSP in [23, 22]
and was then continued in [27], where m, the domain-size, was constant. In [32]
a similar study was made where m = nα.

1.2 Model B

We also consider another model in which every edge receives the same constraint.
So that the orientation on the edge does not matter, we insist that the constraint
permits (i, j) iff it permits (j, i). Also, we insist that for every i, the constraint
forbids (i, i) as otherwise, setting every variable equal to i would yield a trivial
satisfying assignment. Let M∗ be the set of matrices which correspond to such
constraints, i.e. the set of symmetric matrices with all zeroes on the diagonal. As
with model A, we restrict our attention to matrices with density some constant
p2 with 0 < p2 < 1.

Model B: As with Model A, the underlying graph G is Gn,p1
for some

p1 = p1(n) < 1 where p1 6= o(1/n). We select a single random m × m matrix
M ∈ M∗ by setting M(i, j) = M(j, i) = 1 with probability p2 independently for
each 1 ≤ i < j ≤ m, and use Me = M for every edge.

As with Model A, we set d = np1 to be the average number of constraints
that a variable lies in.

Model B has the nice property that, so long as m → ∞, the random matrix
is whp not all-zeroes and so no edge is blocked. This allows us to prove that
we only require m → ∞ in order to get a non-trivial satisfiability threshold.
Perhaps surprisingly, that satisfiability threshold is of a higher asymptotic order
than in Model A - it is at d = Θ(ln m ln ln m) rather than d = Θ(ln m).

Theorem 3. Let ε be any small positive constant, and consider a random CSP
from Model B.

(a) If d ≤ (4 − ε)(ln(1/q2))−1 ln m ln ln m then whp the CSP is satisfiable.
(b) If d ≤ (1 − ε)(ln(1/q2))−1 ln m ln ln m then an assignment can be found in

polynomial time whp.
(c) If 0 < q2 < 1 is constant and if d ≥ K ln m ln ln m for sufficiently large K

then whp the CSP is unsatisfiable.

It is worth noting that part (c) is analagous to the easy Fact from the previous
subsection. However, part (c) is much more difficult to prove.

As with Model A, we can prove high resolution complexity in a restricted
range of d,m, p2.

Theorem 4. If m → ∞ and d = c ln m ln ln m for some constant c > 0, then
whp the resolution complexity of a random CSP from Model B is 2Ω(n/(d3m)).

It is interesting to note that studying the satisfiability of a BCSP drawn
from Model B is equivalent to the following natural homomorphism problem for
random graphs: Consider n,m → ∞, and consider two random graphs G1 =
Gn,p1

and G2 = Gm,p2
where p1 = d/n and 0 < p2 < 1 is constant. When is

there a homomorphism from G1 to G2? Theorem 3 is equivalent to the following:



Theorem 5. For any m,n → ∞ and any ε > 0:

(a) If d ≤ (4 − ε)(ln(1/q2))−1 ln m ln ln m then whp there is a homomorphism
from G1 to G2.

(b) If d ≤ (1 − ε)(ln(1/q2))−1 ln m ln ln m then such a homomorphism can be
found in polytime whp.

(c) If 0 < q2 < 1 is constant and if d ≥ K ln m ln ln m for sufficiently large K
then whp there is no homomorphism from G1 to G2.

1.3 Generating Difficult Instances

One of the earliest motivations for the study of random CSP’s (see eg. [19])
was the following observation: If one takes a model of random CSP’s with a
sharp satisfiability threshold and sets the probability parameter to be very close
to that threshold, then the resulting CSP will whp be very difficult to solve.
(See, eg [24] for one of the earliest such studies.) One of the primary traditional
motives for proving that models have high resolution complexity is to provide
some theoretical support of this observation.

The results in this paper raise the possibility of using Model A as a source
for difficult instances. There are a few caveats here: the first is that we have not
proven that the satisfiability threshold is sharp. The second is that, as mentioned
earlier, Xu and Li[31, 32] have already proven that Model A exhibits a sharp
threshold and has high resolution complexity for m = n1/2+ε and for p2 ≤ 1

2 .
So even if we had proven Model A to have a sharp threshold for m = (ln n)1+ε,
this would only prove that one might generate hard instances using a domain
size of roughly O(ln n) rather than roughly O(n1/2). While this improvement
is substantial in theory, in practice it is not clear whether it is of much help.
Hard instances for complete solvers tend to have very small size (much less than
n = 1000 variables) and so it is quite possible that this “improvement” would
be swallowed up by the other implicit terms in the asymptotics.

