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Bottleneck Linear Programming

A. M. FRIEZE
Queen Mary College, London University

We consider here the problem of finding a non-negative solution to a set of linear
equations which minimizes a bottleneck type objective. Two algorithms are
described for the general problem and a single algorithm for the bottleneck
transportation problem.

INTRODUCTION

WE CONSIDER here the following optimization problem P
minimize z= max ¢
(lz>0)
subject to
Ax =05,

x=0,

where 4,x,b and ¢ = (¢y, ..., ¢,;) are respectively an m x n matrix, an n-vector,
an m-vector and an n-vector.

We call P a bottleneck linear program as it generalizes the bottleneck trans-
portation problem as described by Garfinkel and Rao* and Hammer2, We shall
describe two algorithms for solving P which are natural generalizations of
algorithms described in the former paper.

ALGORITHMS

There seem to be two natural approaches to solving P. The first involves trying
to improve a current solution.

() Primal algorithm
Step 0. Find an arbitrary feasible solution x to P.
Step 1. Let « = max(c;|x;>0). Let A* be the submatrix of 4 consisting of
those columns j for which ¢;<a.
Step 2. Find a solution to
A*y=b
ym } )
y=0.

If (1) has no feasible solution then the current x is optimal. Otherwise “‘extend”
y to a solution x by putting x; = 0 if y does not have a component y;. Go to
step 1.

The algorithm is clearly finite and produces an optimal solution.
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(ii) Threshold algorithm

This algorithm adapts phase 1 of the two-phase simplex algorithm so that if
the current solution is not feasible the column entering the basis minimizes ¢;
for j non-basic.

Step 0. Assuming b>0 introduce a full vector of artificials & = (&, ..., &)
to create the augmented set of equations

Ax+I¢=Db,
x,E=0.

Let == (1,...,1) be the current phase 1 pricing vector.

Step 1. If the current basic solution (x, £) is feasible, i.e. if £ =0 then the
current solution is optimal. Otherwise denoting the jth column of 4 by a; we
define F = {j|ma;>0}. If F = ¢ then P is infeasible, otherwise let

¢;; = min (¢;|j F).

Step 2. Introduce X, into the basis and carry out the appropriate pivot.
Update « and go to step 1.

The algorithm terminates in a finite number of steps as it is a possible
realization of the phase 1 simplex algorithm. That the solution obtained is
optimal can be seen as follows: let @ = max (cj|xj>0) and consider the tableau
prior to the first time a variable x;, with ¢;, = « enters the basis. Since 7a;<0
for all non-basic x; with ¢; <« we see that there is no non-negative solution to
Ax = b with all non-zero components having ¢;<a.

We note that in many cases it would be unnecessary to introduce a full
artificial basis. If slack and surplus variables have minimum ¢ values then the
composite phase 1 algorithm may be used.

This algorithm can be viewed as an implementation of the threshold algorithm
of Edmonds and Fulkerson?® for the “clutter” (, F) where N = {1,2,...,n} and
F is the family of supports of basic feasible solutions to Ax = b.

We have not tested these algorithms but extrapolating from the experience
of Garfinkel and Rao! one would expect the threshold algorithm to be most
efficient.

We note that one can easily provide for a secondary optimization of the form:
find the optimal solution to P that minimizes the linear function ¢x. Starting
with the optimal basis for P we apply the simplex algorithm ignoring any
column with ¢; larger than the optimum value of z.

Conversely if the main optimization is to be to minimize éx and the objective
function in P is subsidiary, one can continue from the optimum basis for &x and
apply either algorithm using only variables with a zero reduced cost.
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BOTTLENECK TRANSPORTATION PROBLEM
We end with an algorithm for the bottleneck transportation problem

minimize z= max ¢y

{(4.)1zy>0)
subject to
n
= i=1,...,m, 2
Elxﬁ a, i V)]
Sxg=b, j=1 3
=0y =1l,...,n,
EXu=% J 3
Xy 2 0.
Step 0. Introduce “dummy” variables y;; and augment (2) and (3) to
n n
2xyt+Nyy=a, i=1,...m, @
j=1 =l
Syt Sy =b, j=1
X =b, j=1,...
2XutZyy=by J s M, )

X435 Y55 2 0.

Find a basic feasible solution to (4) and (5) using only (y;;) as basic variables.
Any convenient rule, e.g. the N. W. Corner rule, can be used. Calculate a price
vector (u, v) for this basis via & +v; = 1 if y,, basic.

Step 1. If 3,3y, = 0 terminate, the current solution is optimal, otherwise
let ¢}y = min (c;| x;; non-basic and %+ v;>0).

Step 2. If y,, is basic, put x;; = y;y, make x;4 basic in place of y;; and go to
step 1. If y,, is non-basic introduce x;, into the basis using the normal rules
of the stepping stone algorithm and update (u, v). Note that we have u;+v; =1
if y4; basic and u;+v; = 0 if x;; basic. Go to step 1.

One proves convergence of this algorithm in a similar manner to that of the
threshold algorithm.

In their paper Garfinkel and Rao describe a simple means of calculating a
lower bound z° to the minimum value of z. One could use those x;; for which
¢;;<2° in trying to make a better initial solution in step 0.

We note that one can derive similar algorithms by adding variables x;, to (2)
and x,; to (3) and then proceeding as the added variables are slack variables or
as the outflow and inflow from a dummy source and sink.

CONCLUSION
We have described a natural generalization of the bottleneck problem to a
general linear programming context. The algorithms described are simple
modifications of the simplex algorithm and therefore should be easy to implement.

873



Operational Research Quarterly Vol. 26 No. 4, ii

1R, S. GARFNKEL and M. R. Rao (1971) The bottleneck transportation problem. Nav.
Res. Logist. Q. 18, 465.

2 P, L. HAMMER (1969) Time minimizing transportation problems. Nav. Res. Logist. Q. 16,
345.

8 J, EpMonDs and D. R. FULKERSON (1970) Bottleneck extrema. J. Combinatorial Theory
8, 299,

874



