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Abstract

Let the edges of a graph G be coloured so that no colour is used more than k times.
We refer to this as a k-bounded colouring. We say that a subset of the edges of G is
polychromatic if each edge is of a different colour. In this paper we address the problem
of finding the minimum number m such that every k-bounded colouring of K, contains
a polychromatic copy of K,,. We then generalise this to some related problems.

After completing the work on this paper we became aware
of reference [12| which among other things, contains proofs
of our first 3 theorems. Consequently, this paper will be
substantially re-written and reduced in size (maybe to zero).
I have left it up on my home-page, because the results are

1nttare]st1ng and the proofs are a little different from those
in |12
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1 Introduction

Let the edges of a graph G be coloured so that no colour is used more than £ times. We refer
to this as a k-bounded colouring. We say that a subset of the edges of G is polychromatic if
each edge is of a different colour. In this setting, the following question arises: What is the
required relationship between k, G, H such that every k-bounded colouring of G contains a
polychromatic copy of some other (smaller) graph H. For example, the existence of polychro-
matic Hamilton cycles in edge coloured copies of complete graphs was studied in [4], [8], [7],
[1], [3]. The existence of polychromatic stars was studied in Hahn [9], [10] and Fraisse, Hahn
and Sotteau [6]. The complexity of finding polychromatic sub-graphs was studied by Fenner
and Frieze [5].

To further fix ideas, let us consider G = K,, and H = K,, where m < n and define the
Anti- Ramsey numbers

ar(n,k) = min{m : every k-bounded colouring of K, contains a polychromatic K, }.

Alspach, Gerson, Hahn and Hell [2] proved that ar(n,k) = O(kn3) and Q(kn). This was
improved by Hell and Montellano [11] to ar(n,k) < (2n—3)(n—2)(k— 1)+ 3 and ar(n, k) =
Q(n®?) for k > 15 and ar(n, k) = Q(n*/?) for 3 < k < 15. Our first result tightens the lower
bound to within a logarithmic factor of the upper bound.

Theorem 1.
ar(n, k) = Q(kn?/Inn).

¢

We then consider proper colourings. An edge colouring is proper if the colour classes are
matchings. We let

ar*(n, k) = min{m : every proper k-bounded colouring of K,, contains a polychromatic K, }.

Theorem 2.
ar*(n, k) = Q(k1/2n3/2/(ln n)1/2).

We will also give some quite simple proofs of upper bounds:

Theorem 3.

(a) ar(n, k) = O(kn?).
(b) ar*(n, k) = O(k'/?n%/?).



&

Part (a) of the above theorem is already known from [11] and part (b) can easily be derived
by a simple modification of the proof therein. However, our proof is different and we venture,
somewhat simpler.

We then abstract the proof technique of Theorem 1 and prove a general theorem. Let G be an
m-vertex graph G which is d-regular. H is an n-vertex graph which is d'-regular. G contains
N copies of H. We edge colour G and ask for a polychromatic copy of H. Thus we define

1 Every k-bounded colouring of G' contains a polychromatic H
0 Otherwise

0(k,G, H) = {

0*(k,G, H) is defined analogously for proper k-bounded colourings: (A < B will mean A/B
is sufficiently small.)

Theorem 4.

()

1\ 2
(b) d kn2(d')?
0%(k,G, H) =0 1f (1) logm <+ and (%) log N < nnid) '

The following special cases will then be proved: Let
arg(n,k) = min{m : every k-bounded colouring of K, ,, contains a polychromatic K, ,}.

Let @, denote the n-cube i.e. the graph with vertex set {0,1}" and with edges joining two
sequences at Hamming distance 1. Let

arg(n, k) = min{m : every k-bounded colouring of @), contains a polychromatic Q,}.

Let T', = K, ® K,, be the graph with vertex set [n]? and an edge ((4, 5), (¢, 5')) whenever 7 = 7'
or j =j'. Let

arr(n, k) = min{m : every k-bounded colouring of T, contains a polychromatic I, }.

Theorem 5.