2 Some inequalities

We start with the basic Chernoff bounds for the binomial random variable
Bin(N, p) viz: Assume that 0 ≤ ε ≤ 1.

Pr(Bin(N, p) ≤ (1 − ε)Np) ≤ e−ε2NP/2

Pr(Bin(N, p) ≥ (1 + ε)Np) ≤ e−ε2NP/3

In Theorem 6 below we will have a random variable Z = Z(Y1, Y2, . . . , YN ) where
Yi ∈ Ωi are independent so that Z is defined on Ω = Ω1 × · · ·ΩN .

Assumption 1
Suppose that Y, Y ′ ∈ Ω and there exists i such that Yj = Y ′

j for j 6= i. Our
assumption is that in such a case we have |Z(Y ) − Z(Y ′)| ≤ a.



Assumption 2
Suppose that, in addition, for any ξ, if Z(Y ) ≥ ξ then there exist c(ξ) indices
j1, j2, . . . , jc(ξ) such that if Y ′

jt
= Yjt

for t = 1, 2, . . . , c(ξ) then Z(Y ′) ≥ ξ also.

Let M = MED(Z) denote a median of Z i.e. Pr(Z ≥ M) ≥ 1
2 ,Pr(Z ≤

M) ≥ 1
2 .

Theorem 6. (Talagrand’s Inequality) If the random variable Z satisfies As-
sumptions 1 and 2 then

Pr(|Z − M | ≥ tcM1/2) ≤ 2e−t2/(4a2). (1)

Proofs of these inequalities can be found, for example, in Janson,  Luczak and
Ruciński [20].

3 Model A: Unsatisfiable Region

Let an edge e = (x, y) of G be blocked if Me = O (the matrix with all zero
entries). Of course, any CSP with a blocked edge is unsatisfiable, since there is
no possible consistent assignment to x, y. We start with a simple lemma which
immediately implies Theorem 1(a):

Lemma 1. Let ε > 0 be a small positive constant and assume that nd → ∞ (so
that whp G has edges). Let m0 =

√

(ln n + ln d)/ ln(1/q2). Then

(a) m ≥ (1 + ε)m0 implies that there are no blocked edges, whp.
(b) m ≤ (1 − ε)m0 implies that there are blocked edges, whp.

Proof Let Z be the number of blocked edges in our instance. Given the
graph G, the distribution of Z is Bin(|E|, qm2

2 ).

E(Z) =

(

n

2

)

p1q
m2

2 (2)

If m ≥ (1 + ε)m0 then (2) implies that

E(Z) ≤ (nd)−ε → 0

and then Z = 0 whp and (a) follows.
If m ≤ (1 − ε)m0 then (2) implies that

E(Z) ≥ 1

3
(nd)ε → ∞.

Part (b) now follows from the Chernoff bounds. 2

We now consider another simple cause of unsatisfiability that [2] also discov-
ered to be prevalent amongst the models commonly used for experimentation.
We say that a vertex (variable) x is blocked if for every possible assignment
i ∈ [m] there is some neighbour y which blocks the assignment of i to x, because
the ith row of Me, e = (x, y) is all zero.



Lemma 2. Let ε be a small positive constant, and suppose that
m −

√

ln n/ ln(1/q2) → ∞. Then

(a) m ≥ (1 + ε)
√

(ln n + m ln d)/ ln(1/q2) implies that there are no blocked ver-
tices, whp.

(b) m ≤ (1−ε)
√

(ln n + m ln d)/ ln(1/q2) implies that there are blocked vertices,
whp.

Remark: Note that m =
√

(ln n + m ln d)/ ln(1/q2), for m slightly smaller
than m0 from Lemma 1.

Proof If the graph G is given and vertex v has degree dv then

Pr(v is blocked | G) = (1 − (1 − qm
2 )dv )m.

This is because for i ∈ [m], (1− qm
2 )dv is the probability that no neighbour w of

v is such that row i of M(v,w) is all zero. Part (a) now follows from an easy first
moment calculation, which we omit.

