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Abstract

The theory of random graphs has been mainly concerned with structural properties, in
particular the most likely values of various graph invariants — see Bollobas [21]. There has been
increasing interest in using random graphs as models for the average case analysis of graph
algorithms. In this paper we survey some of the results in this area.

1 Introduction

The theory of random graphs as initiated by Erdés and Rényi [52] and developed along with others,
has been mainly concerned with structural properties, in particular the most likely values of various
graph invariantss — see Bollobas [21]. There has been increasing interest in using random graphs
as models for the average case analysis of graph algorithms. We would like in this paper to survey
some of the results in this area. We hope to be fairly comprehensive in terms of the areas we tackle
and so depth will be sacrificed in favour of breadth.

One attractive feature of average case analysis is that it banishes the pessimism of worst-case
analysis. NP-Completeness casts a much smaller shadow. Problems like finding Hamilton cycles may
become tractable. Of course one can criticise the models as being unrealistic but they are probably
no more so than the pathological examples used in proofs of NP-Completeness and the study of
performance guarantees. Furthermore, the models can be close to those used in the empirical testing
of algorithms.

1.1 Random Graph Models

Let m,n be natural numbers. The random graph G,, ,, has vertex set [n] = {1,2,...,n} and edge
set E,, m,, which is a random m-subset of the edges F,, of the complete graph K,,. It is sometimes
easier to deal with the independent model G, ,, 0 < p < 1. This has vertex set E,, where the
edges e € E, occur independently in E, , with probability p. These are the two main models of
random graph with which we will be concerned. We shall not discuss geometric models here, but
see Steele [189] for a survey.

We will also make a few references to other models of random graphs and to algorithms on random
hypergraphs.
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1.2 OQutline of paper

We divide the paper along the following lines. In Section 2 we discussion algorithms for solving
Hamilton cycle and related problems. Section 3 concerns algorithms for solving matching prob-
lems.Stable (or independent) set problems are dealt with in Section 4 and graph colouring in Section
5. We then move on to discuss graph isomorphism in Section 6. Section 7 deals with network flows
and disjoint path problems. Section 8 discusses shortest paths and minimum spanning trees and
Section 9 discusses graph bisection. Section 10 discusses some counting problems. Up to this point
the algorithms discussed will all have been sequential in nature. We close with a brief discussion of
parallel algorithms that are efficient on average — Section 11.

2 Hamilton Cycles and Related Problems

2.1 Existence

Erdds and Rényi [52] left open the question of the threshold for the existence of a Hamilton cycle
in the random graph G, i.e. a cycle of length n containing all of the vertices. A breakthrough on
this problem came with the paper of Pésa [173] who showed that if m > Knlogn, K suitably large,
then Gy, »,, is Hamiltonian whp!. A basic construction of that paper and an earlier one by Komlés
and Szemerédi [125] is that of a rotation. Here and elsewhere log refers to natural logarithms.

Suppose we have a path P = zq,x1,...,7) in a graph G = (V, E) and we want to find a path of
length k + 1. If z¢ or x; has a neighbour not in P then one can extend this path by adding a
neighbour. Failing this, suppose z; has a neighbour z; where 0 < i < k—2. If i = 0 and G is

connected then there is an edge x;w joining the cycle xg, z1,...,Zk, Zo to the rest of the graph and
then the path w,x;, %it1,--.,%k, %o, ..., Z;—1 has length k + 1. We call this a cycle extension. If
i # 0 then we perform a rotation and construct the path xg, 21, ..., %, Tk, T—1,. - ., Ti+1, which has

length k and a different endpoint z;; from which we can iteratively look for further extensions.

Using rotations and extensions Komlds and Szemerédi [126] settled the existence question when
they proved

Theorem 1 If m = n(logn + loglogn + ¢,)/2 then

0 if ¢ = —00
lim Pr(G,, m is Hamiltonian) = e " ifen,—ec
n—oo . .
1 if if ¢, = 00
= lim Pr(06(Gn,m) > 2),
n—oo

where § denotes minimum degree.

Note that throughout the paper log means natural log.

A stronger hitting time version of this was proved in Bollobds [23] and also in Ajtai, Komlés and
Szemeredi [1]. Here we add random edges one by one and wait until the first time 7 that ¢ is at
least 2.

Theorem 2

lim Pr(Gy ., is Hamiltonian) = 1.
n—oo

LA sequence of events &, is said to occur whp (with high probability) if Pr(£,) — 1 as n — co



2.2 Hamilton Cycle Algorithms
2.2.1 General Random graphs

Angluin and Valiant [9] gave a constructive proof of Pésa’s result. They described an O(n(logn)?)
time randomised algorithm which whp found a Hamilton cycle in Gy, ,, provided m > Knlogn,
where K is sufficiently large. (For slightly larger K one can use otherwise unexplored parts of the
random graph to provide random bits, which makes the algorithm in some sense deterministic). The
algorithm consists of a sequence of extensions and rotations which terminate when a Hamilton cycle
is found. Shamir [182] improved their result to give a polynomial time algorithm which succeeds
whp provided m > n(logn + 3loglogn)/2, which is close to being best possible. Finally, Bollobds,
Fenner and Frieze [26] described a deterministic algorithm HAM which runs in O(n?logn) time and
satisfies

Theorem 3
lim Pr(HAM succeeds on Gy r,) = 1. (1)

n—oo

HAM proceeds in stages. In Stage k there is a path of length k. To proceed to Stage k + 1 HAM
does a set of breadth first searches for a sequence of rotations which will extend the current path.

Although HAM was designed to satisfy (1) it was shown to succeed with probability 1 —o(27™) on
a random graph G, 1/, chosen uniformly from all graphs with vertex set [n] (success here includes
the case of the graph being non-Hamiltonian because it has a vertex of degree 0 or 1.) Thus
dynamic programming [94] can be used to take care of the cases where HAM fails to determine
whether or not G, ;/2 is Hamiltonian, leading to an algorithm which (i) always succeeds, (ii) has
polynomial expected time. Gurevich and Shelah [91] described a linear expected time algorithm
for deciding Hamiltonicity on G, p, for arbitrary constant p > 0. Their algorithm does not satisfy
(1). Sul/)sequently, Thomason [193] described a linear expected time algorithm which is valid for
p>n-1/3,

Research Problem 1 Find an algorithm that runs in polynomial expected time on Gp ., for all
values of m.

Broder, Frieze and Shamir [28] considered the following problem: a graph G is obtained by taking
a cycle H of length n and then adding m random edges. Is it possible without knowing H to find
a Hamilton cycle in G? If the problem is difficult then the graph G could serve as a signature. It
would be possible to confirm one’s identity by exposing H. The main result of [28] is that if m > con
for some absolute constant ¢y then whp a Hamilton cycle can be found in G in O(n®logn) time. If
instead of adding m random edges, one adds a random perfect matching of [n] then it is still easy
to find a Hamilton cycle - Frieze, Jerrum, Molloy, Robinson and Wormald [69].

Research Problem 2 Suppose we start with a cycle H in which each edge has a different colour
from C = {c1,¢a,...,¢cn}, say. We then add cn random edges and then colour each edge with a
random colour from C. Find a polynomial time algorithm which whp finds a Hamilton cycle with
each edge of a different colour.

2.2.2 Directed Graphs

Rotations cannot be used for digraphs as they reverse the orientation of part of the path. Angluin
and Valiant [9] described an algorithm which succeeds whp in finding a Hamilton cycle in Dy, ,
provided m > Knlogn. At this time the existence question had not been settled: McDiarmid [148]



later showed that Dy, ,, is Hamiltonian whp provided m > n(logn + loglogn + w) where w — oo.
Subsequently Frieze [64] answered the existence and algorithmic questions. He described an O(n?/2)
time algorithm DHAM such that

Theorem 4 If m = n(logn + ¢,) then

0 if ¢ = —00
lim Pr( DHAM finds a Hamilton cycle in Dy, ) = e ifc, e (2)
—
nee 1 if ¢, = 00

= lim Pr(D,, ,, is Hamiltonian).
n—oo

Note that the expression on the RHS of (2) is the limiting probability that D, has minimal in-
degree and out-degree at least 1. Frieze actually proved a (stronger) hitting time version of the
above theorem.

2.2.3 Regular graphs

Let Q(r,n) denote the set of r-regular graphs with vertex set [n]. We consider the case where r > 3 is
fixed and n — co. Let Gy, be chosen randomly from Q(r,n). It was conjectured for a long time that
Gr,r is Hamiltonian whp for r > 3. Bollobés [20] and Fenner and Frieze [58] independently showed
that G, , is Hamiltonian whp for r > ry (ro=796 in [58]). Subsequently, Frieze [63] reduced r¢
to 85 by showing that a version of the previously described extension-rotation algorithm succeeded
whp. Recently Robinson and Wormald [177, 178] solved the existence problem by proving

Theorem 5 G, is Hamiltonian whp for r > 3.

