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.- ABSTRACT K-Greedy algorithms are natural generalisations of the classic

Greedy Algorithm.

In this paper we discuss their application to the problem of

1

maximising a separable concave function over sets of non-negative
|

3 integer vectors satisfying a simple closure property.
We describe necessary and sufficient conditions for these
algorithms to be truly optimising and conduct a worst-case analysis

of a particular case when they are not.
The results generalise well known results on matroids and

S polymatroids.

We also give some results on an interchange algorithm.

Key-words: Matroids, Independence Systems, Greedy Algorithms,

Worst Case Analysis.
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Introduction

- Let E be a finite set and let F be a non-empty family of subsets
of E satisfying: if IeF and JCI then JeF. The members of F are called

independent sets and (E,F) is called an independence system.

Many optimisation problems can be posed as: given w: E+R the set
of real numbers

(1.1) Maximise w(A) = ) w(e) subject to AeF
ecA

The greedy algorithm for this problem is

(1.2a2) G: = ¢
(1.2b) Order the elements of E = {el,...en} so that

w(e;)>w(ey)>. . .2w(e, )>02w(e,  1)>. . .2w(e )

(1.2¢) For i=1,...k do if GU{ei}eF then G:=Gu{ei}
(1.2d) Output the greedy solution G:

The performance of the greedy algorithm is well understood:
(PGl) For a fixed independence system (E,F) the greedy algorithm
produces a maximum weight independent set for arbitrary w if and only
if (E,F) is a matroid - see Edmonds [2] or Lawler [11] or Welsh [12].
(PGz) If (E,F) is not necessarily a matroid and for given w M is a
maximum weight independent set then
(1.3) w(G)>q(E,F)w(M)
where q(E,F) is the rank quotient (defined later on). Furthermore for
any (E,F) there exists w such that (1.3) holds with equality - see
Jenkyns [7] or Korte and Hausmann [9].

The purpose of this papef is to generalise the greedy algorithm
and (i) describe those systems for which the generalisation optimiées.
and (ii) provide some worst-case analysis when it does not.

In 82 we describe a greedy approach to a generalisation of problem
(1.1). The characterisation of when this approach works generalises PGl.
In 83 we analyse the worst-case performance of a particular example

of this method. This leads to a generalisation of PGZ'



-68~-

The results of this paper generalise previous results given in
‘Frieze [4] and are related to results given in Hausmann, Jenkyns and
Korte [6] and Jenkyns [8].

"In §4 we discuss an interchange heuristic,

<o

™
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§2, A Greedy Algorithm for a Generalised Independence System
- Let m,n be positive integers and let M={0,1,...m}.

A Generalised Independence System, GIS, is a set XcM" satisfying:

xeX and §zysMn implies XeMn.
(Vectors are compared component-wise).

When m=1 if we take E={1,...n} and F={I(x):xeX} where I(§)={j:xj=1}
then (E,F) is an independence system and conversely.

GIS's canfoyr example Pe the solution sets of integer programs with
non-negative constraint matrices. Greedy algorithms and GIS's are
discussed in Edmonds [3] and Dunstan and Welsh [1].

The optimisation problem discussed here is the following: given

concave functions wj:M+R with Wj(0)=0 for j=1,...n

n
(2.1) Maximise w(x) = ) Wj(xj) subject to xeX
j=1

Note that when m=1 (2.1) 'reduces' to (1.1).
Notation
For j=1,...n uj(w) = max(xeM:w;(x)>w;(x-1))

wj(-l) is defined to be -«.

x| = 1%
- j=1 J

For xeX ADD (x,w,k) = {yeX:|y| = k and x+yeX

For xeX

and xj+yj_uj(w) for j=1,...n}.

The greedy algorithm to be described has a parameter K. For each
positive integer t K(t) is a set of non-negative integers satisfying
o*K(t)c{o,1,...t-1}.

K-Greedy Algorithm GA(K)

(t)

The algorithm computes 2 set of vectors g where |g(t)l= t in a

'greedy' manner.