(a) arg(n,k) = Q(kn?/Inn) and arg(n, k) = O(kn?).
(b) arr(n,k) = Q(kn?/Inn) and arr(n, k) = O(kn?).
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(c) arg(n, k) = Q(2"?n) and arg(n, k) = O(kn?2").

¢

Finally, we see that the proof techniques we use are robust enough to extend to hypergraphs.
Let K,(,:) denote the complete r-uniform hypergraph on vertex set [m]. Then let

ar(n,k,r) = min{m : every k-bounded colouring of K contains a polychromatic K,(f)}.

Theorem 6. Assume that r is fized, independent of k,n.

(a) ar(n,k,r) = Q(kn"/logn).
(b) ar(n,k,r) = O(kn").

2 Lower Bounds: Proofs of Theorems 1 and 2

We start with Theorem 1. Let m = L%J where ¢9 < 1. We colour K,, randomly:
Initially ¢ = 1 and G; = K,,, and we obtain G;,; from G; in the following manner.

(a) Choose a random vertex z of degree at least k.
(b) Choose a random copy H; of K;j which has centre « and uses only edges of G;.

(c) Give the edges of H; a new colour in K, and then delete the edges of H; from G; to
produce G;y1.

This process continues until A(G;) < k. Then we give each of the uncoloured edges of K, a
new distinct colour.

The above colouring is clearly k-bounded. We prove that whp! there is no K, which is
polychromatic. This will prove Theorem 1.

Now let ¢ = [%J for some ¢; < 1. We claim that whp the first ¢ rounds of the above
colouring process are sufficient to ensure that every K, will contain at least 2 edges of the
same colour.

Let §; denote the minimum degree of G; and let mg = (1 — 3e1)m. Let D; be the event:

Lemma 1.
Pr(D;y1) = o(1).

1A sequence of events A,, is said to occur with high probability whp, if lim,, ., Pr(A,) =1



Proof Let X, denote the number of times that vertex v is chosen as z in Step (a) of
the procedure. We count up to time ¢ or the occurrence of D;, i < t. More precisely we let
X, = 30, lu—ylp,. Now Pr(z = v | D;) = m™! and so X, is dominated by Bin(t,m™!).
Using a Chernoff bound? we see that

Pr(X, > 3e1m/(2k)) < exp{—e1m/(13k)}.

Next let Y, be the number of times that v occurs as a neighbour of z in H;. Then Y, is
dominated by Bin(t,kmg"') and

Pr(Y, > 3e1m/2) < exp{—e1m/13}.

Note that v loses kX, + Y, incident edges. Inflating the RHS of the above inequalities by m
to account for all vertices v, we see that whp kX, + Y, < 3eym for all v and this implies the
occurrence of Dy ;. O

Fix a copy K of K,,. Let A; be the event: {Exactly one edge of K gets coloured in round i}.
Let Y; = 14, and let & = & (K) be the event: {Z;l Y; < 361n2}.

Lemma 2. o
Pr(&1ND,;) <e™ 1" /4,
Proof Let W; =Y, - 15,5m, for 1 <7 <t. Then for any u > 0 we have
Pr(Yi+---4+Y,>wvwand D) <Pr(Wy+---+W; > u). (1)

Now

n k‘n k'n/2
. — ) < —— - - > < —. - -
Pr(Wz 1 | G,) < PT(Y; 1 | Gz;(sz = mO) ~m (1 _ 351)m (1 — 361)m2

So Wy + - - - + W, is stochastically dominated by Bin (t ) and

kn?
) (1—361)m2
Pr W+~~-+W>Ln2 <expl——— L p?
! =1 —3e) ) =P U303 [
It follows from this and (1) that

i 261 2 &1 9
Pr< ;szn]ﬂl)t) §exp{—mn} (2)

and the lemma follows. O

Now let B; = B;(K) be the event: {At most one edge of K gets coloured in round i} and let
C; = {23:1 Y; < 351712}. If K is to be polychromatic then the event 0;1 B; must occur.