They thus proved the long standing conjecture. Note that G5 is whp a collection of a large number
of vertex disjoint cycles. Robinson and Wormald proved more than the existence of one Hamilton
cycle. Analysis of their argument shows that whp the number of Hamilton cycles in G, , is within
an inverse polynomial factor (p(n)~!) of the number of 2-factors of G, . Exploiting this, Frieze,
Jerrum, Molloy, Robinson and Wormald [69] came up with the following simple algorithm: Use the
algorithm of Jerrum and Sinclair [99] to generate (near) random 2-factors of G, until a Hamilton
cycle is produced. The expected number of 2-factors produced before a Hamilton cycle is found is
then O(p(n)).

Research Problem 3 FEztend the results of [69] on finding a Hamilton cycle in G to the case
where r grows with n.

2.3 Travelling Salesman Problems

In this section we discuss travelling salesman problems (TSP’s) where the edge weights are drawn
independently from the same (non-negative) distribution.

2.3.1 Asymmetric TSP’s and the Assignment problem

The Assignment Problem (AP) is the problem of finding a minimum-weight perfect matching in an
edge-weighted bipartite graph. An instance of the AP can be specified by an n x n matrix M =
(mi;); here m; ; represents the weight of the edge between z; and y;, where X = {z1,22,...,2,} is
the set of “left vertices” in the bipartite graph, and Y = {y1,¥2,...,yn} is the set of “right vertices”.



The AP can be stated in terms of the matrix M as follows: find a permutation o of {1,2,...,n}
that minimizes ) 7 | m; ,(;). Let AP(M) be the optimal value of the instance of the AP specified
by M.

The Asymmetric Traveling-Salesman Problem (ATSP) is the problem of finding a Hamiltonian
circuit of minimum weight in an edge-weighted directed graph. An instance of the ATSP can be
specified by an n x n matrix M = (m; ;) in which m,; ; denotes the weight of edge (¢,j). The ATSP
can be stated in terms of the matrix M as follows: find a cyclic permutation 7 of {1,2,...,n} that
minimizes Y i, m; r(;); here a cyclic permutation is one whose cycle structure consists of a single
cycle. Let ATSP(M) be the optimal value of the instance of the ATSP specified by M.

It is evident from the above two definitions that AP(M) < ATSP(M). The ATSP is NP-hard,
whereas the AP is solvable in time O(n?).

Karp [108] considered the case where the m; ; are drawn independently from the uniform distribution
over [0,1]. He proved that a certain Patching Algorithm produced a near optimal solution whp. In
fact he showed that the tour produced by this algorithm was good enough to yield

Theorem 6
ATSP(M)/AP(M)=1-0(1) whp. (3)

The approach is as follows:

e Solve the problem AP(M).

e Whp there are less than 2logn cycles in the optimum solution. This is because the optimum
solution will correspond to a random permutation of [n].

e Patch the cycles one by one into the current largest cycle, as cheaply as possible. Patching
two cycles involves deleting an edge from each and adding two edges to produce one large
cycle.

Later, Karp and Steele [118] and then Dyer and Frieze [47] strengthened this result in several ways.
For example the latter paper shows that the error term in (3) is o((logn)*/n).

Research Problem 4 Determine the correct asymptotics for this error term.

Research Problem 5 The assignment problem is often used as a lower bound in branch and bound
algorithms for solving the asymmetric travelling salesman problem. Assuming costs are id uniform
on [0,1], determine if there is a version of branch and bound which runs in polynomial time whp.

Research Problem 6 Determine lim,, ., E(AP(M)) when the entries of M are iid uniform on
[0,1]. This limit exists — Aldous [4], Avram and Bertsimas [12] — and is conjectured to be ((2) =
72 /6. It is known to be at least 1.44 — Goemans and Kodialam [83]) — and at most 2 — Karp [111],
Dyer Frieze and McDiarmid [49].

More recently, inspired by the computational results of Miller and Pekny [159], Frieze, Karp and
Reed [70] considered distributions for the m;; where there is a significant chance that m;; = 0.
They proved

Theorem 7 (a) Let (X,,) be a sequence of non-negative random variables. Let p, = Pr[X,, = 0]
and let w(n) = np,. Let M = M(n) be an n x n matriz whose entries are drawn independently
from the same distribution as X,. If w(n) — oo as n — oo then AP(M) = ATSP(M) whp.



(b) Let M = M(n) be an n x n matriz whose entries are drawn independently from the uniform
distribution over {0,1, ..., [cn]|} where ¢ is a positive constant. Then, the probability that AP(M) #
ATSP(M) does not tend to zero as n tends to infinity.

(¢) Let M = M(n) be an n X n matriz whose entries are drawn independently from the uni-
form distribution over {0,1,...,|cyn|} where ¢, tends to infinity with n. Then, the probability
that AP(M) # ATSP(M) tends to 1 as n tends to infinity.

The proof of Theorem 7(a) relies on an algorithm which converts the assignment solution to a tour
only using edges of length zero. Preliminary to a patching phase there is a phase which increases
the minimum cycle size so that patching is likely to be successful.

Research Problem 7 Determine the limiting probability that AP(M) = ATSP(M) in case (b) of
Theorem 7.

2.3.2 Symmetric TSP’s

There has been less success in finding algorithms which (nearly) solve symmetric TSP’s (m;; = m;,;)
whp. This is probably because the natural analogue of the assignment problem relaxation, the
minimum weight 2-factor problem lacks one particular property. The optimum solution to a random
problem is not a random 2-factor.

Indeed the analogue of Karp’s early result (3) for uniform [0,1] costs has not been proved with
assignments replaced by 2-factors. There is an earlier result of Frieze [62] which is weaker than
Theorem 7(a).

Theorem 8 Let M = M(n) be an n X n symmetric matriz whose entries are drawn independently
from the uniform distribution over {0,1, ..., [n/(wloglogn)|} where w — oco. There is an O(n® logn)
time algorithm which solves the corresponding TSP exactly, whp.

The idea here is to convert the problem into a constrained Hamilton cycle problem. Vertices incident
with few zero length edges are optimally covered with vertex disjoint paths. Then a Hamilton cycle is
found which contains these paths as sub-paths and otherwise uses zero length edges. This necessarily

solves the TSP exactly.

Research Problem 8 Remowve the loglogn factor in Theorem 8.

3 Matchings

3.1 Existence

The threshold for the existence of a perfect matching in G, ,, was found by Erdés and Rényi [53]
in their early sequence of papers. They proved

Theorem 9 If m = n(logn + ¢,)/2 then

0 if ¢, = —00
lim Pr(Gy,, has a perfect matching) = e " ifen—ec
nee 1 if cp = 00
= lim Pr(6(Gp,m) > 1).
n—0o0



Essentially the same result is true for bipartite graphs, Erd6s and Rényi [54]. There are also
corresponding hitting time versions, as in Theorems 1 and 2.

The existence of perfect matchings has been studied in other models too. It follows from Tutte’s
theorem [199] on perfect matchings that for » > 3, an (r-1)-edge connected r-regular graph (with rn
even) has a perfect matching. It follows that a random r-regular graph, r > 3 fixed, has a perfect
matching whp, Bollobas [21].

Walkup [202] considered bipartite graphs with n vertices in each part in which each vertex inde-
pendently chooses k& random neighbours. He showed that for fixed & > 2 such a graph has perfect
matching whp.

3.2 Algorithms for finding perfect matchings

The basic tool for finding a perfect matching is the augmenting path. Angluin and Valiant [9]
gave an O(nlogn) expected time algorithm that finds a perfect matching in G,, ,,, whp, provided
m > Knlogn for sufficiently large K. It basically relies on (randomised) depth first search to
find augmenting paths. Goldschmidt and Hochbaum [84] gave an algorithm which improves the
running time to O(nlog(n?/m)) but still for m > Knlogn. The above algorithms are designed
to run on random graphs. Motwani [163] analysed the performance of some standard worst-case
efficient algorithms on random graphs and showed that their expected running times are significantly
better than the worst-case suggests. For example, the algorithm of Micali and Vazirani [158] has
worst-case time complexity O(n'/2m) on a graph with n vertices and m edges, but on Gn,m, With
2m/n — logn — oo it terminates in O(mlogn/loglogn) time whp. The main reason being that
whp

every non-perfect matching has an augmenting path of length O(logn/logd), (4)

where d = 2m/n is the average degree.
Motwani applied his analysis to Walkup’s model as well.