P
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(s0) t:=0;g‘%):=0

“(S1) t:=t+1 _

(S2) TFor keK(t) 16t §,=apD(g¥),w,t-k)
If Sk=¢ for all keK(t) go to (S3)

else for each S, ¢ define X(k) by

w(g(k)+z(k)) = max(W(g(k)+X)3X€Sk)

Then define g(t) by

w(g(t)) = max(w(g(k)+¥(k)):sk+¢)
go to (S1)

(S3) Output g where w(g)=max(w(g(s)):s<t)

If m=1 and K(t)={t-1} then we have the greedy algorithm of §1.
If m>1 and K is tpe same then we have the greedy algorithm of Dunstan
and.Welsrkr (more or 1less).

We can give a complete characterisation of those GIS's for which
GA(K) is always valid, only when |K(t)| = 1 for all t. If |K(t)]| > 2
our characterisation is only sufficient. (|A|, where A is a set,
denotes its cardinality.)

Note the somewhat 'premature' stopﬁing rule in (S2) - it may be
possible to continue with larger t. This rule is necessary to prove
theorem 2.2 below. 4 |

A GIS X is said to be a K-matroid if the following holds:

(2.2) If zeX and [z|=t and §(i) ieK(t) satisfy lg(i)!=i for ieK(t)
then there exist keK(t) and y such that
(a) lyi=t-k (0) xFiyex (c) yj>0*yj§zj—xj(k)

Thus if m=1 and K(t)={t-1} (2.2) is a 0-1 vector form of matroid

axiom. If m>1 and K(t)={t-1} then K-matroids are the integer points of

integer polymatroids.
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Theorem 2.1

If X is a K-matroid then GA(K) solves (2.1).

.

Proof
We show by induction on p that if zeX and |z|=p and

zj<uy(w) for j=1,...n then g(p) is defined and w(g)fw(g(p)). Since

wj is concave for j=1,...n no better z exists with zj>uj(w).

The induction hypothesis is clearly true for p=0 and so assume

it to be true for p<q. Let zeX and |z|=q. The inductive assumption implie

t
g( )

exists for teK(q). From (2.2) there exists y and k with properties

(a) - (c). Note that (c) implies that

g (K (k)

+yv .<m .
j yjimax(g;y

. )<u. .
,zJ)_uJ(W)

Thus ADD(g‘®),w,q-k)+o and so g{?) exists. Now

w(g(@yw(gDay)
n
n
3w(§-¥)+j£1(wj(zj)-wj(zj—yj))

by induction and the concavity of w,

j for j=1,...n

=w(z)
We can prove the following restricted converse

Theorem 2.2

If |K(t)|=1 for t>0 and GA(K) is guaranteed to solve 2.1 for
arbitrary concave w then X is a K-matroid.
Proof

Let K(t)={k(t)} and z,xeX satisfy |z|=p and |x|=k(p). Define

w.j for j=1,...n by

-

wj(i) = § 0§€§u5=max(x. z2.)

J°J

= . <
U uJ_E

Note that w(y)<|y| for all yeX. It follows that GA(K) could at
some stage produce g(k(p))=§. If the algorithm were to stop before t
‘reached p then w(g)<w(z). Similarly on t reaching p we must have
s=aDD(g X P)) & p-k(p))ts. But for yeS «x,+y,

J -3 J
for j=1,...n and so (2.2) holds.

5uj(w)=u implies that

zgj-fyj < Zj whenever yJ. >0
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Theorems 2.1 and 2.2 can be seen to generalise known results on
" matroids and polymatroids by taking K(t)={t-1}.

It is not difficult to construct K-matroids for different K that
are.not matroids or polymatroids.

For example consider the set X of solutions to
n

x; * (p+1) Z xigap+k
1 i=r+1

Il o~1ng

po
i

. 0<x; < m and integer
where a,p,k,r,n are positive integers and mr,m(n-r)>a>k+1., This is not
a K-matroid for K(t)={t-1} as can be seen by choosing §(O>,§(1)ex

n
xi(0)=a and with |§(1)| = Z xi(1)=a—1.
1 i=r+1

o~

with |§(0)| =
i

However X is an Mk—matroid where Mk(t) = {max(0,t-k)}. 1In this
case GA(M, ) is the k-greedy algorithm considered in [4].

