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Approximation algorithms for the
m-dimensional 0-1 knapsack problem:
Worst-case and probabilistic analyses
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We describe a polynomial approximation scheme for an m-constraint 0-1 integer programming problem (m fixed) based on the use
of the dual simplex algorithm for linear programming.
We also analyse the asymptotic properties of a particular random model.

1. Introduction

This paper is concerned with the m-dimensional 0-1 knapsack problem:

n

Maximise z= ) ¢;x;, (1.1a)
j=
Subjectto Y a,x;<b,, i=1,..,m, (1.1b)
Jj=1
0o<x,<l, j=1,...n, (1.1c)
x; integer, j=1,..,n (1.1d)

where for all 4, j, a;;=0, b;, ¢;>0. m is considered to be a fixed constant. The problem is known to be
NP-hard even when m =1 (see Garey and Johnson [5]) and so there is interest in finding heuristics which
work in polynomial time (polynomial in the input length) and have a guaranteed accuracy.

Given €> 0 we say that an algorithm is an e-approximation algorithm if it always produces a solution #
with objective value 2 that satisfies

Z*¥—i<ez* (1.2)

where z* is the maximum value of z in (1.1).

The aim of this paper is two-fold. In Section 2 we present a polynomial approximation scheme for
problem (1.1), i.e. for each e>0 we describe an algorithm 4, which is an e-approximation algorithm and
runs in time polynomial in the length of the input description of (1.1).

In Section 3 we conduct a probabilistic analysis of this problem and obtain reasonably tight bounds for
the asymptotic behaviour of the objective value z*. A simple consequence of this analysis is that with
probability - 1 as n— co the solution obtained by rounding down the solution to the linear program
(1.1a)—(1.1c) satisfies (1.2) with e =n"“ provided a<<1/(m + 1).
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Previous work

As regards polynomial approximation schemes the case m =1 has been studied most extensively. Sahni
[12] gave the first polynomial approximation scheme generalising some work in Johnson (7]. The paper by
Ibarra and Kim [6] gave a fully polynomial approximation scheme which was improved by Lawler [10].

The case m =1 but with (1.1c) replaced by x;=0 for j=1,...,n was analysed by Chandra, Hirschberg
and Wong [2]. They could not extend their approach to (1.1) because they could not solve the linear
program (1.1a)—(1.1c) in polynomial time.

With the advent of Khachian’s algorithm [8] it becomes straightforward to extend their method to this
case. Oguz and Magazine [11] do precisely this.

In Section 2 we give an alternative polynomial approximation scheme.

2. An approximation scheme

Let ¢>0 be given. We shall describe an e-approximation algorithm A4, that runs in polynomial time
assuming € and m are fixed. It is not fully polynomial, i.e. polynomial in 1 /¢ as well, and indeed Korte and
Schrader [9] have shown that no fully polynomial approximation scheme exists for this problem unless
P=NP.

Next let k = min(n, [m(1 —€)/e]), N={1,2,...,n} and for SCNlet T(S) = {t ES: ¢, > min(c;:j € §)}.

Let LP(S) denote the linear program obtained from (1.1) by replacing (1.1d) by

{1, JES,

%o, jeT(s).

J

Let xB(S) denote an optimal basic feasible solution to LP(S).

A, proceeds by solving LP(S) for all S C N, | S| <k and then rounding down xB(S)..4, outputs the best
solution to (1.1) that is found in this way. Because m is fixed, the ‘difference’ between x®(S) and | x2($)]
is not ‘too large’.