It is worth remarking that (4) and the fact that for m considered here whp A(Gr,,) = O(d)
together imply that the ratio of the number of near perfect to perfect matchings is bounded by a
fixed polynomial in n. (A matching is near perfect if it covers all but 2 vertices.) This means that
whp a certain randomised algorithm (Jerrum and Sinclair [99]) can be used to approximate the
number of perfect matchings in almost all graphs. ([99] did not give a tightest possible result for
random graphs and Motwani’s paper filled in a small gap.)

3.3 Sparse Random graphs

If m = |en], ¢ > 0 constant then G, has no perfect matching whp, see Theorem 9. Indeed
there are a large number of isolated vertices. For such a sparse random graph the interest is in
using a simple heuristic to find a large matching which is close to optimal whp. Researchers have
concentrated in the main on the analysis of greedy heuristics:

GREEDY

begin
M + 0;
while E(G) # ( do
begin
A: Choose e = {u,v} € E
G+ G\ {uy,v}
M« M U{e}



end;
Output M
end

(G \ {u,v} is the graph obtained from G by deleting the vertices u,v and all edges incident with
them, together with any vertices which become exposed.)

The average performance of GREEDY when the input is random was first analysed by Tinhofer
[193]. He considered its performance on the random graph G, , in the dense case where p is fixed
independent of n. In this case it is fairly easy to show that the algorithm produces a matching of
size n/2 — O(logn) whp.

Let X = X (n,m) be the random number of edges in the matching produced by GREEDY applied
to Gp,m when the edge choice in statement A is uniformly random. Dyer, Frieze and Pittel [50]
were able to establish the asymptotic distribution of this variable when m = |en|. Let

&
Y
A (c+3)
YO ey

Theorem 10 As n — oo (X(n,m) — nd(c))//nY(c) converges in distribution, and with all its
moments, to the standard normal variable with mean zero and variance one.

Thus X (n,m) is asymptotically Gaussian with mean n¢(c) and variance ni(c). As one should
expect, ¢(c) = 1/2 as ¢ = oo which corresponds to a matching of size n/2 — o(n).

It is possible to modify this algorithm without considerable complications, so as to improve its
likely performance. Perhaps the simplest modification is to first choose a vertex v at random and
then to randomly choose an edge incident with v. We refer to this as MODIFIED GREEDY. Dyer,
Frieze and Pittel also analysed the performance of MODIFIED GREEDY in the same setting as
for GREEDY. Let X = X(n,m) be the random number of edges in the matching produced by
MODIFIED GREEDY on Gy, ;. Let

_log(2-€7°)

50 > ¢(c).

Theorem 11 As n — oo (X(n,m) — nd(c))/\/nd(c) converges in distribution, and with all its

moments, to the standard normal variable with mean zero and variance one. (Here zﬁ(c) is the
unknown solution of a certain differential equation.)

MODIFIED GREEDY was also discussed in Tinhofer [193] as well as by Goldschmidt and Hochbaum
[84] who proved probabilistic lower bounds on the size of the matching produced in G, . In
particular Goldschmidt and Hochbaum prove a probabilistic lower bound of n(1 — (1 +¢€)/¢)/2 for
any fixed € > 0, (which is smaller than ¢(c)).

GREEDY and MODIFIED-GREEDY both find matchings which are less than the maximum by a
constant factor. Karp and Sipser [117] considered a similar greedy type of algorithm which we will
call KSGREEDY. Their algorithm (a) chooses an edge incident to a vertex of degree 1 while there is
one and otherwise (b) chooses a random edge. The algorithmic change is tiny, but the improvement
in performance is spectacular. They show that this algorithm is asymptotically optimal in the sense
that with high probability it finds a matching which is within o(n) of the optimum size! They also
prove that if ¢ < e then KSGREEDY spends almost all of its time in case (a). The algorithm is
considered to run in two phases. Phase 1 ends when the minimum degree of the graph that remains



is at least two. Note that during Phase 1 the algorithm makes correct choices in the sense that the
edges chosen are a subset of some maximum matching.

Aronson, Frieze and Pittel [10] have been conducting a further analysis of this algorithm. At this
stage it looks as though the following is true whp:

e If ¢ < e then at the end of Phase 1, all that is left of the graph is a few vertex disjoint cycles.

e If ¢ > e then in Phase 2, KSGREEDY will match all but about n!/5 of those vertices which
remain at the end of Phase 1. More precisely, there exist positive constants ¢;, ¢z, a such that
if L denotes the number of vertices which become isolated in Phase 2, then

ein'/® < B(L) < ¢an'/5(logn)®. (5)
Here a is likely to be 1 or 2.

e Analysis of the algorithm gives an asymptotic expression for the size of the maximum matching
in Gp,m.

(Bollobas and Brightwell [24] did some analysis of this algorithm applied to a random bipartite
graph with at most en random edges).

Research Problem 9 Find the correct exponent of logn in (5).

Research Problem 10 Determine the asymptotics for the difference between the number of ver-
tices left isolated by KSGREEDY and the number left isolated by a mazimum matching in a sparse
random graph.

Another possible version of GREEDY is MINGREEDY where in Step A one chooses a (random)
vertex of minimum degree and then a random neighbour of this vertex. Frieze, Radcliffe and Suen
[75] considered the performance of MINGREEDY on random cubic graphs. They proved

Theorem 12 Let L, denote the number of vertices left exposed by the matching constructed by
running MINGREEDY on o random cubic graph with n vertices. Then there exist constants dy,dy >
0 such that

din'/® < E(L,) < don'/®logn. (6)

(Recall that a random cubic graph has a perfect matching whp.) Thus MINGREEDY usually does
very well. Note the common exponent 1/5 in (5) and (6). This can be explained to some extent
by the fact that near the end of KSGREEDY, when most avoidable vertex isolations are made, the
maximum degree is bounded whp.

In computational experiments MINGREEDY left an average of just over 10 vertices unmatched
when run on random cubic graphs with 10° vertices.

There are some technical difficulties involved in extending the analysis to random r-regular graphs,
r>4.
Research Problem 11 Analyse the performance of MINGREEDY on Gy, for r > 3.

Karp, Rinnooy-Kan and Vohra [116] gave an algorithmic version of Walkup’s result on perfect
matchings in random bipartite graphs [202] and used for an algorithmic version of his result on
the assignment problem [203] — see also Avis and Lai [11] for a slightly weaker result in this vein.



Suppose the vertices of our bipartite graph are partitioned into sets A, B. Each a € A makes two
random choices in B. Let e, denote this pair of choices and let Gp = (B, {e, : a € A}). Define f;
and the graph G4 = (A, {fs : b € B}) similarly. Note that both G4 and Gp are close in distribution
to Gp,n. Initially set Hy = G4 and Hs = (B, (). Consider an isolated tree T' of Hy, (if there is
one). Choose any vertex x as root. Orient the edges of T towards z. Let the directed edges of T
now be fi, = (a;,a;) for 1 < i < ¢. If we match (a;,b;) together for 1 < ¢ < ¢ then only the root x
is not matched. So what we do is consider matching it with one of b,b" where e, = {b,b'}. But if
we say match x with b then, to avoid later conflicts we should delete f; from H;. We thus go to
and fro between H; and Hs, rooting trees in H;, adding edges to H, and deleting edges in Hy. If
successful, the algorithm transforms H; and H into graphs with every component either a tree or
unicyclic, such that a perfect matching can be constructed from the components of the two graphs.
The main result of the paper is

Theorem 13 Whp the above, Pairing algorithm, terminates with o perfect matching.

Cooper and Frieze [40] used this constructive proof of Walkup’s result in proving that the random
digraph Ds_ ;2 out is Hamiltonian whp. This is a pleasant symbiosis between the algorithmic and
structural theory of random graphs.

Research Problem 12 Frieze [59] gave an extension to non-bipartite graphs of the result of [202]on

the existence of matchings in bipartite graphs. Can the pairng algorithm of [116] discussed above
also be extended to non-bipartite graphs?

3.4 Related matching problems
Knuth, Motwani and Pittel [122], Pittel [167, 168, 169] studied structural properties of random
instances of Stable Marriage — see Gale and Shapley [81]. Pittel [170] did some analysis of the

proposal algorithm for the Stable Roommates Problem.

Research Problem 13 Compute the expected number of rounds in the Gale-Shapley proposal al-
gorithm for the stable marriage problem, assuming that preferences are random and independent.

Research Problem 14 If preferences in an instance of the stable roomates problem are random
and independent, determine the limiting probability that there is a stable solution.

Frieze and Pittel [74] analysed a similar algorithm for a similar matching problem, viz. the Shapley-
Scarfe [187] algorithm for finding a core allocation in a market with indivisible goods.