When K(t)=k|t/k] we have an 'enhancement' of the <k-greedy
algorithm of [6].

Note that being a Mk-matroid implies being an Mkz-matroid for
2>1 and so matroids and polymatroids which are Ml—matroids form
subclasses of this type of system.

It has not however been possible to find interesting K-matroids
for which GA(K) provides a new.efficient (polynomial time) algorithm
other than of course for K=M1.

This is rather disappointing but one lives in hope. One can
however look at this from another viewpoint. For some functions K
e.g. K(t)={t-1,...max(t-k,0)} for a fixed k the K-greedy algorithm is
not at all an unnatural generalisation of the standard greedy algorithm.
The preceding analysis indicates however that this is not likely to be

an optimising algorithm for any interesting problem.
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Finally in this section we note that theorem 2.1 is still true if

n

we define |x|= ] a.x. where ay,...2

are positive integers and X
j=1 JJ

n

satisfies the extra axiom (trivial for a1=...=an=1)
(2.3) |x| =t and keK(t) implies there exists y<x such that |y| = k.
The proof of theorem 2.1 is unchanged. The extra axiom is used
to imply the existence of g(t) for teK(q).
As an example if aje{l,Z} for j=1,...n and
X={§5Mn : .ElajxjiL} for some positive integer L then X is an
j=
Mz-matroid.
Finally for theorem 2.2 if we assume (2.3) we can show (2.2)

assuming GA(K) always solves problem 2.1. However we cannot deduce

(2.3) as opposed to assuming it.
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Worst-Case Analysis

For the remainder of the paper we restrict our attention to

independence systems defined in §1 and revert to sets as opposed to

vectors. We shall assume E = {1,2,...n} and in problem 1.1 use
w(Jj) and wj interchangeably, : -
Notation

For SCE a basis of S is a maximal (with respect to inclusion)

independent subset of S.

ur(S) = max(|I| : I is a basis of 8) = upper rank of S

lower rank of S

1r(S) = min(|I] : I is a basis of 8)

The rank quotient q(E,F) is defined by
Q(E,F) = min(1lr(S)/ur(S))
SCE

Inequality (1.3) can be interpreted as 'the worst-case performance
of the greedy algorithm occurs when Wj = 10r 0',

Equivalently for this algorithm we can say Wj=1 or Wj<0' We shall”
generalise this statement to a wider class of greedy algorithm.

Specifically now let K be a sequence kl'k2""ka of positive

integers satisfying k1+...+ka3n.

Let w:E’R be given. The K-greedy algorithm of this section is

(S0) Gp:=¢; t:=0
(51) i=t+1
(S2) Let S={I:|I|=kt, INGy=¢, IUG eF,w(1)>0 and

wi20 for jeIl

If S=¢ go to (S3)

else let w(I*)=max(w(I) : IcS)

GK: GKUI*
go to (S1)

(S3) Output GK as solution,.
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Notation
For a fixed (E,F) and a given w and sequence J=j1,j2,...jb
whepe j1+...+jb3n let
Fp(w)={IeF : I| e {§1,39%3g,-- 34+ . .5 Jand w,>0 for iel)
If Fy(w) + ¢ define Mj(w) by w(My(w)) = max (w(I) : IeFy(w))
otherwise MJ(W) = ¢.
Also let Fy = {IeF : |I| > d} for non-negative integer d.
Next let
WORST(J,K) = Sup(w(MJ(w))/w(GK) : w satisfies w(GK)>O for
GK chosen by K-greedy)
For j1<k1 we can have WORST(J,K)=«~ if there is some IcF with
1] = j; and an %el such that 2¢J for any JeF, . One simply makes

1
wy large and wy=1 for jFL.

The worst-cast result we have proved requires:
(3.1a) jlzk1
(3.1b) Jplkg for any r>1, s>2,

The following lemma requires no proof:
Lemma 3.1

If |J] = t and |S|> t and w(J)>w(I) Por all ICS with |I] = t
then w(S)/|S| < w(J)/|J]. . .

