Reprinted from

COMBINATORICA

Volume 2, Number 4, 1982

ON THE CONNECTIVITY OF RANDOM m-ORIENTABLE
GRAPHS AND DIGRAPHS

by
T. I. FENNER and A. M. FRIEZE

AKADEMIAI KIADO,

BUDAPEST

NORTH-HOLLAND PUBLISHING CO.
AMSTERDAM



COMBINATORICA

COMBINATORICA is an international journal of the J. Bolyai Mathemati-
cal Society (Anker kéz 1—3, Budapest, Hungary H—1061), published jointly by
Akadémiai Kiad6 (Publishing House of the Hungarian Academy of Sciences) Buda-
pest and North-Holland Publishing Company, Amsterdam. The journal is published
in four issues making up a volume of 400 pages per year.

COMBINATORICA publishes research papers in English from various
branches of combinatorics. Applications-oriented papers containing new mathe-
matical results are also welcome.

Mailing address for editorial correspondence:
COMBINATORICA

Mathematical Institute of the Hungarian Academy of Sciences
Redltanoda u. 13—15

Budapest, Hungary H—1053

Honorary Board of Editors
Editor-in-Chief B. Andrasfai R. Rado
P. Erd0s C. Berge D. K. Ray-Chaudhuri
l;. J. Cam:sron %.Eecsld
. . Edmon -C. Rota
Editor-in-Chief T. Gallai B. Rothschild
B. Griinbaum H. Sachs
A. J. Hoffman J. J. Seldel
Executive Editor R. M. Karp M. Simonovits
L. Babai D. J. Kleitman N. J. A. Sloane
J. Komlés J. Spencer
Advisory Board M. Las Vergnas G. Szekeres
R. L. Graham W. Mader E. Szemerédi
A. Hajnal G. A, Margulis W. T. Tutte
G. O. H. Katona E. C. Milner D. J. A. Welsh
Vera T. Sés J. NeSetiil A. A, Zykov

Distributors for Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic,
Korean People’s Republic, Mongolia, Poland, Romania, USSR, Viet-Nam, Yugoslavia:

Kultura .

Hungarian Foreign Trading Co.

Budapest 62, P.O. Box 149, Hungary H—1389

For all other countries:
North-Holland Publishing Company
P.O. Box 211, 1000 AE Amsterdam
The Netherlands

1982 Subscription (Vol. 2. in 4 issues) US $ 74.00/Dfl. 185.00 including postage
(The Dutch guilder price is definitive. US $ prices are subject to exchange rate fluctuations.)

Y



COMBINATORICA 2(4) (1982) 347—359

ON THE CONNECTIVITY OF RANDOM m-ORIENTABLE
GRAPHS AND DIGRAPHS

T. I. FENNER and A. M. FRIEZE
Received 18 August 1981

We consider graphs and digraphs obtained by randomly generating a prescribed number
of arcs incident at each vertex.

We analyse their almost certain connectivity and apply these results to the expected value
of random minimum length spanning trees and arborescences.

We also examine the relationship between our results and certain results of Erdés and
Rényi.

1. Introduction

This paper is concerned with the connectedness of certain random graphs and
digraphs. The most common approach to studying random graphs is either to consi-
der a graph G, y with n vertices and N edges chosen at random (see Erdés and Rényi
(1], [2], [3]), or to fix p, O<p=1, and include each possible edge independently with
probability p.

However, in his paper on the expected value of a random assignment problem,
Walkup [6] uses results on a random bipartite graph that is generated in the following
manner: for each vertex v, generate independently at random m distinct edges con-
taining v.

In this paper we consider general graphs generated in an analogous manner.
Our motivation for studying these graphs is that various interesting properties of
G, like connectivity and the existence of hamiltonian cycles, seem to occur when N
is large enough to force a lower bound on the degrees of each vertex with probability
tending to 1. In this paper we show, for example, that choosing 2 random edges con-
taining v, for each vertex v, is sufficient to ensure connectedness (mor :over nonsepa-
rability) with probability tending to 1. In a future paper we intend to discussthe exist-
ence of hamiltonian cycles in such graphs.*

The structure of the paper is as follows: in Section 2 we consider the vertex
and edge connectivities of a random graph G with n vertices where, for each vertex

AMS subject classification (1980): 05 C 40; 60 C 05.
* We have shown there exists m, such that for m=m, G,, is hamiltonian with probabili-
ty—1, [7]. We are currently trying to reduce m, (from 23).
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348. . ; : T. I. FENNER, A. M. FRIEZE

v independently, m edges are generated containing v. We show that, with probability
tending to 1 as n—-<s, G has both vertex and edge connectivities equal to m for
m=2, and that G is not connected. .