We turn our attention to proving part (b). Rearranging our assumption yields
ln d ≥ (1−ε)−2m ln(1/q2)− 1

m ln n ≥ (1−ε)−1(m ln(1/q2)− 1
m ln n). So we choose

d such that ln d = (1− ε)−1(m ln(1/q2)− 1
m ln n), i.e. d = (q−m2

2 /n)1/(m(1−ε)) as
proving the result for that value of d clearly implies that it holds for all larger
values.

Our assumption implies that d → ∞ and so whp n − o(n) vertices v have
dv ∈ I = [(1 − ε)d, (1 + ε)d]. Thus if Z is the number of blocked vertices with
dv ∈ I then

E(Z) ≥ (n − o(n))(1 − (1 − qm
2 )d(1−ε))m ≥ (n − o(n))(d(1 − ε)qm

2 )m

≥ (1 − o(1))
(

q−m2

2 n
)ε/(1−ε)

(1 − ε)m

≥ (1 − o(1))nε/(1−ε)(1 − ε)m0 (see the Remark preceding this proof)

≥ nε/2 → ∞.

To show that Z 6= 0 whp we use Talagrand’s inequality (1). We condition on

G. Then we let each Ωe, e ∈ E be an independent copy of {0, 1}m2

(the set of
m×m 0-1 matrices). Now changing a single Me can change z by at most 2 and
so Assumption 1 holds with a = 2. Then to show that a vertex v is blocked we
only have to expose Me for e incident with v. Thus Assumption 2 holds with
c(ξ) = (1 + ε)dξ. Thus if M = Med(Z), ((1) gives

Pr(|Z − M | ≥ t(1 + ε)dM1/2) ≤ 2e−t2/16 (3)

for any t > 0.

Our assumptions imply that d2 = o(E(Z)) and so (3) implies the result. 2



4 Model A: Satisfiable Region

In this section, we prove Theorem 1(b).
So for this section we assume the hypotheses of Theorem 1(b), in particular

that:

m = (1 + ε)

(

ln n

ln q−1
2

)1/2

, d = c ln m and p2 is constant

where c, ε are small. (Note that this also implies the result for larger m).
Now let a vertex v be troublesome if it has degree ≥ D = 10d or there are

assignments to its neighbours which leave v without a consistent assignment.
Let T denote the set of troublesome vertices. A subgraph is called troublesome
if all of its vertices are troublesome.

Let A be the event that every set of k0 vertices contains at most k0 edges
where

k0 =

⌈

2 ln n

d

⌉

.

Lemma 3.
Pr(A) = 1 − o(1).

Proof

Pr(A) ≤
(

n

k0

)(
(

k0

2

)

k0 + 1

)(

d

n

)k0+1

≤
(

ne

k0

)k0

·
(

d

n

)k0+1

·
(

k0e

2

)k0+1

=
k0e

2k0+1dk0+1

2k0+1
· d

n
= o(1).

2

We show next that whp the sub-graph induced by T has no large trees.

Lemma 4. Whp there are no troublesome trees with ≥ k0 vertices.

Proof If T contains a tree of size greater than k0 then it contains one of
size k0. Let Z be the number of troublesome trees with k0 vertices. Let Ω be the
set of trees/unicyclic graphs spanning [k0]. For each T ∈ T we define GT to be
the event that the subgraph of G induced by[k0] is T . Then for any subset J of
[k0] we may write

E(Z · 1A) ≤
(

n

k0

)

∑

T∈Ω

(

d

n

)k0−1
∏

i∈J

Pr(xi ∈ T | GT ∧ (xj ∈ T , ∀j ∈ J, j < i)).

(4)
Fix T ∈ Ω and let I1 be the set of vertices of T with degree at most 4 in

T . Then |I1| ≥ k0/2. Note next that I1 contains an independent set I of size at
least k0/10.

Now if i ∈ I then

Pr(xi ∈ T | GT∧(xj ∈ T , ∀j ∈ I, j < i)) ≤
(

n

D − 4

)(

d

n

)D−4

+

D
∑

t=0

mt(1−pt
2)m.



The first term bounds the probability that xi has at least D − 4 neighbours
outside the tree and assuming the degree of xi is at most D, the second term
bounds the probability that the ≤ D neighbours have an assignment which can
not be extended to xi. We use the fact that I is an independent set to gain the
stochastic independence we need.