Furthermore the second and third inequalities can be reversed

a
Keeping J,K fixed now abbreviate WORST(J,K) by WST.

We ignore the moment the trivial case with Fp =6 and WST undefined.
1

It follows from the lemma that WST<n/ky if Fk1+¢.

Elementary topological arguments can be used to show that there
exist @,ﬁ=MJ(§) and K-greedy solution 6 such that WST = &(ﬁ)/&(é).
We assume that |ﬁ| + Iﬁl is as small as possible under these circumstances.

Now let ﬁ={m yoo.m_1 where w(m;)>w(m, ) for 1l<ic<a. If a=j +...+]

1 a i’z i+1 - 1 p
we dafine Mt={m2t 1+1,...m£t} where f,=j;+...+j . for 0<t<p assuming
hp=2 and then define Xi=§(Mi) for 1<i<p.
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~ Q
Next let G= u G. where Gy,...G
i=1 *

q are the q successive

’ augmentations in step (S2) of the particular application that
produced 6. Let Yi=;(Gi) for 1<i<q.

The following properties of Xl,...Xp,Yl,..v.Yq follow from
lemma 3. and the definition of K-greedy.
(3.2) Xt/jt > Xt+1/jt+1 for 1<t<p
(3.3) Yt/kt > Yt+1/kt+1 for 1<tcq

We next define the function h by

(3.4) h(r) = min(s : Yr/krzxs/js)

We show later that h(q)<p and it follows that
(3.5) 1=h(1)§h(2)5...5h(q)gp
Notation

Let [ ]represent a symbol used to identify some entity which

is indexed by the positive integers. We use the notation[ ] [i : ]

to represent| |. +] | seqtee- ] [j e.g. X[i:j]=Xi+...+Xj
Note that when j<i we take]| |[i:3] = o.

The following lemma is the basis for our result.

Lemma 3.2
(2) Y /k>X /3. or WST<X[r+1l:p]/Y[s:q] for 1<r<p and 2<s<q

(b) Y /K >X /3,

Proof
s-1 r

(a) Let S = v Gi and T = Su v Mi. If there exists ZCT-S with
i=1 ' i=1 -

with lZ|=kS and SUZeF then we deduce from the definition of the
algorithm that Y_>w(Z)>W(A) where A={m, _k +17- My }. Lemma 3.1 plus
r s r
the fact that kszjr implies w(A)/kszxr/jr. - note 3.1b.
On the other hand if no such Z exists then we can define w by
wi=&i for ieT and §i= -1 otherwise. Thus using w the algorithm could

choose S as its solution. We deduce then that

(3.6) WST>X[1:r]/Y[1:s-1]
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The result follows as WST=X[1:p]/Y[1:q]
"(b) If q=1 we can apply lemma 3.2 otherwise let r=p and s=q and
érgue as in (a) up to (3.6). Thus Yq/quxp/jp or WST>X[1:p|/Y[1:q-1].
The latter inequality is impossible as Yq>0. y 5
The next two lemmas are concerned with bounding the ratio of
two sums of real numbers satisfying the given properties of the Xi’Yj’
Lemma 3.3

Let real non negative numbers xl,...xp,yl,...yq satisfy
(3.7a) xl/jlzxz/jzz...zxp/jp
(3.7b) Y1/k13y2/k23"'3yq/kq
(3.7c) y1>0
(3.7d) Xn(s)/ In(s)SVs/Ks
for positive integers h(1l),...h(q) satisfying
(3.7e) 1=h(1)<h(2)<...<h(q)<p
If p=x[1:p]/y[1:q] then
(3.8) p<max(j[1:t] /k[1:g(t)] :1<t<p)

where g(t)=max(i:h(i)<t)
Proof

For fixed values of xl,...xp p will be maximised by putting
ys=ksxh(s)/jh(s) for 1<s<q. We can scale these quantities to satisfy
y[1l:q]=1.

