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1. Introduction

The three-dimensional assignment problem described here is a gener-
alisation of the classical (two-dimensional) assignment problem. It arises
when three sets of entities, e.g. students, teachers and projects, have to

be matched together to maximise some objective.
As an integer programming problem it becomes:
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We can assume without loss of generality that By s oreyDy s €] 5 ey €

are positive integers. The above problem would arise if each student i
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had to be assigned a project j and a supervisor £ and if «, ik Wwas the
‘suitability’ of this assignment.

2. A bilinear program

A solution to the above problem consists of choosing for each index i
indices j;, k; such that

X =] r=R]i
ijik; =t

o 0 otherwise.

We can therefore formulate the problem in terms of vectors O, )
(-”\ ) such that y; i =1,z Zik, = = | and the remaining values are zero.
We can show without difficulty that

Theorem 1. There is a one-to-one correspondence between solutions to
the three-dimensional assignment problem and problem QI below.

This correspondence preserves the value of the objective function and
so the two problems are equivalent.
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Prradey =000rl;

Now let V' (resp., V;) be the set of non-negative (resp., (0, 1)) vec-



378 AM. Frieze, A formulation of the 3-dimensional assignment problem

tors satisfying (2.1) and (2.2) and define W (resp., W;) similarly with
respect to (2.3) and (2.4). Then it is known that V/; (resp., W;) is the
set of vertices of V' (resp., W). We note also that for fixed Y € V; the
objective function becomes linear in Z € W,. It is therefore possible to

drop the 0—1 constraints on Y, Z and consider the problem Q:

maximise (Y, Z)= EE? a
i

ifk Yij Zik
subjectto YeV, ZeW.
Q is therefore a bilinear programming problem with 0—1 solutions.

We can state an obvious necessary condition for (Y9, Z%) to be optimal
for Q.

Theorem 2. A necessary condition for a pair (Y9, ZO) to be an optimal
solution to problem Q is

(Y0, Z%) = max (¢(Y, Z°): YE V)
max (p(Y?,Z2): Ze w). (25)

We note that the maximisations in (2.5) are both two-dimensional
assignment problems that can be solved efficiently by well-known
methods.

We constructed an algorithm in FORTRAN IV which alternately
maximised on Y for the current Z, and maximised on Z for the current
Y. The algorithm was tested on some problems involving students,
teachers and projects, where G I (resp., 0) if the assignment (i, j, k)
was suitable (resp., unsuitable). The problem was to find the maximum
number of suitable triples for each problem. The results for 3 problems
are given in Table [.

Table 1
m n J2 5 ! q
43 16 36 43 23 5
69 25 40 63 28 5
114 61 135 110 292 7

s = number of suitable assignments in best solution found.
¢ = time in seconds on an ICL 1904A.
g =number of two-dimensional assignment problems solved.
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3. Conclusion

The above approach leads to a fast method of finding what appear to
be good solutions to large problems that could not be solved by exist-
ing integer programming, branch and bound methods. The method can
be extended to assignment problems of any dimension in which a
feasible solution contains one non-zero variable for each distinct value
of the first index.

We note finally that the objective function for Q can be replaced by

i 4 ) ol o
2 Z}?ZA) G Wyt 2) 0tz — 1)

without changing its value at any integer point. If aj;x = 0, as may be
assumed without loss of generality, then this function is convex and one
could try the algorithm of Hoang Tuy [3].

For work by others on branch and bound, etc., see [1, 2, 4].
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