Thus, applying (4) with J = I we obtain

E(Z · 1A)

≤
(

n

k0

)

kk0−2
0 k2

0

(

d

n

)k0−1
(

(

n

D − 4

)(

d

n

)D−4

+

D
∑

t=0

mt(1 − pt
2)m

)k0/10

(5)

≤ n(de)k0

(

(

de

D − 4

)D−4

+ DmDe−mpD
2

)k0/10

= o(1).

2

Now we deal with troublesome cycles in a similar manner.

Lemma 5. Whp there are no troublesome cycles.

Proof It follows from Lemma 4 that we need only consider cycles of length
less than k0, since a cycle on at least k0 vertices contains a tree on at least k0

vertices. If Z now denotes the number of troublesome cycles of length less than
k0 then arguing as in (4), (5) we see that

E(Z) ≤
k0−1
∑

k=3

(

n

k

)

(k − 1)!

2

(

d

n

)k
(

(

n

D − 2

)(

d

n

)D−2

+

D
∑

t=0

mt(1 − pt
2)m

)bk/2c

= o(1).

2

Let a tree be small if it contains less than k0 vertices. We have therefore
shown that whp the troublesome vertices T induce a forest of small trees. We
show next that whp there at most n1+o(1) small trees.

Lemma 6. Whp there are at most n1+o(1) small trees.

Proof Let σT denote the number of small trees. Then

E(σT ) =

k0−1
∑

k=1

(

n

k

)

kk−2

(

d

n

)k−1

≤
k0−1
∑

k=1

n(de)k = n1+o(1).

The result now follows from the Markov inequality. 2

Our method of finding an assignment to our CSP is to (i) make a consis-
tent assignment to the vertices of T first and then (ii) extend this assignment
“greedily” to the non-troublesome vertices.



It is clear from the definition of troublesome that it is possible to carry out
Step (ii). We wish to show that (i) can be carried out successfully whp. For this
purpose we show that whp G does not contain a small tree which cannot be
given a consistent assignment.

So we fix a small tree T and a vertex v ∈ T and root T at v. Let L < k0

denote the depth of T and let Xi, 0 ≤ i ≤ L denote the vertices at level i, where
level L is the root and level 0 is the lowest level. Let d` be the maximum number
of descendants of a vertex in X`.

For u ∈ X` let S(u) be the the set of values δ such that there is a consistent
assignment to the sub-tree of T rooted at u in which u receives δ. We let t =
d10/εe and define the events

Bu,i =

{

(i − 1)m

t
≤ |S(u)| ≤ im

t

}

.

Then for 1 ≤ i ≤ t and 0 ≤ ` ≤ L, let

πi,` = max
u∈X`

Pr





i
⋃

j=1

Bu,j |Bw,1 for every descendent w of u



 .

In other words, πi,` is the maximum over all u ∈ X` of the probability that

|S(u)| ≤ im
t conditional on the event that (i−1)m

t ≤ |S(w)| > m
t for every

descendent w of u. Note that πt,` = 1 and that πi,0 = 0 for all i < `.

We will prove by induction on ` that for η = ε/3 and for 1 ≤ i ≤ t we have

πi,` ≤ t`n−(1+η) t−i
t . (6)

In particular, this implies that π1,` ≤ t`n−(1+η)(t−1)/t < 1
2 . The probability that

there is no consistent assignment for T is clearly at most the probability that
Bu,1 holds for at least one u ∈ T which is at most

|T | × tLn−(1+η)(t−1)/t < k0t
k0n−(1+η)(t−1)/t.

Therefore

Pr(∃a troublesome tree which cannot be consistently assigned)

≤ o(1) + n1+o(1)k0t
k0n−(1+η)(t−1)/t = o(1)

which implies that Step (i) can be completed whp.