Then defining Zt=xt/jt for 1<t<p we have

p<max lel+...3pzp

subject to
{ +...' =
(3.9) klzh(l) quh(q) 1
212222°'-Zzp20
Fquation (3.9) can be restated as

k[1:g(1)]z +k[g(1)+1:g(2)]zg+. . . klg(p-1)+1:g(p)]z =1

B casammpmn o e mmmoes
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Thus defining u,=z, and ue=z,.-2, .4 for 1<t<p we obtain
p< max j1u1+j[1:2]u2+...+J[1:p]up
subject to
k[1:g(1)]u1+k[1:g(2)]u2+...+k[1:g(p)]up=1
ul,...up30 '
The solution to the above linear program is well known and gives
the required result,
Lemma 3.4

Suppose that the conditions of lemma 3.3 are satisfied and

further that h(t)=1 or

(3.10) p<x[h(t):pl/ylt:ql
holds for 1<t<q. Then

(3.11) p<jl1:pl/k[1:q]
Proof

We shall prove first using a backward induction that h(t)>1
implies
(3.12) p<J[h(t):pl/klt:ql

If h(q)>1 then (3.12) is obvious from (3.7) and (3.10). Suppose
then there exists s<q such that h(s)>1 and that (3.12) holds for all
t>s. Applying lemma 3.3 to RHS of (3.10) with t=s gives
(3.13) ogmax(j[h(s):ul/kls:g(u)l:h(s)<u<p)

Let u* denote a value of u maximising the RHS of (3.13). 1If
u*=p then (3.13) is (3.12) with t=s.

So assume u*<p as u* maximises the RHS of (3.13) we must have
g(u*+1l)>g(u*) else u*+1 is better than u*. But this implies
(3.14) h(g(u*)+1)=u*+1

Thus
(3.15) p<jlh(s):h(g(u*)+1)-1] /k[s:pg(u*)]

Combining (3.15) and (3.12) with t=g(u*)+1>s gives (3.12) with

t=s and completes the induction.
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We now use this result in (3.8). Thus let t* be a value of
“t maximising the RHS of (3.8). If t*=p we have (3.11) and so assume
1gt*<p.‘ We argue as bhefore that (3.14) holds this time with u*
replaced b& t*, Thus
(3.16) p<i(1:h(g(t*)+1)-11/k[1:g(t*)]
Now h(g(t*)+1)>1 by (3.14) and so (3.12) holds with t=g(t*)+1
Combining this with (3.16) gives p<j[l:pl/k[1:q]

B
We have already shown that the Xi,Y. and h as defined prior to

J
lemma 3.2 satisfy the conditions of lermma 3.4. Our next task is
simply to put this result in a more convenient form.
Notation
Let SCE and D=d1,...ds be a sequence of positive integers with
d[1l:s]>n. Let S(D)={d1,d[1:2],...d[l:s]}. Let FD={IeF:|I[eS(D)}
A D-basis of S is a set I satisfying
(1) ICS (2) IeFD and (3) no J strietly containing I
satisfies (1) and (2).
Let urD(S)=max([I|:I is a D-basis of 8S)
er(S)=min(|Il:I is a D-basis of S)
where urD(S)=0 and 1rD(S)=1 if S contains no D bases.
For the given sequences J,K define W(J,K)=max(urJ(S)/HK(S):SgE)

Theorem 3.1

If J,K satisfy (3.1) then
(3.17) WST=WORST(J,K)=W(J,K)
Proof

Equation (3.17) is trivial if FJ or FK=¢ and so we assume FJ,FK#Q
(a) WST>W(J,K)

Let T,U,V be such that W(J,K)=urJ(T)/HK(T) and ugJ(T)=[U] and
HK(T)=|V! where U is a J-basis of T and V is a K-basis of T, Define
w by w(e)=1 for ecUUV and w(e)= -1 otherwise. Then MJ(W)=U and GK could
be V giving WST>|U]|/|V].