4 Stable (or Independent) sets

A Stable (or independent) set in a graph G is a set of vertices no two of which are adjacent; and the
stability (or independence) number a(G) is the maximum size of a stable set.

4.1 Random graphs G, ,

The behaviour of the stability number (G, ;) is well understood, at least when the average degree
is large. We assume here that the edge-probability p = 1 — ¢ is bounded below 1.

10



Theorem 14 If np — 00 as n — 00, then a, = a(Gp,p) satisfies

apn ~ 2lognp/logl/q whp.

(Note that if p — 0 then log(1/q) ~ p.) When p is a constant, o, is in fact remarkably concen-
trated: there exists k = k(n) such that a,, = k or k + 1 whp. These results are proved by the
(non-algorithmic) second moment method for p constant — see [21], together with a concentration
inequality for p — 0 — see Frieze [65].

The greedy or sequential stable set algorithm picks a stable set in a graph G by looking at the vertices
in some fixed order, and adding a vertex to the current stable set whenever possible. Let o(G) be
the size of the stable set produced. Observe that if ¢ vertices remain after adding the kth vertex to
the stable set, then independently of any previous history, the probability that we need to look at
more than i more vertices to pick up the k + 1st vertex equals (1 — ¢*)? for each i < ¢. This shows
that we can analyse 0, = 0(Gr,p) by considering sums of independent geometrically distributed
random variables: see Grimmett and McDiarmid [88], Fernandez de la Vega [56], Gazmuri [82] and
McDiarmid [150].

Theorem 15 If np — oo as n — oo then o, ~ lognp/ log% whp; and if np - ¢ >0 asn - ©
then o, ~ nlog(l + ¢)/c whp.

Now suppose that np — co as n — co. Then we have oy, /a, ~ £ whp. Is this good? Let &(G) be
the minimum size of a maximal stable set in G. Then &y, /a, ~ 5 whp, which does not sound good
for the greedy algorithm. However, it is not known if for some constant 6 > 0 there is a polynomial
time algorithm which yields a stable set of size at least (% + 0)ay, with say probability at least %
For related questions see Karp [106], McDiarmid [150] and Jerrum [98].

Research Problem 15 Construct a polynomial time algorithm that finds an independent of size
at least (% + 0)a, whp or show that such an algorithm does not exist modulo some reasonable
conjecture in the theory of computational complezity such as e.g. P # NP.

For corresponding results for random hypergraphs, see [82] and the papers mentioned in Section 5.5
below.

4.2 Random regular graphs G, ,

When r is large the behaviour of a(G,,) is like that for a(G, ,) with np = r, see Frieze and Luczak
[72]. Thus the value a(G,,) is fairly well pinned down (ultimately from a corresponding result
about a(Gp,p)) but there is no polynomial time algorithm known to obtain stable sets of about this
size.

Theorem 16 Let f(r) = 2(logr + loglogr + 1 — log2). For any constant € > 0 there exists a
constant re such that if re <r =r(n) < ns then

a(Gn,r)
n

whp.

S|

—f(r)‘ <

The above theorem says nothing about small values of r, for example r = 3. Here things are rather
different. The behaviour of a(G,) is not well determined, and the best known lower bound comes
from analysing the ‘mingreedy’ algorithm. This algorithm repeatedly deletes from the graph a
vertex v of minimum degree, and if possible adds v to the current stable set in which case it also
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deletes all the neighbours of v. Let 0™ (G) denote the size of the stable set found (with ties broken
randomly). For cubic graphs, we find Frieze and Suen [79], Wormald [205] that 20 (Gp,3) ~ 0.375
whp and %ami” (Gr,3) ~ 0.4328.. whp. The best upper bound known is %Q(Gn’f}) < 0.4534 whp.
The results on the algorithms are proved in [205] by a general approach which relates the random
processes to solutions of certain differential equations.

Research Problem 16 Are the results of [79], [205] optimal i.e. does the algorithm mingreedy
find an asymptotically mazimal independent set?

4.3 Difficulty results

Suppose that we wish to prove upper bounds on the stability number of a graph G = (V, E). Chvétal
[38] formalises certain natural (and powerful) rules that we might use.

A statement is a pair (S,t) where S C V and t is a non-negative integer — to be interpreted as
a(S) <t where a(9) is the size of the largest stable subset of S. A recursive proof of a statement
(S,t) is a sequence of statements (S;,t;) i = 0,1,...,m where (So,%0) = (0,0), (Sm,tm) = (S, 1),
and such that each statement (Sg,tx) for k¥ > 1 can be deduced from the earlier statements by either
the dichotomy rule or the monotone rule.

The dichotomy rule: from (S \ {v},z) and (S \ ({v} U N(v)),y), we can deduce (S, max(z,y + 1)).
Here N(v) denotes the set of neighbours of v.

The monotone rule: from (S, z) we can derive (S’,z') when S’ C S and z' > z.

If there is a recursive proof of (S,t) then a(S) < ¢, and conversely. However, for almost all graphs
G = (V, E) with a (sufficiently large) linear number of edges, all recursive proofs of (V, a(G)) must
have at least exponential length [38]. For related results see Pittel [166].

Let us return to the problem of finding a stable set of size at least (1 + §) logy n in G, ;, where p =
Jerrum [98] investigated how well a natural Metropolis algorithm will handle the (complementa
clique) problem.

N[

y

L]

A parameter A > 1 is fixed (corresponding to inverse temperature). If the current state is the stable
set S then the next stable set S’ is obtained as follows. A vertex v is picked uniformly at random.
There are three cases: (i) if v € S then with probability A= let S’ = S\ {v}, else let S' = S; (ii) if
v ¢ S and S U {v} is stable then let S’ = S U {v}; and (iii) otherwise let S’ = S.

It is shown in [98] that if A ~ n then the desired large stable sets are favoured at equilibrium; but
that, whatever the value of A, for some initial state the expected time to reach a large stable set
grows super-polynomially. A similar result holds even if a stable set of size n® where 0 < 8 < % is
‘hidden’ in the random graph. See also Kucera [131].

5 Colouring

A (vertex) colouring of a graph G is an assignment of colours to the vertices of G such that adjacent
vertices receive different colours. The chromatic number x(G) is the least number of colours possible.

It has long been known that the problem of testing if x(G) < k is NP-complete, even for any fixed
k > 3. Recently it has been shown that if P # NP then it is not possible to approximate the
chromatic number within a ratio O(n¢) for some constant € > 0 Lund and Yannakakis [143]; though
it is possible to do so within a ratio O(n1) Karger, Motwani and Sudan [103] (i.e. ignoring some
log factors). Also, it is NP-hard to 4-colour an arbitrary 3-colourable graph Khanna, Linial and
Safra [120]. It is thus natural to consider algorithms that usually colour well.
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5.1 Random graphs G,

Dense case
We first consider the case when the edge probability p is constant. The behaviour of the chromatic
number x, = X(Grp) is well understood Bollobés [22] (see also Kucera and Matula [134]).

Theorem 17 Let p be fized. Then x(Grp) ~ n/ay, whp.

Indeed, we can be more precise [153] : for the function f mentioned in Theorem 16 we have
X(Gn,p) = n/(ay + O(1)) whp. The lower bound here (and later in this section) comes from the
inequality x(G)a(G) > |V| and what we already know about stable sets. The proof of the upper
bound in [22], subsequently refined in McDiarmid [153], uses concentration inequalities to show that
whp in G = G, every large set of vertices contains a stable set of size nearly a(G). Thus we can
colour nearly optimally by repeatedly stripping off maximum sized stable sets.

The greedy or sequential colouring algorithm considers the vertices in a fixed order, and gives each
vertex the first available colour. This is equivalent to repeatedly applying the greedy stable set
algorithm to strip off colour sets. Let v(G) be the number of colours used, and use 7, to denote
¥(Gp,p). The behaviour of v, was known long before that of x5, see Grimmett and McDiarmid [88]
and also Bollobés and Erdés [25].

Theorem 18 Let p be fized. Then v, ~ 2x, Whp.

This result may be proved from our knowledge of x,, and the greedy stable set algorithm. Does this
theorem show that the greedy colouring algorithm is good? It turns out that several variants of this
approach, for example picking a polynomial number of different random vertex orders, use about
the same number of colours — see McDiarmid [147] and also McDiarmid [149] and Kuéera [130]. It
is not known if any polynomial time algorithm uses at most (2 — §)x,, colours with probability at
least 1 say, for some 0 < § < 1.

Research Problem 17 Is there such an algorithm? (See also Problem 15).

Matula [145] gave a (super-polynomial time) algorithm involving local searches for large stable sets
and the expose-and-merge idea, which uses < (% + 0)xn colours whp. (This gave the best upper
bound known at the time on xy.)