(6) is clearly true for the base case of ` = 0 since πj,0 = 0 for j < t and
πt,0 = 1. For ` > 0, note that for each child w of u, the conditional probability



that |S(w)| ≤ im
t is at most πi,`−1/(1 − π1,`−1) < 2πi,`−1. Thus, we have:

πi,` ≤
∑

k2+···+kt=d`

(

d`

k2, ..., kt

) t
∏

j=2

(

πj,`−1

1 − π1,`−1

)kj
(

m
t−i
t m

)



1 −
t
∏

j=2

(1 − q
m(j−1)

t
2 )kj





t−i
t m

(7)

≤ 2m
∑

k2+···+kt=d`

(

d`

k2, ..., kt

) t
∏

j=2

(

πj,`−1

1 − π1,`−1

)kj





t
∑

j=2

kjq
m(j−1)

t
2





t−i
t m

≤ 2m
t
∑

j=2

πj,`−1

1 − π1,`−1
(d`q

j−1
t m

2 )
t−i

t m
∑

k2+···+kt=d`

(

d`

k2, ..., kt

)

≤ td`2m+1
t
∑

j=2

(d`q
j−1

t m
2 )

t−i
t mπj,`−1. (8)

Explanation of (7): Suppose that there are kj descendants w of u for
which Bw,j occurs. If u ∈ Bu,i then r assignment values will be forbidden to it,
t−i
t m ≤ r ≤ t−i+1

t m. The product bounds the probability that these values are
forbidden and that Bw,j occurs for the corresponding descendants.

Then applying (6) inductively to (8) and recalling that m2 = (1+ε)2 ln n/ ln(q−1
2 )

we obtain

πi,` ≤
t
∑

j=2

td`2m+1d
t−i

t m

` q
(j−1)(t−i)

t2
m2

2 t`−1n−(1+η) t−j
t

≤ t`−1
t
∑

j=2

n−
(j−1)(t−i)

t2
(1+ε)− t−j

t (1+η).

In going from the first to second inequality we use the fact that since `, d` ≤ k0

we find that 2m+1td`d
t−i

t m

` = no(1). This term is then absorbed by using 1 + ε in
place of (1 + ε)2.

Now consider the expression

∆ =
(j − 1)(t − i)

t2
(1 + ε) +

t − j

t
(1 + η) − t − i

t
(1 + η)

=
(j − 1)(t − i)

t2
(1 + ε) +

i − j

t
(1 + η).

To complete the inductive proof of (6) we have only to show that ∆ is non-
negative.

Now ∆ is clearly non-negative if i ≥ j and so assume that j > i. Now for a
fixed j, ∆ can be thought of as a linear function of i and so we need only check
non-negativity for i = 1 or i = j − 1.

For i = 1 we need

(j − 1)(t − 1)(1 + ε) ≥ (j − 1)t(1 + η) (9)



and this holds for ε ≤ 1.
For i = j − 1 we need

(j − 1)(t − j + 1)(1 + ε) ≥ t(1 + η).

But here j ≥ 2 and the LHS is at least (t− 1)(1 + ε) and the inequality reduces
to (9) (after dividing through by j−1). This competes the proof of (6), and thus
proves that satisfiability claim in Theorem 1(b).

It only remains to discuss the time to find an assignment. Once we have
assigned values to T then we can fill in an assignment in O(mn) time. So let us
now fix a small tree T of troublesome vertices. Choose a root v ∈ T arbitrarily.
Starting at the lowest levels we compute the set of values S`(u) available to a
vertex u ∈ X`. For each descendant w of u we compute T`(w) = {a ∈ S`+1(w) :
M(u,w)(a) = 1} and then we have S`(u) =

⋂

w T`(w). At the leaves, SL = [m]
and so in this way we can assign a value to the root and then work back down
the tree to the leaves giving an assignment to the whole of T . Thus the whole
algorithm takes O(mn) time as claimed.

This concludes the proof of Theorem 1(b). 2

5 Model A: Resolution complexity

In this section, we prove Theorem 2.
For a boolean CNF-formula F , a resolution refutation of F with length r

is a sequence of clauses C1, ..., Cr = ∅ such that each Ci is either a clause of
F , or is derived from two earlier clauses Cj , Cj′ for j, j′ < i by the following
rule: Cj = (A ∨ x), Cj′ = (B ∨ x) and Ci = (A ∨ B), for some variable x.
The resolution complexity of F , denoted RES(F ), is the length of the shortest
resolution refutation of F . (If F is satisfiable then RES(F ) = ∞.)

Mitchell[23] discusses two natural ways to extend the notion of resolution
complexity to the setting of a CSP. These two measures of resolution complexity
are denoted C − RES and NG − RES. Here, our focus will be on the C − RES
measure, as it was in [22] and in [27].

