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ON THE COMPLEXITY OF COMPUTING THE VOLUME
OF A POLYHEDRON*

M. E. DYER® axp A. M. FRIEZE:

Abstract. We show that computing the volume of a polyhedron given either as a list of facets or as 4
list of vertices is as hard as computing the permanent of a matrix.

Key words. volume, polyhedra, complexity, = P-complete
AMS(MOS) subject classification. 68A20

1. Introduction. Recently there has beensome interest in establishing the computa-
tional complexity of determining the volume of convex bodies in R". Elekes (2] and
Barany and Firedi [1] have shown that it is even difficult to closely approximate
volumes of convex bodies defined by certain types of oracles. These hardness results
complement the approximation algorithm of Lovisz [4].

Lovasz [4] also enquires about the complexity of computing the volume of a
rational polytope given either by listing its facets or by listing its vertices. He conjectures
that these problems are hard. In this paper we confirm Lovasz's conjecture, and show
that both problems are as hard as computing the matrix permanent, (see Valiant [6]).
We cannot quite describe the problems as # P-complete, since they are not in the class
« P as defined by Valiant [6]. However, since we have no wish to define yet another
complexity class, we state our results relative to # P.

Let us now be more specific. Consider first Problem 1.

Problem 1. Let P= P(A,b)={xe R": Ax=b}bea polyhedron. A, b have rational
entrieswhereA=(a.,),i=l,2,---.m,j= 1,2, -, n.andb=(b,),i=1,2"" .m. We
shall use the notation of Schrijver [5] to describe problem size. Thus if x=p/qis
rational where p, 4> 0 are relatively prime integers, then

size (x) =1+ [log: (lp|+ D]+ [log,(g+1)]

and
m m n

size (A.b)=m(n+1)+ T size (b)+ v ¥ size (ay).
i=1 =1 =1

L =size (A, b) will be used as our measure of problem size. Since we can (by linear
programming) determine in polynomial time whether or not vol (P) =0 and whether
or not vol ( P) =20, we can assume without loss of generality that 0<vol (P)<x.

We shall prove two theorems. The first shows that computing vol ( P) is # P-hard.

TueorReM 1. Computing vol (P(A,b)) is = P-hard, even when A is totally uni-
modular. O

There is a technical difficulty in stating the converse of this theorem. It may be
encapsulated in the following problem.

Problem. ls size (vol (P)) polynomially bounded in L? O

[t is not too difficult to show that vol ( P) is a rational, p/g, say. We can also show
that vol (P) cannot be too large. The difficulty is that g does not appear (o have a

= Received by the editors July 1, 1987; accepted for publication November 15, 1987.
Ly e e S N e O T United Kingdom.
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bound polynomial in L. The problem stated above thus seems to be an open (and
possibly difficult) question. We show later that the difficulty disappears if we restrict
ourselves to any class of polyhedra whose vertices can be scaled to become integer
lattice-points by a polynomial size transformation. We conjecture that the answer to
our problem is in the affirmative, but we are at present only able to state the following
result in terms of approximation.

THEOREM 2. Let e >0 be rational. Given a # P-complete oracle, in time polynomial
in L and size (g), we can compute V such that

(1.1) |V —vol (P(A,b)|<e. 0

COROLLARY 1. Suppose we restrict our attention in Theorem 2 to any class of
polytopes for which size (vol (P)) is bounded by a polynomial in L. Then, using a
= P-complete oracle, vol (P) can be computed exactly in time polynomial in L. U

Let us now consider Problem 2.

Problem 2. Let X ={X,, X5, ", X,,} be a set of rational points inR". Let P(X)
be the convex hull of X. We shall consider the problem of computing vol (P(X)) when
X is given as an nxm matrix (x,;), i=1,2,---.n, J=1,2, ¢+ ,m ad

THEOREM 3. Computing vol (P(X)) is % P-hard. O

This time we have no difficulty in stating the converse result because, as we will
show, size (vol (P(X))) is polynomially bounded in size (X).

THeOREM 4. Computing vol (P(X)) is # P-casy. O

3. = P-hardness of Problem 1. Let B={0,1}uand C = B". We will consider a single
linear inequality
(2.1) a'x=b
in B", with a> 0 an integer vector. Define the polytope

(2.2) P={xcR":a'x=b0=x=e}

where e’ =(1,1,-+-,1), and let
(2.3) K=CNP

We shall wish to regard (2.1) as being parameterised by b, in which case we will write
P(b) or K(b) for emphasis. The following problem is known to be # P-hard (see [3]).

+ KNAPSACK
Input. Positive integers @,, @, "~ dny b.
Problem. Determine N =|K
We Turing reduce £ KNAPSACK to computing the volumes of certain polyhedra. For
x< C. let |x| =e"x denote the number of 1's in x.