Sparse case

Next let us consider G, , with p = p(n) = o(1). As long as np — oo things are much as in the
case p constant, with log% replaced by p. Luczak [140] extended the proof of Kucera and Matula
[134] to show that x, ~ np/2lognp whp. For sparse graphs the greedy algorithm needs a tidy-
up end phase. Suppose that we have repeatedly stripped off colour sets until the average degree
has fallen to about 1. Then the remaining graph has at most one cycle per component with high
probability and may then be easily 3-coloured. Let ,, be the number of colours used on Gy by
a corresponding modified greedy algorithm. Then Shamir and Upfal [185] and Fernandez de la
Vega [56] show 7), ~ 2x,, whp. Recently, Pittel and Weishar [171] have analysed greedy colouring
without the tidy up phase. They prove that whp the number of colours used grows as log, log, n.
The interest in this result stems from viewing it as colouring a random graph which is presented
and has to be coloured vertex by vertex on-line.

When np ~ ¢ for some small constant ¢ we may still analyse !, McDiarmid [150], but things are less
clear for the chromatic number Luczak and Wierman [141], Chvétal [39], Molloy and Reed [162],
Molloy [161]. In this context the notion of k-core becomes important. The k-core of a graph being
the largest subgraph of minimum degree at least k. A graph without a k-core has chromatic number
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at most k — remove a vertex of degree at most k — 1 and apply induction. It is therefore important
to know the thresholds for the existence of k-cores. This was done by Pittel, Spencer and Wormald
[172] who analysed a simple algorithm for finding cores.

Very dense case

Usually we assume that p is bounded below 1, but suppose that p — 1 in such a way that the largest
stable set stays bounded. In particular let r be a fixed positive integer and suppose that gn?/" — oo
and gn?/(+1) — 0. We find in Fernandez de la Vega [57] that whp a, < r + 1 and there are o(n)
stable sets of size r + 1 so that x, > (1 — o(1))n/r: however, an arbitrary choice of stable r-sets
leads to a polynomial time algorithm which uses < (1 4 o(1))n/r colours [57].

5.2 Random regular graphs G, ,

As for the stability number, when r is large the situation with x(G,, ) is like that for x(G,, ) — see
Frieze and Luczak [72]. Little work seems to have been done on the case of r small (though it is
easy to see that x(G,,3) =3 whp).

5.3 Random k-colourable graphs

There has been much interest in colouring random k-colourable graphs, where k is fixed or slowly
growing with the number n of vertices, and in particular in the case k = 3. Several probabilistic
models have been considered.

Uniform models

Perhaps the most natural probabilistic model is the uniform k-colourable model, when we sam-
ple uniformly from all k-colourable graphs on the vertices 1,...,n — see Turner [198], Dyer and
Frieze [46]. [46] gives a three stage algorithm which, for fixed k, k-colours graphs in the uniform
k-colourable model in polynomial expected time. The first stage uses the mingreedy stable set al-
gorithm as in Ku&era [127] to strip off £ — 1 colour sets. With high probability this leaves a stable
set and thus succeeds in giving a k-colouring. If this stage fails, then repeatedly partial colourings
are tested to see if they lead to a nearly ‘forced’ k-colouring (all but a few vertices have exactly
one colour available). This second stage is very unlikely to fail, but if it does then all possible
k-colourings are tried.

A different uniform model was proposed in Prémel and Steger [174]: here graphs are drawn uniformly
from the set of all graphs on vertex set [n] with no subgraph the complete graph K1 on (k + 1)
vertices, where k is fixed. Such graphs are whp k-colourable — see Kolaitis, Promel and Rothschild
[123]. [174] gives an algorithm which colours such graphs optimally in O(n?) expected time (and
which thus performs similarly in the uniform k-colourable model). The first stage of their algorithm
fails to find a forced k-colouring with exponentially small probability. The notion of forcing here is
that if the set of common neighbours of two vertices contains a (k — 1)-clique then these two vertices
are forced to have the same colour in any k-colouring.

Partition models

The partition model assumes that there is an (unknown) partition of the vertices into k blocks, edges
between blocks are present independently with some probability p, and there are no edges within
blocks. In this model we may also insist that the partition is ‘balanced’; in that each block size
is Q(n), or that the block sizes are nearly or exactly equal, or that the partition is generated at
random. The partition model with p about % and nearly equal block sizes is similar to the uniform
k-colourable model — see [46]. Most results are phrased in terms of the partition model.
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From now on we shall be interested in polynomial time algorithms that succeed with high probability.
Given sufficiently low failure probabilities, it may be possible to use such algorithms as the first stage
of a polynomial expected time algorithm as above — see Fiirer, Subramanian and Veni Madhavan
[80].

The first stage in the Dyer-Frieze algorithm above was successful with high probability since random
k-colourable graphs are dense. It is more of a challenge to k-colour sparser k-colourable graphs, and
several investigations have involved the partition model with p = p(n) — 0 as quickly as possible
(with k£ = 3 in particular). There is also interest in the dense case with & = k(n) growing as fast as
possible.

Partition models: sparse case

There are various methods based on ideas like counting degrees or numbers of common neighbours
(as with the mingreedy approach). These methods will work with high probability for the partition
model with not too small probability p and say k = 3, as long as we ensure that the blocks of
the partition are nearly equal in size. For example, if block sizes are nearly equal and p > n_%‘“,
then usually vertices in the same block will have more common neighbours than vertices in different
blocks: if we extend this idea and count paths of length more than 2 then we can colour with high
probability for p > n~!*% — see Blum and Spencer [19].

Petford and Welsh [165] report interesting simulation results for a Metropolis-type random recolour-
ing method, for a range of probabilities p (see also Zerovnik [206, 207]).

A very different method allows the probability p to be pushed down to ¢/n for a (large) constant
¢ (for k constant and blocks of nearly equal size). This ‘spectral technique’ of Alon and Kahale
[7] uses the fact that an approximation to the unknown colour classes can be read off from the
eigenvectors corresponding to the two smallest eigenvalues of the adjacency matrix of the graph
(with some high degree vertices omitted). This is the first phase. The approximate colouring is
then refined in two further phases. In the second phase, vertices are repeatedly recoloured with the
least popular colour amongst their neighbours. The third phase involves uncolouring vertices with
too few neighbours of some different colour. With high probability, the vertices remaining coloured
have the original (unordered) colouring, and the subgraph induced by the uncoloured vertices has
each component of size O(logn); and so we may complete the colouring by exhaustive search.

Research Problem 18 The analysis of [7] is not valid unless ¢ is sufficiently large. Can the
complete range of ¢ be covered by a polynomial time algorithm?

The partition model with many blocks

Suppose now that we let p be fixed and consider large k. Assume that all block sizes are Q(n/k).
Then two vertices in a given block B will tend to have more common neighbours than a vertex in B
and one in another block. This idea can be used to design an algorithm that will yield a k-colouring
with high probability as long as k = o((n/logn)?) Kutera [129]. In Kudera [130] it is shown that
the basic greedy colouring algorithm whp uses about n/logn colours when k is about ~ n¢ for
some € > 0.

The semi-random model

An extension of the partition model is the semi-random model — see Blum [18] and Blum and Spencer
[19]. Here there is an unknown partition as above, with k fixed; but now an adversary runs through
the pairs of vertices from different blocks and decides for each whether or not it should be an edge.
Once the adversary has made her choice for a particular possible edge then that choice is reversed
with probability p (the noise rate). The hope is to find methods that work even for low noise rates.

In this model, counting methods such as those mentioned for the sparse partition model will not
work, but methods based on the idea of forcing still do work. Turner’s [198] no-choice algorithm
works when p > n~%%¢ and each block size is Q(n). The ‘two-stage’ algorithm of Blum and Spencer
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[19] works for the same probabilities for the case k = 3 without restrictions on the block sizes. (If
BPP 2 NP then we cannot handle k > 4 without some restriction on the block sizes [19].)

An even more successful ‘forcing’ algorithm is the algorithm Link of [19], which works as follows. (A
similar algorithm and results are presented independently in Fiirer and Subramanian [79].) Given a
graph G and integer k > 3, create a graph H with the same vertices, and with two vertices adjacent
if in G the common neighbours contain a (k—1)-clique. If H has exactly k components then output
these as the colour classes for G. For k = 3 the algorithm Link works with high probability for
p > n~§%¢ and block sizes Q(n). The noise rate p here is sufficient to ensure that the probability
that two vertices from the same block are adjacent in H is well above the threshold for connectivity.
A similar result holds for any constant k.

Recently, Subramanian [191] has found polynomial expected time algorithms for colouring in the
semi-random model.

Research Problem 19 Can the eigenvector approach of [7] be extended to the semi-random model?