(b) WST<W(J,K)
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Let G,M be as before and let T = MUG. Now X,>0 else [M] can be

A A

}made smaller. Thus G is a K-basis of T for if there exists ZCM-G with

GuZeF and |Z| =k,,; then w(Z)>0 as ky+12Jp- But this implies the

+1
K-greedy algorithm stopped prematurely. Thus

W(a,K)2 4] /1G]
> WST by lemma 3.4

Note that PG2 of §1 follows by taking J=K=1,1,1...1

We used inequality 3.1 in our proof of lemma 3.2. If 3.1
does not hold then theorem 3.1 can fail to hold. Consider the follow-
ing example:

E={e1,...e5,f1,...f7}. The maximal elements qf F are

Ie={e1,...es},If={f1,...f7},{ei,ej,ek,f6,f7},

{ei,ej,fk,fa,f7},{ei,fj,fk,fe,f7}

where 1<i,j, k<5

Let J=1,3,3,3,... and K=1,2,2,2,... . One can check that
W(J,K)=7/5 but putting w(g)=1 for gEE-{e4,e5,f6,f7} and w(g)=1/2
otherwise gives w(If)=6 and w(Ie)=4. Thus WST>6/4 as Ie is a possible
K-greedy solution.

We next consider the case where J and K are of the form
2(i,k)=i,k,k,k,... for some i<k, 1If J=Z(il,k) and K=Z(iz,k) where
11212 then theorem 3.4 applies.‘ If we apply the Z(i,k)-greedy algorithm
for i=1,...k and then take best of the k solutions generated we can use
theorem 3.2 to show that this will be valid for arbitrary w if and only
if (E,F) is a M -matroid.

We can give no non-trivial worst case results for the greedy
algorithm of §2. 1In the case of an independence system where IK(t)]=1,
although it can be split into a number of applications of the algorithm
of this section the rules for termination are incomnatible., If the
termination rules are made to coincide the best we have been able to do

is to apply theorem 33 separately. This is too weak even to determine

if the bound q(E,F) for the ordinary greedy algorithm is achieved,

R
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§4, Interchange Algorithms

We consider ere a nice property of Mk~matroids which generalises
a known property of matroids.

Theorem 4.1

Let (E,F) be an Mk-matroid. If I*eF is suchwthat
(4.1)  w(I*)>w(I) for all IeF with |I| = |I*| and |I-I*|<k
then w(I*)>w(I) for all IeF with |I|=]|1*].
(i.e. a 'local' optimum is élso a global optimum over independent sets
of a fixed size.)
Proof

* i i K=
Suppose I* satisfies 4.1 and I {el,...ep} whe;e w(ei)zw(ei+1)

for 1<i<p. Let q=p mod k and let IO={e1,...eq}, It={eq+(t—1)k+1""eq+tk}

for t=1,...r=[p/k].

={ c . ) X
Let J={f fp};F where w(f,)>w(f +1) for 1<i<p and let J,,Jq,...J

1,.00 i T

be defined similarly. We show w(I*)>w(J) by showing that w(It)zw(Jt)

for t=0,1,...r. Suppose to the contrary that w(Is)<w(JS). Let
-s-1
A=uv It (=0 if s=0).
t=0
S
Let B= u J Now either trivially if s=0 or from axiom 2.2

t=1 °©

if s>0 there exists ZCB-A such that [Z]|=|I_] and C=AUZeF. Note that
w(Z)>w(IS). Let D be obtained by successively using 2.2 to augment
C,k elements at a time from I*-C until a set of size p is reached. VWe
need only note that w(D)>w(I*) and yet |D-I*|<k. &
We paraphrase 4.1 by saying that 'in an Mk-matroid k-optimality -
optimality. When k=1 there is the converse result that l-optimality
implies optimality only in matroids. For k>2 this is not the case.

We have given a great deal of (unsuccessful) thought to the problem of

characterising when theorem 4.1 holds.
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For k=2 we note that theorem 4.1 holds when F=FlnF2 where
(E,Fy) is an arbitrary matroid and Fo={ICE:|InS|<p} for some fixed p
and SCI - a particularly simple matroid intersection. See Glover

and Klingman [5] -

]
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