We can now formally describe the proposed algorithm 4,.

begin
2:=0
for SC N with |S|<k do
begin
let b(S)=b,—2,csa;; fori=1,....,m;
if b,(S)=0fori=1,...,m
then do {b,(S) <0 - LP(S) is infeasible}
begin
construct a solution xB(S) to LP(S);
round xB(S) to an integer solution x!(S), i.e.
xj(S)= I_x}’(S)J forj=1,...,n;
let z'(S)=27_,¢;x}(S);
if 2<z!(S) then 2:= 2!(S); %:=x!(S)
end
end
end

We first show

Theorem 2.1. £ is an e-approximation.
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Proof. Let x* be an optimum solution to (1.1) and let $* = {j: x* =1).
If | S*| <k then 2= z'(S*)=z* implies 7 = z*,
Otherwise let $* = (i,,...,i,} where ¢; = --- =¢,;. Let $¢ ={i|,...,i;} and 6= Ef;,c,-,. It follows that

JEN—(S¥ U T(Sy)) implies ¢, <o /k. (2.1)

Now
n n
*< Y ex(SH)< X ¢x)(SF)+8
j=1 j=1
where

8= 3 ¢; and D={jEN:x}(S})>x}(5})}.
jeD
Now j € D implies x; is a basic variable in xB(S). Thus |D|<m. Also DN (S} U T(S}))= & and so
J € D implies ¢; <0 /k by (2.1). Thus § <me/k and

2*<i+mo/k<i+mi/k asi=o
from which (1.2) follows easily.

We now have to show that 4, runs in polynomial time, i.e. the maximum running time must be shown to
be bounded by a polynomial in the ‘length of space’ needed to describe the problem [5].
Let

L= § il(a,,)+ 21(b)+ El(c)

i=1 j=1

where I(¢) =[log,(£+1)). Then L is a measure of the length of space needed to describe the problem,
assuming that the coefficients a;, c;, b; are all integers.

The main question that needs to be resolved concerns how LP(S) should be solved.

In the following description we shall for simplicity assume S # 2.

If Khachian’s algorithm (as described by Gacs and Lovasz [4]) is used the largest component in the
worst case execution time is O(n*L) multiplications of real numbers stored to O(nL) precision. Each
multiplication takes O(nLlognL loglognL) time (see Aho, Hopcroft and Ullman [1]) and so the time
complexity of the whole approximation algorithm will be

O(n**3L?log nL loglognL) (2.2)

as there are O(n*) sets S with |S|<k. (Remember that m is considered to be a constant here).

Alternatively if the lexicographic dual simplex algorithm is used as described below, the solution of
LP(¢) requires O(n™* ') multiplications and divisions on integers with no more than O( L) bits. The overall
algorithm will now have time complexity

O(n™**+1L1og Lloglog L). (2.3)

It is apparent that (2.3) is smaller than (2.2) for m <4, and for m =35 their relative sizes depend on the
relative size of n and L. Note that L must be considered to grow without bound otherwise problem (1.1) is
solvable in polynomial time using dynamic programming,.

Dual simplex algorithm

We can use the dual simplex algorithm as there are no more than (") = O(n™) dual feasible bases to

"

(1.1) and this gives a satisfactory upper bound to the number of iterations needed. Note that we cannot use
the (primal) simplex algorithm as there could be O(2"("}™)) feasible bases to (1.1). The nicest way to



A.M. Frieze, M.R.B. Clarke / m-dimensional 0-1 knapsack problem 103

describe the dual algorithm is in conjunction with the Tucker—Beale simplex tableau—see for example
Simmonard (13, pp. 88-91].
Let N* ={1,...,m+ n}. For each I C N™ such that | I| = m and such that the columns of coefficients of
variables x;, i € I, are linearly independent (x,,,, |,...,X,,+, are slack variables) there is exactly one tableau
x=py+ 3 pi(—x;). (2.4)
jel
Here x =(x¢, X,...,X,,+,) Where x, = z and (2.4) is the unique way of expressing x;,, i =0, 1,...,m+nin
terms of x; for j€J=N* —I. (Note that for i €J, (2.4) says x; = x,).

Given I such that (2.4) exists we assign values v=(v,,v,,...,0,.,) to the variables by (see also (2.6))
0 forieJand p,>0,
j <
0= 1 fori€J and p; <0, (2.5)
Pio— 2 pijv; fori€l.
jeJ

Here >0 means lexicographically positive—i.e. the first non-zero component is positive.
Note that for any i €J such that i>n, p, <0 is not assigned a value by (2.5). This is because throughout
the algorithm we maintain

i€Jandi>n—-p,>0. (2.6)

In this way we ensure that v is a dual feasible basic solution to (1.1).