In Section 3 we apply these results to establish that the expected length of a
minimum spanning tree in the complete » vertex graph, with edge lengths indepen-
dently drawn from the uniform distribution on [0, 1}, never exceeds 2(1 +log n/n).

In Section4 we obtain a characterisation of those graphs which can be
instances of G{; this enables us to relate our results to those of Erdés and Rényi [3].

Lastly, in Section 5 we outline similar results for a corresponding class of ran-
dom digraphs.

2, Connectivity

We begin with the definition of the random digraph DG, where 1=m=
n—1. The vertex set of DG is V,={l, ..., n}. The arcs of DG are obtained by
independently taking each v€ ¥, and then randomly choosing m distinct arcs (v, w),

where weV,— {v}, so that, for each z€V,, each of the (n; 1) possible sets of arcs

has the same probability of being chosen.

G is the random graph obtained from DG{ by ignoring the orientation of
the arcs. (Strictly, G is a multigraph as some edges may occur twice.)

For a graph G, the vertex connectivity C,(G) is the minimum number of ver-
tices the deletion of which disconnects G. The edge connectivity C.(G) is defined simi-
larly in terms of edges.

Theorem 2.1. (a) For m=2, lim Prob (C,(G$)=m)=1.
(b) For m=2, lim Prob (C(GI=m)=1.
© (c) lim Prob (G{™ is connected)=0.
Proof. (a) Consider the deletion of p vertices from the random graph G, where
O0sp=m—1. If G® can be disconnected by deleting p vertices then there exists a
partition (P, S, T) of V,,, where |P|=p, |S|=k and |T|=n-p—k, with m—p+1=

k=n—m—1, such that G has no edge joining a vertex in S to a vertexin T.
For an arbitrary such partition, the probability of this is

o =y s

Thus,
2.1) A(m, n, p) = Prob(C,(GP) = p) =
Lit=p)) n! (k + p)""'[n - k]‘""’"""’
s 3
T k=m—p+1 kKIpl(n—p—Kk)I\ n n
Now,
n! 12n n"ti a(m, n, p)n"

-
k'p!(n—p—k)! 12n—1 plePkk+¥(n—p—k)y'-P-k++}2x  k*(n—p—ky-°-*’.
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where  a(m, n, p) = (12n/(12n—1))(n/((m — p+1) (n—m—1)))#/(p!e” V 2n).
Thus
Am,n, ) S a(mn D) 2 e+ BIRK(— R n—p— ) -P4u

where Uy = (k+ p)™-V¥(n—k)m-D(—p=k) pn—m(n-p)

Now ((k+p)/k)((n—k)/(n—p—k))'-P-*=e?Xe?, and (k+p)*(n—k)"->-* decreases
monotonically with increasing k for k=4(n—p).
Therefore,

@2)  A(m,n,p) = am, n, P)e (- psr+3(n=2m+p—2ty_ 1)
= a(m, n, p)e*(an'="("=P) 4 ppd-mm-p+1)

where a = (m+1)m-D-P+) and b =I(m+2)™-Dm-r+d) It follows that
lim A(m,n,p)=0 for m=2 and O=p<m. Thus lim Prob (C.(GM=m)=1.

We complete the proof of (a) by showing that
B(m, n)=Prob (G has a vertex of degree m)—~1 as n-»oo,

This will imply that lim Prob (C.(Gn)<m)=1 and hence the result.

Let E be the event that vertex k has indegree zero in the associated dlgraph
DG®. Thus the degree of k in G is m if and only if E{ occurs.
Now consider SSV, wnth |S]=s. Then

a9 =rn( 200 = (")) (00 -

= ﬁ (1=s/(n— D) (1+ (m/(n—s—m)).