5.4 Other graph colouring problems

Frieze, Jackson, McDiarmid and Reed [67] considered the edge chromatic number (or chromatic
index) of G, , (with p fixed). They proved an upper bound of n=%"P) for the probability that this
equals the maximum degree plus 1. The result is obtained by analysing an algorithm that repeatedly
rips out near perfect matchings. This was recently significantly strengthened by Perkovic and Reed
[164] who describe a polynomial expected time algorithm for optimally edge colouring G, 1 /2. This
is not straightforward, as the deterministic algorithm of last resort needed to colour graphs on which
the first phase fails, runs in 2%"”) time.

Corresponding results for the total chromatic number are proved in McDiarmid and Reed [155] by
analysing an algorithm that incorporates the edge colouring algorithm of [67].

5.5 Colouring random hypergraphs

A weak colouring of a hypergraph is a colouring of the points so that no edge is monochromatic,
and in a strong colouring no two points in the same edge have the same colour. In Schmidt-Pruzan,
Shamir and Upfal [180] it is shown that a natural hypergraph version of the modified greedy approach
works well for weak colourings of suitable random hypergraphs. For strong colourings, a three stage
method works well, Schmidt-Pruzan [179]. In the first stage we pick a random partition of the
vertex set into sufficiently many blocks so that for each block we expect the edge-fragments of size
at least three to form a sparse random hypergraph. Such sparse hypergraphs are easy to colour
using a breadth-first search idea. We thus obtain a more refined partition. Finally, on each block
of the refined partition we have a random graph and we can use the familiar greedy approach.

Chen and Frieze [36] applied the ideas of [7] to the problem of colouring a randomly generated
(weakly) 2-colourable 3-uniform hypergraph and obtained similar results.

5.6 Enumerative approaches

Let  and y be non-adjacent vertices in a graph G. Let G}, denote the graph obtained by adding
the edge joining z and y; and let G’m’y denote the graph obtained by ‘contracting’ z and y to
form a single new vertex adjacent to each vertex which was adjacent to either = or y. Then by
partitioning the colourings according to whether or not z and y have the same colour, we see
that x(G) = min{x(G},),x(G3,)}. This gives a ‘branching’ for a branch-and-bound approach to
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determining x(G). We may ‘bound’ by using x(G) > w'(G), where w'(G) is the size of some clique
in G. Also, of course, we know the chromatic number of any complete graph.

For any graph G, let Z*(G) denote the minimum number of nodes in a corresponding search tree
which determines x(G). Consider the random graph G,, , with p constant. We might hope that
usually Z*(G,,p) is not too big. However, we have the following result of McDiarmid [146], in
the spirit of the result of Chvatal mentioned in Section 4. There is a constant ¢ > 0 such that
Z*(Gpp) > exp(cen(log n)z) whp. It follows that any algorithm based on this branch-and-bound
approach will be much slower asymptotically than methods based on enumerating stable sets — see
McDiarmid [150].

There is a natural enumerative ‘backtrack’ colouring algorithm that may be seen to fall into the
above framework. Wilf [204] showed however that if we simply try to test if x(Gnp) < 3, then the
method generates a search tree with expected number of nodes uniformly bounded. This is because
with p constant it does not take long to run into a complete graph K, — see also Bender and Wilf
[15], McDiarmid [150].

6 Graph Isomorphism

Suppose we are given two graphs G; = ([n], E;), ¢ = 1,2. Can we quickly tell whether or not
G1 = G5 i.e. is there a bijection f : [n] — [n] such that vw € E; if and only if f(v)f(w) € E2?
The exact complexity of this problem is not known and determining it remains an outstanding open
problem. It is solvable in polynomial time for graphs of bounded degree, Luks [142]. The first result
on the average case in this area is due to Babai, Erdds and Selkow [14]. They considered canonical
labellings of the graph G, 1/5. A canonical labelling is a partial function which maps a graph to
an ordering of its vertices such that a bijection which preserves orderings is an isomorphism and
vice-versa. In [14] they used the fact that whp the r = [3log,n] largest degrees are unique and
that furthermore, the remaining vertices have distinct adjacency relationships with these r vertices.

This particular result was strengthened by Karp [109], Lipton [137] and Babai and Kucera [13]. In
particular, Babai and Kucera describe an algorithm which runs in O(n?) expected time on Gni/2-
The algorithm describes a way of canonically labelling all but an extremely small proportion of the
graphs on vertex set [n]. At a given stage the algorithm will have produced an ordered partition
Vi,Va,..., V4 of [n] which is then refined. Each set V; of the partition is subdivided according to
the number of neighbours a given vertex has in each of the other sets Vj,j # i. After only two such
rounds we should find that h > n —logn/loglogn. There then follows a short enumerative search
for the lexicographically first order consistent with what has been constructed so far. This suffices
on the overwhelming majority of graphs.

Kucera [128] considered the case of G, where r is fixed. He describes an O(m) (= linear) expected
time algorithm, where m = rn/2 is the number of edges. The degree r is fixed here and Luks’ result
applies, but Kucera’s algorithm is faster and simpler. It is based on the idea that if M is the set of
vertices on shortest cycles of G, then no two vertices are likely to possess the same matrix (d;;(v))
where d;;(v) is the number of vertices at distance 4 from v and j from M.

7 Network Flow and Related Problems

7.1 Network Flow

The network flow problem is one of the most studied problems in combinatorial optimization. The
fastest known algorithm runs in O(mnlogn) time - Alon [5] - on a network with n vertices and m
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edges.

Some early work studied the complete graph K, with iid random edge capacities, Karp [107],
Grimmett and Welsh [90] and Grimmett and Suen [89]. In particular they show that whp the
minimum cut is the set of edges incident with the source or sink and so the maximum flow will be
asymptotically equal to nu, where the expected edge capacity p is independent of n.

Now consider the case of a single source and sink and edge capacities equal to 0 or 1. The problem
now reduces to that of finding a maximum number of edge disjoint paths from the source to the
sink. So consider G, ,, and the problem of finding the maximum number of edge disjoint paths
between vertex 1 and vertex n.

Suen [192] — see also Grimmett [86], Grimmett and Kesten [87] — studied the case where m = ¢n for
constant ¢ > 0. The minimum cut is no longer the set of edges incident with the source or sink. The
parts of the network that are near the source and sink resemble two branching trees. The maximum
flow is distributed as the minimum of two maximum flows through two branching trees (one each
for the source and sink).

These results are existential rather than algorithmic. Assume next that m is above the threshold
for connectivity. Hochbaum [95] gave an O(n) time algorithm for this problem, which does not of
course look at the whole graph. It is based on growing disjoint forests rooted at the sources and
sinks until the corresponding trees are large enough so that a matching can be found, pairing up
trees from different forests. Motwani [163] proved that Dinic’s classical algorithm [45] runs whp in
time O(mlogn/logd) due to the fact that whp every non-maximum flow has an augmenting path
of length O(logn/logd).

7.2 Transportation Problem

Hassin and Zemel [93] studied a probabilistic version of this problem where the underlying network
is a complete bipartite graph, the supplies and demands are arbitrary and the edge capacities are
random. They give conditions under which the problem is likely to have a feasible solution. Karp,
Motwani and Nisan [115] discuss linear time algorithms for random transportation problems. Again
it is the capacities which are random, the supplies and demands are required to satisfy certain
conditions. The algorithms are based on the idea that a random instance is likely to be close to
some fixed deterministic relaxation, which can be quickly solved and whose solution can be used to
help find a solution to the random instance.

Kucera [133] considered the case of an arbitrary planar directed network in which the edge capacities
are chosen uniformly and independently from [0, b], for some b > 0. A careful implementation of an
algorithm of Itai and Shiloach [96] is shown to run in linear expected time.

Karp [110] studied random assignment problems with independent weights. A nice modification
of a standard shortest augmenting path algorithm, [51] or [197], is shown to run in O(mnlogn)
expected time.

7.3 Disjoint Path Problems

Suppose we are given a graph G = (V, E) and a set of pairs (a;,b;), 1 < i < K of vertices. In
the Edge Disjoint Paths Problem (EDPP) we want to find paths P; joining source a; to sink b;
for 1 < i < K which are edge disjoint, or prove it is not possible. In the Vertex Disjoint Paths
Problem (VDPP), the vertices are all distinct and we want vertex disjoint paths. Both problems
are solvable in polynomial time if K is fixed, independent of the input, Robertson and Seymour
[176], but NP-hard if K varies. The problem is interesting for theoretical and practical reasons; the
latter interest comes from its use as a model for some communications problems.
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For random graphs Gy, the VDPP was considered by Shamir and Upfal [186] who gave a linear
time algorithm which whp succeeds in finding paths provided m > 2nlogn and K = O(y/n).
It should be remarked that here the two sets of vertices are fixed before the random graph is
constructed. The problem was also considered by Hochbaum [95] who gave a o(m) time algorithm
when K = O(y/d/logn), d = 2m/n is the average degree. Both algorithms are based on growing
disjoint forests rooted at the sources and sinks until the corresponding trees are large enough so
that for each ¢ the tree rooted at a; can be joined to the tree rooted at b;.