2Pr(Bin(n,p) > (1+¢&)np) < e < mP/3 for 0 < e <1
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Lemma 3.

t
k 3
Pr <ﬂB¢ﬂc‘flﬂDt> SeXp{—€157:Z }

=1

Proof We write J; = ('_} B; NC; N D; and then

)=

t t
Pr <ﬂBm€th) :HPr(BmCmDi | J:)

i=1 =1

t
<[I[PrB:i15). (3)
=1
Now let G; = {G; : J; occurs}. Then

Pr(B;i| Ji) = Y _ Pr(B:|Gi=G)Pr(Gi =G | J). (4)
Geg;

Fix G € G; and then for z € K define d, to be the number of K-neighbours that z has in the
graph G. Then

_ K\ 1 d, d,—1 n PR n3(1 = Tey)?
G =G > - : - ) > U
Pr(Bi| Gi = G) 2 (2) m; m—1 m—2 (1 m(1 — 351)> — 4 m3 (5)

Explanation: We estimate the probability that z = z in Step (a) and then ('2“) enumerates
pairs i1 < i such that iy, i, are the first two times that vertices of K are chosen as part of H;.
Given 171, 75, the probability that the corresponding choices are in K is at least % .41 and

m—2
k

the term (1 — m> bounds the probability of the remaining first o — 2 choices being

outside K. This latter term is at least 1— % = 1—o0(1). Finally, using Jensen’s inequality

> .ex d=(d, — 1) is at least n3(1 — 7e;)? since K contains at least 3 > d. > (3) — 3e1n? edges

in Gz

Plugging this into (4) gives

k*n3(1 — Tep)?
Pr(B; | J;) < 1_ZT

and then plugging this into (3) gives
P ﬁB nenD, | < (1-ErA=Te) t
T ; < - 7
i ! ¢ 4 m3

and the lemma follows. O



We can now finish the proof of Theorem 1. Let &(K) = (i_, B;(K) and
F = {dpolychromatic K}. Then

Pr(F) < Pr(3IK: &(K))
m e1kn? ein?
< — -
< (n) (exp o } +exp{ 4 }) +0(1) (6)
= o(1)
if gq is small enough. This completes the proof of Theorem 1. O

We turn to the proof of Theorem 2. We follow a similar strategy.

Let m = [E‘E{ig’}ffj for some ¢y < 1. Once again, we colour K, randomly:

Initially G; = K,, and in round ¢ we obtain G;;; from G; in the following manner.

(a) Sequentially choose k random, disjoint uncoloured edges A; of K,

(b) Give the edges of A; a new colour in K, and then delete the edges of A; from G; to
produce G 1.

This process continues until GG; contains no matching of size k. Then we give each of the
uncoloured edges of K,,, a new distinct colour.

The above colouring is clearly k-bounded and proper. We next prove that whp there is no
K,, which is polychromatic.

Again let t = L%J for e1 < 1. We claim that whp the first ¢ rounds are sufficient to ensure
that every K,, will contain at least 2 edges of the same colour.

We can follow the proof of Theorem 1 making minor changes. Then when we come to the
proof of Lemma 3 we replace the expression in (5) by

Pr(Bi | Gi=G) > @ 2 md(?if_ll). o _‘1222)(‘75_3) (1_ m >k

21¢z2€K
k2n4(1 — 751)2
- 4m? ’

Then the RHS of (6) is replaced by

() (o oo 2

and this will be o(1) if ¢ is small enough. This completes the proof of Theorem 2. O




3 Upper Bounds: Proof of Theorem 3

We can prove upper bounds in a simple manner by using the FKG inequality. Since part (a)
is already in [11], we concentrate on (b).

Suppose we are given a k-bounded proper colouring of K, where m > 2k'/?n%? and we choose
a random subset S by including each vertex with probability p = %’L We claim that with
positive probability the set of vertices selected will contain a polychromatic K,,, thus proving
part (b) of the theorem. Let the colour classes be Cy,Cs,...,Cy and let k; = |C;|. Define
the event A;: {S contains two edges from C;}.