Thus, keeping s fixed, we see that lim q(m, n,s)=e~"™. If welet t be a fixed positive in-

teger then, for n=t, B(m, n)=C(m,n,t)="Prob ( U E"”) = 2’ (=11 ( ) q(m, n, s).
Therefore ,}!.'E, C(m,n, t)=1—-(1—e-™), so for nzno(t), B(m, mzl—(1—e™f-
—1/t. However, since ¢ is arbitrary, we see in fact that ,!.152, B(m, n)=1, which com-

pletes the proof of (a).

(b) Now C.(GI)=C,(G®) and if G has a vertex of degree m then C.(GM)=m.
The result thus follows from (a).

(c) It was shown by Katz [4] that Prob(G{™ is connected)=2(n—1)!-

’(Esnk/k!]/(n—l)"<2(n—1)!e"/(n—l)“——0 as n—oo. [
k=0

2°¢



350 T. 1. FENNER, A. M. FRIEZE

3. Expected length of a minimum spanning tree

In this section we obtain some results concerning the following question: given
a complete graph CG, with n vertices and with edge lengths drawn independently and
umformly from [0, 1], what is the expected value E, of the minimum length of a
spanning tree of CG,?

Using an approach derived from that used by Walkup [6] for the assxgnment
problem, we shall show that

3.1 . ‘ E, < 2(1+log n/n).

For the moment we consider » as fixed. For each distinct pair 7, j with 1=/,
Jj=n, let Y;; be a random variable with distribution function

(3.2 F)=1-(1-2% 0sis1,

the Y, all being independent. For e={i,j}, if we let X,=min (¥}, Y;) then X,
is uniform in [0, 1].

Walkup observed that F(A)=H ()= A2 where H is the distribution function
for a random variable uniform in [0, 2]. For each /, let ¥; , and U(,,), respectively,
denote the k' smallest of the n—1 random variables ¥;; and the k* smallest of n—1
uniform random variables in [0, 1], then

(In order to overcome the techmcal dlfﬁculty of ties in the definition of the k'* small-
est of n random variables we delete the tie set, which has probability zero, from the
underlying probability space.) '

The edge lengths in CG, are obtained by sampling the ¥, and then computing
X.=min (Y, Yy), as above, for each e={i,j}.

Given {¥;;} and m=n—1, let G, be the random graph obtained as follows:
for each vertex i=1,2,...,n, select the m smallest of the ¥;;, 1=j=n, and then
take the m correspondmg edges {i, ]} We note that the graph G, has the same dis-
tribution as the graph G® of Section 2. The length of edge e={i, j} in G, is Y},
or Y; or min (Y,,, Y;) dependmg on whether one or other or both of ¥, and ¥ ;i are
selected.

For a given Y we obtain a spanning tree T of CG, as follows:

1. Construct G,.
2. If G, is connected then
‘(a) Construct G, and delete the longest edge Jfrom any cycle. .
(b) Connect up the remaining forest using edges of G;—G,.
3. If G, is not connected then choose an arbitrary spanning tree in CG,.

Let F, be the expected length of T and, for 1=k=[n2], let q;=
Prob (G, has k components and G, is connected). Let =,=Prob (G, is not con-
nected)=A4(2, n, 0).

Now

= F< 3 2= Rln+40c— Dim)get (1= ),
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The summation corresponds to the case when G, is connected because if G, has

k components then T uses n—k edges of G,, whose expected lengths do not exceed

2/n, by (3.3), and k—1 edges of G,—G,, whose expected lengths do not exceed 4/n.

The term (n—1)m, corresponds to the case where G, is not connected, in which case
the length of T does not exceed n—1.

We note that n,=0 for n=5, and from (2.2) it is straightforward to show that

(34 n, = lfn(n—-1) for n=2.
Now g, =p,=Prob (G, has k components) and thus

Ln/2
E,< 2 (2n—R)fn+4(=1)/n)pit(n—1)m, =

Lnf2] Ln/2J
=2—-4/n+2 kﬁ; kp/n+(n—1D=, < 2(1—!— k—21 kp,‘/n] » by (3.4).
Now Kruskal [5] shows that
Ln/2] n
ké; kp, = ,Z{ nl/((n—j)tjn’) <logn

(3.1) now follows immediately.
It seems reasonable to conjecture that E, is monotonically increasing in n,
in which case (3.1) would imply E,=2 for all n. .