The above approach is simple and efficient, but does not address the problem when the random
graph is constructed first and then the sources and sinks are chosen by an adversary. Suppose
2m/n —logn — oo so that Gy m is connected whp. Let D be the median distance between pairs
of vertices in G, ;. Then D = O(logn/logd) whp. Clearly it is not possible to connect more than
O(m/D) pairs of vertices by edge-disjoint paths, for all choices of pairs, since some choice would
require more edges than all the edges available. Also, some restriction on the number of times a
vertex can be a source or sink is necessary. Thus the following theorem of Broder, Frieze, Suen and
Upfal [30] is optimal up to constant factors.

Theorem 19 Suppose 2m/n — logn — oco. Then there exist positive constants a and B such that
whp, for all A ={a1,az,...,ax},B ={b1,bs,...,bx} C [n] satisfying

(i) K = [amlogd/logn],

(ii) for each vertex v, |{i:a; = v}| + |{i: b; = v}| < min{de(v), Bd},

there exist edge-disjoint paths in G, ,, joining a; to b;, for eachi =1,2,..., K. Furthermore, there
is an O(nm?) time randomized algorithm for constructing these paths.

The strategy for proving Theorem 19 is quite different from [186] and [95]. First of all the sources
and sinks are joined, by a network flow algorithm, to randomly chosen d;, b;, 1 <i < K. This has a
spreading out effect, similar to that achieved by the method of Valiant and Brebner [201] for routing
messages in the n-cube. The new sources and sinks are then joined up by utilizing random walks.

Research Problem 20 Can the results of Theorem 19 be extended to Gy, » — in particular can one
whp link K < ern/logr arbitrary pairs of vertices by edge disjoint paths for some constant ¢ > 0%
Here we assume r is constant as n — 00.

The VDPP is discussed in [31]. Using similar ideas to those above it is shown that:

Theorem 20 Suppose 2m/n —logn — co. Then there exist positive constants a, 3 such that whp,
for all A ={ay,as,...,ax},B = {b1,ba,...,bx} C [n] satisfying

(i) AnB=40,

(i) 4] = |B| = K < eplexd

— logn ~’

(iii) |INW)N(AUB)| < BIN(w)|, WwevV,

there are vertex disjoint paths P; from a; to b; for 1 < i < K. Furthermore, there is an O(nm?)
time randomized algorithm for constructing these paths.

Here N(v) is the neighbour set of vertex v. This is again optimal up to the constant factors «, 3.

19



8 Shortest Paths and Minimum Spanning Trees

8.1 Shortest Paths

Most work in this area has been restricted to that of finding shortest paths between all pairs of
nodes in a complete digraph with independently chosen random non-negative edge weights. More
generally, one considers distributions which are endpoint independent. Loosely, this means that if
the edges leaving a vertex are sorted according to their cost, then the associated endpoints occur
in random order. Spira [188] showed that using a heap in a version of Dijkstra’s algorithm [44]
gave a solution in O(n?(logn)?) expected time. This was improved by Bloniarz [16] and Frieze
and Grimmett [66]. Moffatt and Takaoka [160] subsequently reduced the expected running time
to O(n?logn). Recently, Mehlhorn and Priebe [157] show this algorithm runs in time O(n?logn)
whp and not just in expectation. They also give an (nlogn) lower bound for the single source
problem under a class of distributions.

Luby and Ragde [139] consider the problem of finding a single shortest path between a source s and
a sink ¢. They show that searching simultaneously from both s and ¢ can be efficient on average. For
example they give a ©(y/nlogn) time bound assuming sorted edge lists and edge lengths chosen
independently from “reasonable” distributions.

The are only a few papers we know of that deal with arbitrary, as opposed to non-negative weights.
Kolliopolous and Stein [124] modify the Bellman-Ford dynamic programming algorithm and show
that a single source problem can be solved in O(n?logn) expected time when the distribution is
endpoint independent. Their model allowed negative cycles. Cooper, Frieze, Mehlhorn and Priebe
[41] consider a model in which the arc costs ¢; ; are generated from

Cij = —U;i +uj + 55,

where v; ; > 0. It is assumed that the v; ;’s are independent, identically distributed, bounded and
their common probability function F' satisfies F'(0) > 0. The u;’s are independent and bounded
with mean zero. The algorithm does not see the u’s and v’s, only the values ¢; ;. They show that a
single source shortest path problem can be solved in O(n?) expected time and an all pairs shortest
path problem can be solved in O(n?logn) expected time.

Research Problem 21 Determine to what extent the results on non-negative distributions can be
extended to the case where negative weight edges are allowed, but negative cycles are unlikely.

Research Problem 22 Find a o(n?logn) expected time algorithm for the all pairs problem under
a natural class of distributions e.g. i.i.d. uniform on [0,1].

Various authors have considered the lengths of shortest paths when the edge weights are random.
For example, building on work of Kulkarni [135], David and Prieditis [43] have shown that if the
edges of the complete digraph on vertex set [n] are given edge lengths which are independent negative
exponentials with mean p then the expected distance between two fixed vertices is

1 n—1
(n—1p ;

| =

8.2 Minimum Spanning Trees

Karp and Tarjan [119] considered the problem of finding a minimum weight forest in G, ,,, when
the edge weights are iid. They give an O(m + n) expected time algorithm based on the algorithm
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of Cheriton and Tarjan [37] — see also McDiarmid [151]. Only recently has this been emulated
for a randomised algorithm on an arbitrary graph — Karger, Klein and Tarjan [104]. Frieze [60]
showed that, if the edges of the complete graph K, has iid edge weights uniform on (0,1), then
as n — oo the expected weight of the minimum spanning tree tends to ((3) = >, 1/i® ~ 1.2.
This was done by analysing the lengths of edges added by the greedy algorithm for constructing a
minimum spanning tree. For related results see Timofeev [195], Frieze and McDiarmid [73], Avram
and Bertsimas [12], Aldous [2, 3] and Janson [97]. Note that the paper [2] give ‘local’ properties of
the random minimum spanning tree, such as the expected proportion of vertices a given degree.

Research Problem 23 Determine the likely shape of a minimum spanning tree. For example, is
the diameter of order logn whp ¢

McDiarmid, Johnson and Stone [154] investigate the behaviour of Prim’s tree growing method for
finding a minimum spanning tree, when applied for example to the complete graph with iid edge
weights.

8.3 Connectivity

The paper of Karp and Tarjan [119] also shows that depth first search can be used to find all
connected components or 2-connected components in O(n) expected time. Thus in the average case
one need not look at all edges. Karp [112] used similar algorithms to find the strong components of
a random digraph in O(n) expected time.

9 Graph Bisection

Here we are given a graph G = (V, E) with n vertices, n even, and the problem is to find a partition
of V into two equal sized subsets Vi,V:2 such that the number of edges between V; and V; is
minimised. The minimum such number of edges is called the bisection width of G. If we take Gy
as a model of a random input then we find that whp all relevant cuts have ~ m/2 edges, provided
m is sufficiently large, namely m/n — oo. Finding the exact bisection width whp in this model is
still an open problem.

Positive results can be obtained if we consider sampling uniformly from G(n,m,b), the set of graphs
with vertex set [n], m edges and bisection width b. Basically the idea is that if b is significantly
smaller than m /2 then there will be a unique bisection of size b and it will be easy to find. Dyer and
Frieze [46] considered the case where m = Q(n?) and show how to solve the problem in polynomial
expected time if b < (1—€)m/2 for € > 0 fixed. The algorithm is based on comparing vertex degrees,
but requires some results on jumbled graphs — Thomason [194] — to show that the algorithm can
check its success in polynomial time.

Boppana [27] improved these results by giving a polynomial time algorithm when m is as small as
Q(nlogn). For a graph G on [n] and d = (d1,ds,. .. ,d,) let

11—z, 1
fe(d,z) = Z #—szi(mf—l)-
(i.5)€E i=1

For S C [n] let = z(S) be defined by z; =1,i € S and z; = —1,i ¢ S. Then fg(d,z(S)) is the
number of edges in the cut S,S. So in general min, fg(d,z) is a lower bound on bisection width.

Boppana shows that if
0<b<m/2—-5y/mnlogn (7
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then whp if d* yields maxq min, fe(d,z) then b = fg(d*,z*) = min, fe(d*,z) and furthermore
z* = 2(S*) where S* is the optimum bisection.