Now for each i, Pr(A4;) < k?p*/2. These events are monotone increasing in S and so by the
FKG inequality,

() > Tho- s

i=1

\Y

=1

- u—wxnymp{—§:awwz}

> (1= o(1))e *n"/m*,

M
exp {— Z(kfp‘l/Z + k::.lps)} since k*p* = o(1)

Here we have used Ym0 k2 < kXM ki < m®k/2 and M,k < k¥ °M ki < m®k3/2. The

1=1"1 A

latter implies > 7, kip® = o(1).

(2

Now let B denote the event |S| > n then we have

M
Pr(3polychromatic K,,) > Pr <B N ﬂ I)

> Pr <ﬂ I) — Pr(B)
> (1= of1))eni/m® _ o )
> 0

if m > 2k1/2n3/2,

The proof of part (a) is almost identical. The main difference is that we bound Pr(A4;) <
k?p®/2 and then arrive at (1 — o(1))e2*"/™ — ¢~ in place of the RHS of (7). O



4 Generalities: Proof of Theorem 4

(a) We follow the argument of Theorem 1. We consider the same colouring algorithm. We
put ¢t = [22¢| Now let dy = (1 — 3¢1)d and D; = {§; > do}. Following the argument of
Lemma 1 we get

PI‘(E) < m(efeld/(mk) + 6751d/13) — 0(1). (8)
Now fix a copy K of H in G and define A; as before (prior to Lemma 2). Now define
& = {25:1 Y; < 215_1—?’)”6‘11'} Following the argument of Lemma 2 to equation (2) we arrive at

t

2e1nd’ gind
ZY;Zm] th) SGXP{_W} (9)

=1

Pr(&, ND;) < Pr <

.. i nd'
Continuing, we define the events B; as before and amend C; to {Z =17 < ?5—1351 } The proof

of Lemma 3 now yields

t
e1kn(d')?
P B,N&END, | < - 10
(fyvacm) senf 22 o
and Theorem 4 follows.

The proof of (b) is developed analogously. O

Theorems 1, 2 and the lower bounds in Theorem 5(a),(b) are immediate corollaries of this
theorem. The upper bounds in Theorem 5(a),(b) can be proved by the method of Theorem
3. Theorem 5(c) needs a slightly different proof.

5 Polychromatic Sub-Cubes: Proof of Theorem 5(c)

For the lower bound we use arg(n, k) > arg(n,2) and assume k = 2. Let m = n2"/2. We
follow the proof of Theorem 3. We randomly colour the edges of @,, as follows: Initially
G = @), and we obtain G;,; from G; in the following manner.

(a) Choose a random path P; of length 2 in G; (as opposed to choosing a vertex = and then
2 random neighbours).

(b) Give the edges of P, a new colour in @,, and then delete the edges of P; from G; to
produce G;1.

This process continues until A(G;) < 1. Then we give each of the uncoloured edges of @,, a
new distinct colour. The above colouring is clearly 2-bounded. Now let ¢t = |g;m2™ ] for

9



some £; < 1. (Recall that Q,, has m2™ ! edges.) We claim that whp the first ¢ rounds of
the above colouring process are sufficient to ensure that every @),, will contain at least 2 edges
of the same colour.

Observation 1: A graph G with v vertices and average degree p has at least vp?/2 — vp/2
distinct paths of length 2.

Now some computations:
(i) The probability that @, contains a @, which has more than a fraction 4¢; of its edges
coloured before round ¢ is at most

(?:) 9" exp{—e1n2""1/28} = o(1).

Explanation: (),, contains (’Z) 2m~™ copies of (),. Then observe that for a fixed copy @)
of ()., the number of paths in the first ¢ paths which contain an edge of () is dominated by
Bin(t,p) where, crudely, p = 3722% bounds the ratio of the number of paths of length 2 which

meet () and the total number of paths of length 2 that remain in );. Here we use Observation
1 to bound the latter quantity from below.

(ii) The probability that there is a @, which does not get coloured by a whole path is at most

m _ 2"(1 — 451)277,2 t g1n2"
m—n < — — = .
( )2 (1 2 exp 1 nlogm — (m — n)log?2 o(1)

Observation 1 is used again to bound from below the number of paths contained in K.