4. m-orientable graphs

Every instance of the graph G has n vertices and mn edges where an edge
can be repeated at most twice and each vertex has degree at least m. It is not true,
however, that these properties characterise G&. In this section, therefore, we obtain
such a characterisation.

We first consider graphs without repeated edges. Given a graph G=(V, E),
an orientation Q(G) of G is a digraph (¥, Q(E)) in which
(4.12) . (0, WER(E) = {v, wiEE,
4.1b) {v, W} E= [{QE)N{(v, w), w,0)}{ =1,

i.e. each edge of E is oriented by Q.

Now let a: V—~Z+, the set of non-negative integers. The graph G is «-
orientable if there is some orientation Q(G) for which the outdegree of v is at least
o(v) for all »€¥V. (Our aim is to find a way of determining whether a graph G is a
G™, i.e. whether it can be oriented to yield a DG{™.)

Foraset SSV, welet a(S)= 2 «(v). We now obtain a characterisation
of a-orientability. ves
Theorem 4.1.* A graph G=(V, E) is a-orientable if and only if, for all SSV,
4.1 [{e€E: eNS # B} = «(S).

* This result was also obtained by Frank and Gyarfas [8].
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Proof. The necessity of 4.1 is evident, for if 2(G) is an a-orientation then at least
«(S) arcs must have their tails in S.

To prove sufficiency, we consider the following maximum flow problem (see
Figure 1):

v E
v (v, w}
s t
/
A ¢ A, A,
Fig, 1

Let D be the digraph (X, A) where X={s, t}UVUE, A=4,UA4,UA,,
A4, = {(s, v): veV},
A= {(v, €): vEeEE},
As = {(e, t): e€E}.
The flow capacities ¢: A+~Z+ are defined by

a(v) if a=(s, v)€A4,,
c(@) =1 if a€d,, '
1 if a€Ad,.

We observe first that G is «-orientable if and only if the maximum value of an
s—t flow in D is a(V).

Condition (4.1) ensures that a cut separating s and ¢ which contains no arcs of
A, has capacity at least a(V). Then, on applying the Max-Flow-Min-Cut Theorem
of Ford and Fulkerson, we obtain the result. [

In order to deal with multiple edges, we now define a graph as G=(V, E, p)
where V, E are as before and pu: E—~{1,2} gives the edge multiplicities. An edge
e={v,w} with u(e)=2 should be oriented in both directions to correspond with
the way double edges arise in obtaining G from DG™. We therefore change the
definition of an orientation, replacing (4.1b) by

@.16) {v, W} E = |2(E)N {(v, w), (w, D)} = u(e).

The definition of a-orientable remains unchanged. It now follows easily that, if
ecE and p(e)=2, G=(V, E, p) is a-orientable if and only if G'=(V, E—{e}, 1)
is o’-orientable, where «’'(v)=a(v) for v¢e and «’'(v)=max (0, x(v)~1) for v€e,
and y’ is the restriction of u to E— {e}. On combining this remark with Theorem 4.1
we obtain :
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Corollary 4.1. A graph G=(V, E, n) is a-orientable if and only if, for all SCV,
4.2) [{e€E: eNS 9}|+e§s(y(e)—1) =a(S).

If m is a positive integer, we use the term m-orientable to denote c,,-orientable
where ¢, (v)=m for all »€V. Hence we see that the graphs G generated as in
Section 2 are precisely the m-orientable graphs for which ZB u(e)=mn.

€

e
Erdés and Rényi [3] have shown that, for a fixed integer m=0 and real c,
if N=N(n)=4nlogn+}mnloglogn+cn and G,y is a random graph with.
n vertices and N edges then

4.3 Jlim Prob (Co(G,,x) = m) = 1—exp(—e~%/m)).

This is derived by showing that, with probability tending to 1, C, (G, n)=m
and with probability tending to 1—exp (—e~2¢/m!) G, ~ has a vertex of degree m.
We next show that

4.9 ,,l.igl Prob (G, y is m-orientable) = 1,

which combined with a modification of Theorem 2.1 for the case with no repeated
edges, leads us to conjecture that the m-connectivity of G, y could be deduced from
its almost certain m-orientability, provided m=2.