Now consider the following problem, which may appear rather artificial, but will
be required later.
#PARITY

Input. As for = KNAPSACK.
Problem. For i=0,1let N; =|{xe K:|x|=1i(mod 2)}|. Determine

(2-4) D = .'Vn_ f\r].

LeEmma 1. #PARITY is # P-hard.
Proof. Suppose we havea procedure for = PARITY. Let M =e"a+1,and consider
the set of (n+1) #PARITY problems, as above, corresponding to the inequalities

(2.5) (a+Me) x=b+rM (r=0,1,-+-,n).
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Let N''=|{xe K:[x|=r}|. It follows, by an easy analysis, that the rth =PARITY
problem defined by (2.5) determines the value

r-1

D" =(-1)N"+ T (=1)(]).

A straightforward calculation now yields

N=2""+% (-1)D"".
Thus a polynomial number of calls to the #PARITY procedure, plus polynomial
additional time, would solve +KNAPSACK. O
We now turn to the proof of Theorem 1.
Proof of Theorem 1. Assume we have some procedure for determining vol (P).
Let A={xcR":a"x=b,x=0}. Note that A is bounded with vol (A)=b"/(n'[]]_, a,).
Let U be the uniform measure on subsets of A such that U(A)=b" Note that U is
related to volume for a subset E of A by the equation vol (E)/vol (A)=U(E)/U(4).
Thus our procedure for determining vol ( P) can easily be modified to determine U(P),
and we will assume this has been done. Let E,={xcd: = 1} forj=1,2,---,n and
E =(A-E,). Then clearly p=nN"_, E. Now, for each v= C, define
E ={xeA:x>v}=N,. E.
Note that E, is either empty or is an n-simplex (actually its closure is). The well-known
inclusion-exclusion formula (see, e.g., [7]) now yields
Up)= S (-1)"U(E,).
wve
It is easy to show that
U(E,) =0 ifa’v>b

—(b—a"v)" ifa'vsh.

Thus
UP)= Y (-1)"(b—aTv)".
ve K
Suppose that b is an integer, and B real such that b= B < b+ 1. The integrality of a
then implies that K(B8)= K (b). Thus, writing F(8)=U(P(B)), it follows that

(2.6) Fig)= L (-)™(B-a"V)"

ve Kib)

" Let B be a rational p/q with p, Q> 0 relatively prime. It follows from (2.6) that g"F(3)

is an integer such that q"F(B)=(2p)". Thus size (F(B)) = n(size (B)+ 1). Thus the
procedure for calculating U(P) can be used to determine F(B), provided B has size
polynomial in L. Now, expanding the terms in (2.6), we see that

(2.7) FiB)=% ap""’

where

(2.8) a=(-D"(" I (—1)"(a’v) (i=0,1,---,n)
ve Kib)

Observe, in particular, that a, = Ve (m1)"=D,as defined in (2.4). This is # P-hard
to compute (Lemma 1). It follows, a fortiori, that it is # P-hard to determine the
coefficients of the polynomial F. But we may do this as follows:
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(i) Determine F(B)= UP(B)=n'[]-, a vol (P(B)) for B =b+k/(n+1), k=
[ PR A

(i) Solve (in polynomial time) the resulting system of linear equations determined
by (2.7).

We observe that none of the numbers involved in the computations is very large.
For example, it follows from (2.8) that the «, are integers such that la,| = (4e"a)".

There is one final point. The statement of Theorem 1 claims that it remains true
when A is totally unimodular. This follows by making the substitution

¥, = ax, (j=1,2,-++,n)

in the system (2.2) defining P. The constraints are then easily transformed into a totally
unimodular system. The theorem now follows. O

Remark. The problem we have proved hard may be viewed in either of the
following ways:

(i) If X is a point chosen randomly from the uniform probability distribution on
the unit hypercube, then it is hard to compute the probability that X satisfies a single
linear inequality.

(ii) Integrating the step-function

wix)=1 (b—a'x=0)
=0 (b—a'x>0)

over the unit hypercube is # P-hard.

Note that the function ¢ in (ii) is not even continuous. However, we may integrate
W explicitly over k variables, using (2.6). This gives the piecewise polynomial function

U (x) = ¥ (-1 (b-a"x-a"H*
veKih—a'x)

where 4, veR* and a.xeR" . This function is readily shown to be of class C* 7"
Hence we have the conclusion that it is hard to integrate such a function over the unit
hypercube. In fact, since the description of ¥ continues to be of polynomial size for
k=0 (log n), the conclusion can be strengthened further.