The set I used to start the algorithm is {n+ 1,...,n + m} which clearly satisfies (2.6).

By examining row 0 of (2.4) it is apparent that for any [ satisfying (2.6) that v, is an upper bound to the
maximum objective value of LP(¢). Thus if v is feasible as well then v is optimal. If v is infeasible then
there exist / € I such that

v,<0 (2.7a)
or
0,>1 and I<n. (2.7b)
If (2.7a) holds we choose k by
Pi/Pu=lex.max(p;/p,;: p;;# 0 and p,/p,;<0). (2.8a)

Note that if (2.7a) holds the index k& is well defined otherwise one can deduce that LP(¢) is infeasible
which it clearly isn’t. In general the calculation of 5(S) in A4, determines whether or not LP(S) is feasible.
If (2.7a) does not hold and (2.7b) holds we choose k by

P/Pu= lex.min( P;/PijPy; % 0and p;/p,; > 0) . (2.8b)

Again the index & will be well defined.
Having found k we pivot, i.e. replace by (/U {k}) — {I}. The effect on the tableau is summarised by
(’ denotes an updated value):

p,=—p,/Py (p;and not p because of the indexing convention), (2.9a)
P}zl’j_(P/j/sz)Pj» JEW - {k})U {0}, (2.9b)
v =0—(8/pu)Px (2:9¢)

where
s=1v in case (2.7a),
" lo,—1 incase (2.7b).

(2.9a), (2.9b) are standard pivot formulae and (2.9¢) indicates that in case (2.7a) we ‘drive’ v, up to zero
and in case (2.7b) we ‘drive’ v, down to 1. (See (ii) below.)



104 A.M. Frieze, M.R.B. Clarke / m-dimensional 0—1 knapsack problem

The following properties can be observed:

(i) j €J — {k}, v; = v; or equivalently p/ >0 < p;>0;

(ii) in case (2.8a) p; >0 and so (2.6) is maintained throughout. In case (2.8b) p; < 0;

(iii) v’ <v. '

From (iii) and the fact that a unique v is associated with each I giving rise to a tableau we deduce that
the algorithm does not cycle and that after O(n™) iterations a feasible and hence optimal solution to LP(S)
can be found.

Assuming the coefficients p;; are stored as rational numbers in which numerator and denominator are
relatively prime the sizes of these integers in absolute value are bounded by subdeterminants of the original
matrix and hence require O(L) bits. As each pivot operation requires O(n) arithmetic operations—m is
constant—we have expression (2.3).

Oguz and Magazine [11] have shown that for any k there exist problems for which (1.2) can be made
arbitrarily close to equality.

We can also apply these ideas to covering problems of the form

n

minimise Y, ¢;x;,
Jj=1

n

subjectto Y a,x;=b, i=1,..,m,
J=1
x;=0orl, Jj=1,...,n

simply by rounding up the solutions to LP(S). (It is again assumed that all coefficients are non-negative.)

3. Random problems

In this section we study the quality of the solution to (1.1) obtained by simply rounding down the
solution to LP(¢). We analyse this from a probabilistic viewpoint and show that for a simple model its
asymptotic properties are extremely good.

We shall assume now that ;=1 for i=1,...,m and that all other coefficients are uniformly and
independently distributed in the interval [0,1].

We take this as a model because of its simplicity and because any problem can be reduced by scaling to
one with coefficients between 0 and 1.

In these circumstances let Z,,, be the random variate whose value is the maximum objective value to
(1.1). By considering upper and lower bounds to Z,, we will be able to get a good idea of its asymptotic
nature.

The main tool is the following simple lemma:

Lemma 3.1. Let U,,..., U, each be independently distributed as the maximum of p independent uniform random
variates in [0,1], i.e. Pi(U;<a)=a”’ for 0<a< 1. Similarly let V\,..., V, be independently distributed as the
maximum of q uniform [0,1] random variates. Let R,=V,/U, for j=1,...,n. (We ignore the zero probability
events U;=0) and let R ., denote the value of the kth largest of R,,...,XR,.