Now if G, y is not m-orientable, by Theorem 4.1 there exists a set S of s
vertices which meet k edges, where k=ms—1. Thus Prob (G, n is not m-orientable) =

R Y T

S,

4.5) 4,=

s=1
and we take [ ] =0 in the above summation if <0 or a<§, in order to simplify

the range of summation. We show in an appendix, that 352 4,=0, which yields
the desired result (4.4).

S. Digraphs

Our results on the connectivity of G extend easily to digraphs. The random
digraph D{’ has vertex set ¥,. The arcs of D{ are obtained by first independently
taking each v€V,, then randomly choosing m distinct arcs (v, w) where we ¥, — {v}
and finally randomly choosing another m distinct arcs (w’, v) where w’¢ V,—{v}.

One can easily show that, if A4(m, n, p) is the probability that there exists a set
of p vertices whose deletion from D leaves the remaining digraph not strongly
connected, and if B(m, n) is the probability that D contains a vertex with outdegree
m, then '

(5.1a) A(m, n, p) = 2X[R.H.S. of (2.1)],
(5.1b) B(m, n) = B(m, n).
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We thus have
Theorem 5.1. (a) For m=2, lim Prob (SC,(DEM)=m)=1,

(b) For m=z2, lim Prob (SC.(D@)=m)=1

where, for any digraph D, SC,(D) is the minimum number of vertices that must be
deleted in order that the remaining digraph be not strongly connected. SC (D) is de-
fined similarly in terms of arcs (directed edges). | :

It is at present not known whether or not the probability that D{" is strongly
connected tends to 1.

Minimum length arborescences

The results on the expected length of a minimum spanning tree can be partially
generalis:d to the expected length of a minimum spanning arborescence rooted at
vertex 1. (An arborescence rooted at vertex 1 is a digraph in which vertex 1 has
indegree 0, every other vertex has indegree 1, and the graph obtained by ignoring arc
orientations is a tree.)

Assuming that we are given a complete digraph CD, with n vertices and with
arc lengths drawn independently and uniformly from [0, 1], we shall show that the
expected length E, of a minimum spanning arborescence rooted at vertex 1 is less
than 3. .
For each distinct pair 7,j with 1=/, j=n, let ¥;; and Z;; be independent
random variables with distribution function (3.2). Let X;;=min(Y};, Z;;) be the
length of the arc (7, j) in CD,. Let D, be the random digraph obtained as follows:
for each vertex i=1,2, ...,n, select the m smallest of the Y;;, 1=j=n, and then
take corresponding arcs (7, /) and similarly select the m smallest of the Zj and take
the corresponding arcs (j, /). We see that the digraph D,, has the same distribution as
the digraph D

For given Y and Z, we construct a spanning arborescence R as follows: if
D, is strongly connected then it contains at least one spanning arborescence rooted
at vertex 1 so we choose the shortest of these, and if D, is not strongly connected
then we choose an arbitrary spanning arborescence in CD,.

Let F, be the expected length of R, then we see that

E, s F,=3(n-)n+@m-1)4%,

where #,=Prob (D, is not strongly connected)y=A(2,n,0). The term 3(n—1)/n,
which corresponds to the case when D, is strongly connected, is n—1 times the ex-
pected length of an arc of D,. _

The result now follows as 3/n>(n—1)#, since #,=2r,=2/n(n—1) by
(5.1) and (3.4). ,

As in Section 4 we pursue a characterisation of the digraphs D{. This time,
given o, B: V—+Z+ and a digraph D=(V, 4), we determine whether there is a
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function ¢: A—V such that

(5.2a) o((v, W)€ {o, w} for (v, w)€A,

(5.2b) |{(v, w)€A4: o((v, w)) = v}l = a(v) for vEV,
{(w, v)€EA: o((w,v)) =0} = B(v) for veEV.