3. # P-easiness of Problem 1. We will go straight into the proof of Theorem 2.
Proof of Theorem 2. Since P is bounded, we have [5, Thm. 10.2]

(3.1) PcT={xeR"|x|=sD=2"""(j=12,---nk

Now let s = [mn:f"}””'/g], and divide ' into s” subcubes of side 8 =2D/s. These
subcubes fall into three classes:
(i) interior (wholly) to P;
(ii) exterior (wholly) to P;
(iii) boundary.
We will estimate V =vol (P) by the total volume of the interior cubes, V. Thus v=1Is"
where I is the number of interior cubes. Clearly V= V. and the error E=V— Vs
bounded above by J3", where J is the number of boundary cubes. We show later that

(3.2) J=mn's""
and hence J8" = £ as required.
The counting machine & [6] which computes I works as follows. Each copy

chooses one of the integer vectors t, where 1=y=ss{(j=12,-++,n) in time propor-
tional to n size (s). It then tests, in polynomial time, whether the subcube

['={xeR": ~D+(,—1)8=x,=—D+15,j=1,2,-,n}
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is interior. Note that this is equivalent to

1 n ; n - .
5 T a|=b+ Y a,{D—(1,—:)}8 (i=1,2,-+-,m).
< =1 =l
It is clear that the sizes of all numbers involved, in particular s, are polvnomial in L.
The output of & is I, from which V is calculated.
It remains only to prove (3.2). If

P={x€if»§":a,rx‘=: b(i=1,2,--,m)}

then let H, ={xeR":a/x=b,}. Call a subcube I of T intersected if H NI"#C for
some 1=i=m. Let K be the number of intersected subcubes. Clearly K =J. Each
subcube [ projects onto n squares I’} in the coordinate planes, ie., if I'=
[xeR™: u S, S +8 (k=1,2,-- -om)tthenl ={x:x,=0and u, =x, =u, +5 (k#
j)}. The total number of distinct squares is clearly ns"~'. Construct a mapping from
the intersected cubes to the squares as follows.

For each intersected cube I choose some i such that H,MT"# & (e.g., the least
such i). Choose j so that

la;| = ITP__X” |al.

Suppose two intersected cubes map to the same square with the same value of i. Then
there exist points x, X within the two cubes such that

a'x=a/x'=b,
x,=zx, and |x,—xi=8 (k#)).

Thus x, —x; =Y «-, lax|8/|a,|=(n—1)8. Therefore at most n cubes can map onto the
same square for a given i Since there are only m values of i, at most mn cubes map
onto the same square. Hence K=mnxns" '=mns" ', and (3.2) follows.

Proof of Corollary 1. Suppose we know that size (vol (P))= p(L) for some poly-
nomial p(L). Take €= 1/3p(L)" in Theorem 2. We know that V =a/b for integers
a, b=2"" and V- V=e Having computed V., we can use continued fractions to
compute V exactly in polynomial time (see, ¢.g., [5, Cor. 6.3a]). O

Finally, we give a simple example of a class of polyhedra for which vol (P) has
polynomial size.

LeEmMA 2. If P is integral, then size (vol (P))= O(L).

Proof. Let P={xeR": a’x=b(i=1,2,---,m)}and be such that every vertex of
P has integer coordinates. Now P has a triangulation using only its own vertices. If
o is a simplex of this triangulation, then

1 ] 1 1 v,
vol () =— det =—, say,
. n! Yo Vi ottt Yy n!
where v,(i=0, 1, -, n) are vertices of P. Now v, is an integer. Hence vol (P)=v/n,

with v=Y, v,, i.e.; n!vol (P) is an integer. Now (3.1) implies
vol (Pys 2P e,
Hence
size (vol (P))=8n°L+n+ [log, (n!+1)]+1,

and the result follows. 0O




972 M. E. DYER AND A, M. FRIEZE

4. = P-hardness of Problem 2. We shall again reduce the counting problem
+ KNAPSACK to volume computations of the relevant form. We will make the
following two additional assumptions for = KNAPSACK:

(4.1) There are no 0-1 solutionstoa’ x = b.

We can ensure this simply by replacing @, by 2a, (j=1,2,---,n) and b by 2b+1in
(2.1). This does not atfect the value of N.

(4.2) b>le"a.

If this is not true on input, then we can add a variable x,., with a,.,=e’a-b+1,

and replace b by b+a,.,. This adds 2" to the value of N.
Now let P,=P={xcR"a'x=b0=x=e}. Then (4.2) implies that le=
(!, 1, -+ 1) is an interior point of P,. Now, substituting y = 2x —e, transform P, to

P,={ycR":a'y=b',—esy=e},

where b'=2b—e’a>0. Note that x={0,1}"N P, «» ye{-1,+1}"N P,. So we have
reduced #KNAPSACK to computing N =|Y], where

Y={ye P y,==x1(j=12,---,n)}

(1), 42

=iy e, w0 g,

The constraints defining P, can be written as

ATy=1,
(4.3)

—y=1, w=1 (j=1.2,---,n)
where A =a/b". Now 0 is an interior point of P-. Consider the polar P%¥ [5, Chap. 9],
where

*={zeR":z'uslforallue P}
(4.4)

=conv{A, e, e, ", €, —€, €, ", —€}

The second equality in (4.4) merely states the well-known relationship between the
facets of P> and the vertices of PT.