Jerrum and Sorkin [100] considered a similar model and showed that simulated annealing (actually
the Metropolis algorithm) was also likely to solve the problem. The requirements for b,m are more
stringent than (7), but the result is nevertheless interesting since simulated annealing is often used
in practice.

An earlier paper of Bui, Chaudhuri, Leighton and Sipser [32] considered a similar model of regular
graphs and used flow techniques to find the bisection.

10 Counting Problems

Counting is a pervasive human activity and there has been a good deal of research on problems
involving counting occurences of combinatorial substructures of given structures. Consider for
example the beautiful determinantal formula for the number of spanning trees of a graph, see
for example Lovész [138]. On the other hand, Valiant [200] showed that it is hard to compute the
number of matchings in a graph and defined the class #P.

Research Problem 24 Find a #P-hard problem which is exactly solvable whp on some model of
a random graph. (It is appropriate to exclude here trivial problems where the answer is zero whp.
For example, counting 3-colourings of G, 172 would be such a case.)

Karp and Luby [114] introduced the notion of a Fully Polynomial Randomized Approzimation
Scheme (FPRAS). Jerrum and Sinclair’s paper on the 0-1 permanent?[99] includes a proof that
there is an FPRAS for counting perfect matchings in almost every G, . (Motwani [163] filled in a
gap near the threshold for the existence of perfect matchings). Frieze and Jerrum [68] showed that
an algorithm due to Karmarker, Karp, Lipton, Lovész and Luby [105] for estimating a 0-1 perma-
nent is also almost always an FPRAS. Here one computes a quantity X whose expectation is the
permanent and the issue then is how large is the variance of X. Rasmussen [175] gave a particularly
simple algorithm for estimating the permanent. It uses ideas similar to those found in Hammersley
[92] and Knuth [121]. Here he computes a different quantity ¥ = Y (A) whose expectation is the
permanent and he shows that the variance is small whp provided mn=3/2 - co as n — 0. Y is
computed recursively by Y (A4) = d;Y(A;) where d; is the number of 1’s in row 1 of A and A4, is
obtained by choosing a random 1 in row 1 and then deleting row 1 plus the corresponding column.

Frieze, Jerrum, Molloy, Robinson and Wormald [69] give an FPRAS for counting Hamilton cycles
in almost every G, ,, r fixed. They do this by reducing approximate counting of Hamilton cycles
to approximate counting of 2-factors.

Research Problem 25 FEztend the result on counting Hamilton cycles in G to the case where
r = 00.

Frieze and Suen [77] give an algorithm for approximately counting the number of Hamilton cycles in
the random directed graph D, ,,, provided mn~3/? - 0o as n — co. Here approximate counting of
Hamilton cycles is reduced to approximate counting of perfect matchings. Rasmussen [175] extended
his scheme to cover counting directed Hamilton cycles in this range.

3/2

Research Problem 26 Can the requirement mn~3/? — oo as n — oo in [77] for counting Hamil-

ton cycles in Dy, ., be substantially weakened?

2The permanent of an n X n 0-1 matrix can be interpreted as the number of perfect matchings in an associated
bipartite graph.
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Alon, Frieze and Welsh [6] show that the Tutte polynomial Tg(z,y) of the random graph G, , can
be evaluated in polynomial time whp for z,y > 1 and p > Klogn/n, K = K(z,y).

Research Problem 27 Improve the results of [6] on random graphs by removing the lower bound
on p and extend the analysis to G, r.

Research Problem 28 Find an FPRAS for estimating any of the following in a random graph:

(a) the number of k-cliques.

(b) the number of trees of all sizes.
(c) the number of spanning forests.
(d) the number of acyclic orientations.
(e) the number of Euler tours.

(£f) the number of cycles.

The same caveat about trivial problems applies here as in Problem 24.

11 Parallel Algorithms

In this section we consider parallel algorithms that are efficient on average. Generally speaking we
restrict our attention to cases where the worst-case parallel complexity seems bad, but the average
case is good. The model of computation is usually the PRAM.

11.1 Hamilton Cycles and Matchings

Frieze [61] considered the problem of finding a Hamilton cycle in Gy, , where 0 < p < 1 is constant.
A simple recursive patching algorithm was described which determines whether or not Gy, ; is
Hamiltonian in O((loglogn)?) expected time using n(logn)? processors. Using more sophisticated
computational techniques McKenzie and Stout [156] were able to reduce the expected running time
to O(log* n) and the number of processors to n/log* n, thus yielding an algorithm with optimal
expected work.

Coppersmith, Raghavan and Tompa [42] considered the sparser case where the edge probability
p > c(logn)/n, for ¢ sufficiently large. They give an algorithm which whp finds a Hamilton cycle
in O((logn)?) time and uses nlogn processors. Their idea is to generate a (near) random 2-factor,
which whp has O(logn) cycles and to then patch these cycles together by extension and rotation.

Shamir and Upfal [184] considered finding perfect matchings in a distributive model of computing.
They show that if m > Knlogn for large enough K then whp a perfect matching can be found in
Gn,m in O((logn)?) time.

The algorithm of Karmarker et al [105] for estimating the permanent involves computing a sequence
of randomly chosen determinants. The analysis of Frieze and Jerrum [68] shows that this algorithm
is implementable as an NC algorithm whp when the input matrix is n x n 0-1 with m randomly
chosen 1’s and mn—3/2 = 0o as n — oo.

Research Problem 29 Can perfect matchings or Hamilton cycles be found in O(logn) time at
the respective hitting times for their existence?
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11.2 Two lexicographic problems
11.2.1 Maximal independent sets

There are a number of efficient parallel algorithms for finding a maximal independent set in a graph.
On the other hand the problem of finding the lexicographically first such set (LFMIS) is complete
for P. Thus it is unlikely that an NC algorithm exists for this problem.

Coppersmith, Raghavan and Tompa [42] described a natural parallel version of the greedy maximal
set algorithm, PARGREEDY, and showed that it runs in O((logn)?/loglogn) expected time on
Gr.p, uniformly over p. Subsequently, Calkin and Frieze [33] showed that it actually runs in O(logn)
time (uniformly over p). See also Calkin, Frieze and Kudera [34].

Recently Chen and Frieze [35] extended the result of [42] to hypergraphs. The model is H(n, k,p)
where each of the (Z) k-edges is chosen independently with probability p. They describe a parallel
algorithm which runs in O((logn)?/loglogn) expected time (uniformly over p). The algorithm uses
O(m) processors, where m =~ (Z) p is the number of edges.

Research Problem 30 Combine the analysis of [33] and [35] to reduce the upper bound on expected
running time of the algorithm in [35].

11.2.2 Depth First Search Trees

Similarly, the problem of finding a lexicographically first depth first search tree (LFDFST) of a
graph G is complete for P. Dyer and Frieze [48] discuss finding the LFDFST of G, ,, 0 < p < 1
constant. Here whp the LFDFST consists of the lexicographically first maximal path (LFMP),
which is of length n — o(logn) plus a few vertices attached near one end. Whp the LFMP splits
into small pieces which can be found in parallel and put together. Their algorithm uses n processors
and runs in O((logn)?) expected time.

Research Problem 31 FExtend the analysis to the case p — 0.

11.3 Vertex Colouring

As already mentioned in Section 5, in our current state of knowledge, we can only efficiently colour
random graphs with about twice the number of colours that are really needed i.e. find 2-optimal
colourings.

An early paper of Shamir and Upfal [185] considered colouring random graphs in a distributed
model of computation. Their algorithm runs in O(nplogn) rounds on G, and gives a (2 + J)-
optimal colouring. Frieze and Kucera [71] considered G, where 0 < p < 1 is constant. Using
a parallel version of the standard greedy algorithm they show that such a graph can whp be
(2 + &)-optimally coloured in O((logn)?t°()) time using O(n?/(logn)?) processors. Coppersmith,
Raghavan and Tompa [42] gave a more complex algorithm which works whp for p — 0 as well. It
runs in o((logn)%) time and uses O(n2p) processors.

Research Problem 32 Find a parallel algorithm which (2+0)-optimally colours Gy, p but improves
the running time of the algorithm of [42].

Kucera [132] considered the random k-colourable model for which efficient sequential optimal colour-
ing algorithms are known to work whp. He showed that if k = (logn)°(®) and the graph G is drawn
uniformly from the set of k-colourable graphs with n vertices and (n?p) random edges (p constant)
then his algorithm will k-colour G in constant expected time.
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11.4 Shortest paths

Frieze and Rudolph [76] considered the all-pairs shortest paths problem when the edge lengths
are independent uniform [0,1]. They showed that a standard matrix product algorithm can be
implemented in O(loglogn) time using n® processors.
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