Given an instance I of a CSP in which every variable has domain {1, ...,m},
we construct a boolean CNF-formula CNF(I) as follows. For each variable x
of I, there are m variables in CNF(I), denoted x : 1, x : 2, ..., x : m, and
there is a domain clause (x : 1 ∨ ... ∨ x : m). For each pair of variables x, y
and each restriction (i, j) such that M(x,y)(i, j) = 0, CNF(I) has a conflict

clause (x : i ∨ y : j). We also add
(

m
2

)

2-clauses for each x which specify that
x : i can be true for at most one value of i. It is easy to see that CNF(I) has
a satisfying assignment iff I does. We define the resolution complexity of I,
denoted C − RES(I) to be equal to RES(CNF(I)).

A variable x is free if any assignment which satisfies I − x can be extended
to a satisfying assignment of I. The boundary B(I) is the set of free variables.
We extend a key result from [23] to the case where m grows with n:

Lemma 7. Suppose that there exist s, ζ > 0 such that



(a) Every subproblem on at most s variables is satisfiable, and
(b) Every subproblem I ′ on v variables where 1

2s ≤ v ≤ s has |B(I ′)| ≥ ζn.

then C − RES(I) ≥ 2Ω(ζ2n/m).

The proof is a straightforward adaptation of the proof of the corresponding
work in [23] and so we omit it.

We assume now the hypotheses of Theorem 2, in particular that ε is a small
positive constant and

m ≥ (ln n)1+ε, d = c ln m and p2 is constant. (10)

Let γ be a sufficiently small constant. Let T1 denote the set of vertices v for
which there are γd neighbours W and a set of assignments of values to W for
which v has no consistent assignment.

Lemma 8.
Pr(T1 6= ∅) = o(1).

Proof

E(|T1|) ≤ n

n−1
∑

t=γd

(

n

t

)(

d

n

)t(
t

γd

)

mγd(1 − pγd
2 )m

≤ n

n−1
∑

t=γd

(

de

t

)t(
tem

γd

)γd

e−mpγd
2

≤ ne−m1−ε/2





10d
∑

t=γd

(de)10d(10eγ−1m)γd +

n−1
∑

10d

(mn)γd



 = o(1).

2

Now we show that whp every set of s ≤ s0 = αn vertices, α = γ/3 has less
than γds/2 edges. Let B denote this event.

Lemma 9.
Pr(B) = 1 − o(1).

Proof

Pr(B) ≤
αn
∑

s=γd

(

n

s

)(
(

s0

2

)

γds/2

)(

d

n

)γds/2

≤
αn
∑

s=γd

(

(

se

γn

)−1+γd/2

· e2

γ

)s

= o(1).

2

Let us now check the conditions of Lemma 7. Condition (a) holds because
Lemma 9 implies that if s = |S| ≤ αn then we can order S as v1, v2, . . . , vs

so that vj has less than αd neighbours among v1, v2, . . . , vj−1 for 1 ≤ j ≤ s.
Because we can assume that T1 = ∅ (Lemma 8) we see that it will be possible
to sequentially assign values to v1, v2, . . . , vs in order. Lemma 9 implies that at
least 1

2 the vertices of S have degree ≤ αd in S and now T1 = ∅ implies that (b)
holds with ζ = 1/2.

We conclude that with the parameters as stated in (10), C − RES(I) is whp
as large as is claimed by Theorem 2.



6 Model B: Satisfiable Region

We have a blocked edge iff M = O and this happens with probability q
m(m−1)
2

and so there is not much more to say on this point.
Secondly, if M 6= O then there are two values x, y which can be assigned to

adjacent vertices. This implies that for any bipartite subgraph H of G there is
a satisfying assignment for H just using x, y. So, in particular there will be no
blocked vertices.

Proof of Theorem 3(a,b) Let H be the graph defined by treating M
as its adjacency matrix. Thus H = Gm,p2

. As such it has a clique I of size
(2 − o(1)) ln m/(ln 1/q2) whp.