We show that N can be computed from vol (P¥) and vol ( P%), where P% is the
polyhedron obtained by using (b+!) in place of b in the definition of P, before
transforming to P¥. Since PY, P* are defined as convex hulls, Theorem 3 will follow.

Now polarity yields a one-to-one correspondence between the (nondegenerate)
vertices of P> not lying in facet {y € Pu: ATy=1}(i.e., members of Y) and the ( simplicial)
facets of P* not containing the vertex A. Observe that the facet corresponding to y
has vertexset A''={y!"e,:i=1,2,-- - ,n}fort=1,2,--- _ N.Thus there is a decompo-
sition of P¥ into simplices oy, 05, * -+, o, Where o, =conv ({A}UA'"). Hence

i
vol (P¥)= Y vol(eg})

12 L1 e 1
=13 Jaer(y 2
n'! .- A VvV, e Yu €,

1N
=— Y [1-ATy'""| sincey)" ==l
n!l 1
4 N T g
= 5 b-a xr
n!'/ = |2b—e'a
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where x'/' = {(e+y'"") is the zero-one solution to (2.1) which corresponds to y'"'. Thus,
using (4.2),
1 N p—ax'"
—nlvol(PY)= Y, e
Z =1 2h—e a
bN -8
2b-e'a
where S=Y",a"x""". Furthermore
(b+3)N—-S§

1 A
—n!vol (PY)=
5! b+l —e'a

where we have usc, in the notation of §2, K(b)= K(b+1), so that N and S are
unchanged.

Now N can be easily computed from vol (P¥) and vol (P¥). Finally note that §
is an integer with 0< S=2"b, so that the numbers involved are of polynomial size.
Thus Theorem 3 has been proved. O .

5. + P-easiness of Problem 2. Let us first show that size (vol (P(X))) is poly-
nomially bounded. Indeed we can prove quite straightforwardly that, for m>n= 1,
(5.1) = size (vol (P(X)))=3mn’L
where L =size (X). To see this, let A be the least common multiple of the denominators
of entries of X. Then size(A)= mnL. Now AX contains integer vectors and
vol (P(AX))=A"vol (P(X)). Since P(AX) can be decomposed into simplices (see
proof of Lemma 2), it follows that n! vol (P(AX 1 is an integer. Hence

A" vol (P(X)
el (BER = A YO LFLT ]
n'i
expresses vol (P)asa ratio of two integers. Noting that vol (P( X)) =2" (5.1) follows.

The proof of Theorem 4 is similar to that of Theorem 2, and so we will only give

an outline. Now

P(X)cT,={xeR"|x[s2"(j=1,2-,mh
Let s = [m"n:f""”:L”’""“*2] and divide [, into s" subcubes of size &, =275 Our
counting machine computes the number [, of subcubes which intersect P(X). The
estimate of volume is then [,87"/m!. Note that this time we use an overestimate, rather

than an underestimate, of the volume.
We can now reduce the testing for the intersection of an individual subcube with

P(X) to the solution of a single linear program.
To establish this claim, for simplicity let us assume we translate and scale

the problem to that of testing the intersection of the cube IX=
(xeR": -1=sx,=1(j=12,-"", n)}, with the polytope P =conv {(Xy, X2, "y Xm I
Then =N P =2 if and only if there exists a y € R" such that

T lyl<l and y'x,Z1 (i=12,000,m).
=1

This can be tested by solving the linear program
minimise -=e (v, Tv2)
subject to X,/ (v, v2) = (=1, 2, %=,.m)

and by checking whether min < 1.

_—_
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The error in the volume estimate is again bounded by the total volume of the
subcubes which intersect the boundary of P(X). Since P(X) has less than m” facets,
this is at most

m"n’s" ']

r+1)

(see the proof of Theorem 2 with m replaced by m"). By (5.1), this is at most 2™~
and so vol (P(X)) can be computed exactly using continued fractions.

3

6. Remarks. Our results leave open two interesting questions. The first is the
problem raised in § 1 concerning the size of description of polyhedral volumes. The
second is as to whether it remains hard to approximate the volume in either Problems
1 or 2; i.e., for some given € =0, is it hard to obtain an estimate V of the volume V
such that (1—¢) < V/V <(1+¢)? Our methods appear to shed little light on this issue,
but we conjecture that this approximation problem is also hard. Finally, we observe
that determining the volume of a polyhedron in fixed dimension is easy. We simply
determine the complete face-lattice of the polyhedron, triangulate it, and then use the
formula for the volume of a simplex.
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