The digraphs D™ without repeated arcs satisfy (5.2) with a=p=c,,, where
cn(®)=m for veV.

Fg. 2

By considering the maximum flow problem (see figure 2):
Vertices: {s, }UVUV’UA4, where V' = {v': v€V}
Arcs: A,UA4,U 4,
Ay = {(5, v): v€VIU{(s, v"): vEV}, Capacity: c(s, v) = a(v)
c(s, v') = B(v)
Ay = . H“ {®, a), (W, a)}, Capacity: e (= a(V)+B(V)+1)

Ay = {(a, 1): acd)}, Capacity: 1, we obtain

Theorem 5.2. Given a and B, there exists ¢ satisfying (5.2) if and only if for all
S, TSV we have

(5.3) |(v, w)EA: vES or weTY = a(S)+B(T). |

Repeated arcs are dealt with as in section 4, i.e. by considering the reduced
problem obtained by ignoring repetitions and modifying « and # appropriately. This
leads to an extra term 3 (u(», w)—1) on the left side of (5.3), where the summation is
over all (v, w)€4 with »€S and weT.
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Appendix

We first define Uy, for 1=s=n and O0sk=ms—1 by

2)-2)

2 2
k

Ua =0 otherwise.

Usk=

) v a3 e wenes)

N-k 2

We show first that if U, ;4,50 then U ,.,=Uy provided n is large enough.

Now
User _ [(g]-("?]—k] N—1)

Us (k1) [[”;‘ —N+k+l]

and, for large n,
[[;)-—(";S]—k] (V=)= (k+1) [[”;‘S]-N+k+1]
= (@03 (G 7 -2
= N(s(n—s)+3s(s—1))—ms (;] =s(N(n—34s—P—-imn(n—-1)=0

Now for large n we have [;] - (nz—s) =ms. Thus if a(n)=max [s: (n ;s] =

zN—ms+l) we see by the above that

a(n)
4, = 21' v,

[

s ms—1

(2

N

where

1)
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-5l 5.

LG

for some «>0 when n is large, and where

Now let

=1 s'

where

] [*] -ls(ﬂflogn/n)"“‘-1

[n s
Q= 1%/ [1—_
lzi
= exp(—slogn— smloglogn 2cs) = n—*(log n)~™e~%",
Also
n) (n—s
A Y| -
[ ms—1 J = (ms—'l)! = (2en) 1
and so

’ —1 =
4= 26 1)' (2aey™ logn O(IOgn]

and so 4, —+0.

n
L (2]
Now let 4, = 2 v, ML Now

smgtl
Ust1 _ n—s uv
Vs s
where
n
m-l (2) [ —-m(s+1)+2+1 Nem(s+ )42
& (";) (N—m(s+D+r41) [ & mEFD=1=1

[[() (n ’ m(s+1)](1v m(s+1)+2

) slogn
e N
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for some a > 0 when n is large and

53 (;’]—[";s)+t-m(s+1>+1 [ ("'2‘ ]_,

o R | T

[’2')—(”; ]—m(s+1)+1

oGy

for some f>0 when n is large.
Thus

V=

n—-s—2

m-—1
Di1 2o [_S_) (logn)"=af (logn)" =1 as s= =,
U, n— 2

and this is =1, for large n.
Thus
_I6)
(Al) 47 = 3ny 2
n = a(n) N

From its definition a=a(n) satisfies

n—a-1

5 ] < N-—-m(a+1)+1or

(A2)

[n;a]_(n—a—l) <(N-—ma+1)—m

from which we deduce (n;a) —(N-ma+1)<n—a.
From (A2) we can also deduce that
(n—a)*-3(n—a)+2 <2(N—m(a+1)+1)

from which we obtain n—a=Vy2N assuming n large.
It then follows that

("3

N—ma+1

[”;a] N n—a
= n—a §(m] as n—a_s_i( 2] for large n
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e (e 220 ().

It follows easily from (Al), since (;] is much larger than nv,, that 4, 0.

N
Thus A4,—~0 as was to be shown.

Note added in proof. A. M. Frieze has recently improved the result of Section
3 by showing that E,—+{(3).
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