If we can properly colour G with I (i.e. give adjacent vertices different values
in I) then we will have a satisfying assignment for our CSP. Now the chromatic
number of G is (1 + o(1))d/(2 ln d) whp. So the CSP is satisfiable whp if

(2 − o(1)) ln m/(ln 1/q2) ≥ (1 + o(1))d/(2 ln d)

and this holds under assumption (a).
For (b) we observe that we can find a clique of size (1−o(1)) ln m/(ln 1/q2) in

polynomial time and we can colour G with (1+o(1))d/ ln d colours in polynomial
time. 2

7 Model B: Unsatisfiable Region

In this section, we prove Theorem 3(c). We first observe

Lemma 10. There exists a constant ε0 such that for ε ≤ ε0 there exist R0 =
R0(ε), Q0 = Q0(ε) such that if Q ≥ Q0, R ≥ R0 and s0 = R ln m then

(a) whp every pair of disjoint sets S1, S2 ⊆ [m], |S1| = s1 ≥ s0, |S2| = s2 ≥ s0

contains at most (1 − ε)s1s2 edges of H between S1 and S2;
(b) whp every S ⊆ [m], |S| = s ≥ s0 contains at most Q ln m members with

degree greater than (1 − ε)s in the subgraph of H induced by S.

Proof
(a) We can bound the probability that there are sets S1, S2 with more than the
stated number of edges between S1 and S2 by

m
∑

s1=s0

m
∑

s2=s0

(

m

s1

)(

m

s2

)(

s1s2

εs1s2

)

p
(1−ε)s1s2

2

≤
m
∑

s1=s0

m
∑

s2=s0

(

me

s1

)s1
(

me

s2

)s2 ((e

ε

)ε

p1−ε
2

)s1s2

= o(1).

(b) We choose ε > 0 so that p2 < 1 − 3ε. Given S, we consider a set L ⊂ S
of size Q ln m. For R > Qε−1 we have |L| < ε|S| and so if each i ∈ L has at



least (1− ε)s neighbours in S then it has at least (1− 2ε)s neighbours in S −L.

By the Chernoff bound, this occurs with probability at most
(

e−ζs
)|L|

, for some
ζ > 0 and this is less than m−2s for Q sufficiently high. Therefore, the expected
number of S,L violating part (b) is at most

m
∑

s=s0

(

m

s

)(

s

Q ln m

)

m−2s <
m
∑

s=s0

(em

s

)s

2sm−2s <
∑

s≥s0

m−s = o(1).

2

Proof of Theorem 3(c) Consider an assignment σ for our CSP and let Ni

be the set of variables that are assigned the value i by σ. We observe that if σ is
consistent then each Ni is an independent set in G and so whp G is such that
we must have

|Ni| ≤
3n ln d

d
<

4n

K ln m
for i = 1, 2, . . . ,m. (11)

Thus, we will restrict our attention to assignments which satisfy (11). We will
prove that the expected number of such assignments that are consistent is o(1),
thus proving part (c) of Theorem 3.

We say that a pair of vertices is forbidden by σ if that pair cannot form
an edge of G without violating σ. Note that every pair in the same set Ni is
forbidden, and a pair in Ni ×Nj is forbidden iff ij is not an edge of H. We will
show that the number of forbidden pairs is at least n2/ ln ln m. It follows that

Pr(σ is consistent) ≤ (1 − p1)n2/ ln ln m ≤ e−nd/ ln ln m = o(m−n),

assuming that d ≥ K ln m ln ln m for sufficiently large K. Since this probability
is o(m−n) we can multiply by mn, which is an overcount of the number of
assignments satisfying (11), and so obtain the desired first moment bound.

Let ni = |Ni| and let I = {i : ni ≥ n/(2m)}. Now
∑

i∈I

ni = n −
∑

i/∈I

ni ≥ n − m · n

2m
=

n

2
. (12)

For the following analysis we choose constants:

ε, Q = max{Q0, 100ε−1}, K1 = 100R0, K = 100K1Q

where ε ≤ ε0, Q0, R0 are from Lemma 10.
We partition I into 3 parts:

– I1 = {i : n/(K1 ln m ln ln m) ≤ ni < 4n/K ln m}
– I2 = {i : n/(K1 ln m)2 ≤ ni < n/(K1 ln m ln ln m)}
– I3 = {i : n/(2m) ≤ ni < n/(K1 ln m)2}

Case 1:
∑

i∈I1
ni ≥ n

6 Let H1 be the subgraph of H induced by I1, and

for each i ∈ I1, we let d(i) be the degree of i in H1. Note that the total number
of forbidden pairs of vertices for G is at least

1

2

∑

i∈I1

d(i)ni ×
n

K1 ln m ln ln m
, (13)



since for all i′ ∈ I1, ni′ ≥ n/(K1 ln m ln ln m).
By (11), we have |I1| ≥ (K ln m)/24, so (K ln m)/Q < ε|I1|. Thus, by Lemma

10(b) then there are at most Q ln m members i ∈ I1 with d(i) < (K ln m)/Q.
Again using (11), these members contribute at most 4Qn/K < n/12 to

∑

i∈I1
ni.