The above calculation is a heuristic and a proper argument must be made as in the proof of
Lemma 3 to avoid conditioning on the future. We leave this to the reader.

The proof of the upper bound uses the first moment method. Let m = kn?2" and let a
k-bounded colouring of @),, be given. Now choose a random n-cube ) C @,, and consider the
probability that it is not polychromatic. Fix a colour class C; of size k;,i = 1,2,..., M. Since
there are at most (’::22) cubes which contain 2 given edges of (),, we see that the probability
that the cube ) contains 2 edges of C; is at most

Bo(s) 1
2 ()

Thus the probability that () is not polychromatic is bounded by

(i) 1 o~ P 1 memt,
(7:) ) om—n+1 ; k’ < W ' 9m—n+1 ) k -k
< 1.

The proof of Theorem 5(c) is now complete. O
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6 Hypergraphs: Proof of Theorem 6

We let m = ckn”/logn for some constant ¢ > 0 and consider the following edge colouring
algorithm: The degree of a set X of vertices in a hypergraph H = (V,{E1, Es,...,Eyp}) is
the number of edges F; which contain it. The hypergraph H(k,r) has vertex set [r — 1 + k]
and edges {[r — 1|U{i}: i =r,...,r — 1+ k}. Its centre is [r — 1]. Initially G; = K% and
we obtain G;,; from G; in the following manner.

(a) Choose a random (r — 1)-set of vertices X of degree at least k.
(b) Choose a random copy H; of H(k,r) which has centre X and uses only edges of G;.

(c) Give the edges of H; a new colour in K,(rf) and then delete the edges of H; from G; to
produce G;1.

This process continues until there are no uncoloured copies of H(k,r). Then we give each of
the uncoloured edges of K, a new distinct colour. Then let ¢t = [ | and let §; denote the
minimum degree of an (r — 1)-set of vertices in G; and let my = (1 — 5¢1)m. Let D; be the

event: {J; > mg}.

Lemma 4.

Proof Let X4 denote the number of times that the (r — 1)-set A is chosen as X in Step
(a) of the procedure. We count up to time ¢ or the occurrence of D;, i < t. Then X4 is

dominated by Bin(t, (™)) 71). Using Chernoff bounds we see that
Pr(X4 > 2eym/k) < exp{—e1m/(13k)}.
Next let Y4 be the number of times that |[X N A| =r — 2 and A\ X is a vertex of H;. Now

Y, is dominated by Bin(t,p;) where p; = (r_(l)im)ir) g < (’f:) and then
r—1 r—1

Pr(Ys > 2eym) < exp{—e1m/(13k)}.

Finally note that the degree of Ais m —r — kX4 — Yy4. O

Then for a fixed K = K" we let A; be the event: {Exactly one edge of K gets coloured in
round i}. Let ¥; = 14, and let & = & (K) be the event: {>°;_,Y; < 2e1n"}. Arguing in a

similar manner to Lemma 2 we can bound ) . Y; by Bin (t, ( 1_’;:;1)7” Er;l%). Thus

Lemma 5.
Pr(&ND,) < e am'/4,

11



Finally, we argue as in Lemma 3 and obtain

Pr(hBiﬂglﬂDt> < (1—5:11;];212)t

i=1 r—1
}.

knr—l—l
3rlm

< exp{—&

The proof of Part (a) can now be completed in a similar manner to the proof of Theorem 1.

For Part (b) we assume that we are given a k-bounded colouring of the edges of K&

m > 2kn”. We choose a random subset S by including each vertex with probability p = %”
Let the colour classes be Cy,Cy,...,Cy and let k; = |C;]. Define the event A;: {S contains
two edges from C;}. Then Pr(A;) < k?p™1/2 and the proof can be completed as in the proof
of Theorem 3.

where

7 Open problems

We leave it as an open problem to resolve the logarithmic gaps between the upper and lower
bounds in the above theorems.
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