Therefore, the sum in (13) is at least

1

2
× K ln m

Q
× n

12
× n

K1 ln m ln ln m
≥ n2

ln ln m
.

Case 2:
∑

i∈I2
ni ≥ n

6 We let I(j) = {i ∈ I2 : n/2j ≤ ni ≤ n/2j−1},
for
log2(K1 ln m ln ln m) ≤ j ≤ 2 log2(K1 ln m). We set tj =

∑

i∈I(j) ni and sj =

|I(j)| ≥ tj × (K1 ln m ln ln m/n). We set J = {j : tj ≥ n/(100 ln ln m)} and note
that sj ≥ s0 (from Lemma 10) for each j ∈ J . Note also that

∑

j∈J

tj ≥ n

6
− 2 log2(K1 ln m) × n

100 ln ln m
≥ n

8
.

Consider I(j) for any j ∈ J . By Lemma 10, there are at least ε
(

sj

2

)

pairs
i, i′ ∈ I(j) such that every pair of vertices in Ni × Ni′ is forbidden. Also, for
any i, every pair in Ni × Ni is forbidden. Since the sizes of the sets Ni, i ∈ I(j)
differ by at most a factor of 2, this implies that the number of forbidden pairs
in ∪i∈I(j)Ni is at least ε

8 t2j . Now consider any pair I(j), I(j ′) with j, j′ ∈ J .
By Lemma 10(a), there are at least εsjsj′ pairs i ∈ I(j), i′ ∈ I(j′) such that
every pair of vertices in Ni ×Ni′ is forbidden, and this implies that the number
of forbidden pairs in ∪i∈I(j)Ni × ∪i∈I(j′)Ni is at least ε

4 tjtj′ . Thus, the total
number of forbidden pairs is at least

ε

8





∑

j∈J

t2j +
∑

j,j′∈J;j<j′

2tjtj′



 =
ε

8





∑

j∈J

tj





2

≥ εn2

83
>

n2

ln ln m
.

Case 3:
∑

i∈I3
ni ≥ n

6 . Here we follow essentially the same argument

as in Case 2. Again, let I(j) = {i ∈ I : n/2j ≤ ni ≤ n/2j−1}, but this time we
consider 2 log2(K1 ln m) < j ≤ log2(2m). Again, tj =

∑

i∈I(j) ni and sj = |I(j)|,
but note that this time we have

sj ≥ tj
n/(K1 ln m)2

.

Here, we set J = {j : tj ≥ n/K1 ln m} and so again we have sj ≥ s0 for every
j ∈ J .

∑

j∈J

tj ≥ n

4
− log2(2m) × n

K1 ln m
≥ n

8
.

The same argument as in Case 2 now goes through to imply that the total
number of forbidden pairs is at least

ε

8





∑

j∈J

tj





2

>
n2

ln ln m
.



2

8 Model B: Resolution complexity

Proof of Theorem 5 First note that whp every set of 10 vertices in H has
a common neighbour, since the probability of at least one such set not having
a common neighbour is less than

(

m
10

)

qm−10
2 = o(1). Assuming that H has this

property, every vertex of degree at most 10 in G will be in the boundary.
A straightforward first moment argument shows that a.s. every subgraph

G′ of G with at most n/d3/2 vertices has at most 5|G′| edges. (We omit the
standard calculation.) Therefore, every such G′ has at least |G′|/11 vertices of
degree at most 10. This implies both conditions of Lemma 7 with s = n/d3/2

and ζ = 1/(22d3/2) and thus implies Theorem 4. 2

We remark that the exponent “3” of d in the statement of Theorem 4 can be
replaced by values arbitrarily close to 2 by replacing “10” with a larger value in
this proof.
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