Then for integers a, b> 0 and 1 < k <1< n we have

exp(Usoli) = ( é‘.o( ',')q'p"-'e,)/((p+q)"‘2(p+q+a)(p+q+b))

where
1 r=0,1,....,k—1,

o< IL(w/(a+p)), r=k,.. -1,
=3 =k )

r

0,_, H (ro/(a+b+1p)), r=i,...,n.
=1

r~ s
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The proof of this lemma is a long but straightforward exercise in elementary integration and is omitted.
A lower bound for Z,,,,,

Let w;=max(a,;:i=1,...,m) forj=1,...,n and let

n

X,,=max ) ¢x;, (3.1a)
j=1
subjectto ) wix; <1, (3.1b)
j=1
(1.1¢) and (1.1d). (3.1¢)

Clearly X,,,<Z,,, as any x satisfying (3.1) will also satisfy (1.1).
Notation

A proposition dependent on the integer # is said to hold almost surely (a.s.) if the proposition holds with
probability tending to 1 as n — co.
For infinite sequences of non-negative terms u,, v, we write ¥, ~ v, if

(1—0o(n))v,<u,<(1+0(n))v, (3.2)

where o(n) denotes as usual some function that tends to zero as n — co.

We shall also write u,, ~ v, a.s. if (3.2) holds a.s.

Problem (3.1) is a one constraint linear program and so X,,,, is easy to determine: Using Lemma 3.1 we
obtain estimates of means and variances useful in computing X,,,. Fortunately these variances are small
enough so that the Chebycheff inequality can be used to prove

Lemma 3.2.
X,,~a,n/"* g, (3.3)

where a,, = ((m+1)"/(m™(m + 2)))'/"* ",

Proof. It is well known that one can solve the linear programming relaxation of (3.1) by
(a) ordering the indices as (1), (2),...(n) so that

/Wi = /Wy = 7 Z Cny/ Wiy
(b) finding ¢ such that
wayt o tw < T<w+ - Fwg,
(c) then putting
xm=l forj=1,...,1,
Xeen=Wa T o Wy~ 1
x;=0 forj=t+1,...,n
(of course ¢ may not exist in which case x; =1 for j=1,...,n solves (3.1)).
We shall show that
Xoin a.s. (3.4)

and this will imply (3.3) as X, < X,,, <X, + 1.
For future reference we refer to the ¢ in (3.4) as t(m, n).

—_ e ~ 1/(m+1)
=cyt +ey~an
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We shall now use Lemma 3.1 to show that if k=k(n)— o0 as n— 0 and k<n'/"*" then, where
W,=wyy+ -+ +wyyand Co=cyt -+ +eyy,

Exp(W,) ~ (m/ (m+2))((m+1)/n) /" 0/,
Var(W,) = O(k@m+ 1/ /n2/m),
Exp(C,)~k(m+1)/(m+2),
Var(C,) =0(k).
Then putting k* = 8,,n"/("*D where B, = ((m+ 2)"/m"(m+ 1))"/"*D we find
Exp(W¢)~1,
Var(Wp) = O(n~1/mim+ D),
Exp(C}) ~a,,n'/tm+h,
Var(C¥) = O(n'/(m*h),
Using the Chebycheff inequality we can easily show from (3.5) that

t(m,n)~k* as.

Then using the same inequality in conjunction with (3.6c), (3.6d) will prove the lemma.

Proof of (3.5a). From Lemma 3.1 with p=m, g=1,a=1 and b=0 we have

k—1 n r
Exp(wy) = | 2 (F)m "+ gk(’;)m"-fﬂ (tm/(tm+1))| /((m+1)"""(m+2)).

t=k

r=0

Now one can easily show using induction that
(k=1 /r)""< Il (tm/(tm+1))<(k/(r+1))"" forr=k=>1.
=k

Thus putting e = 1/(m + 1) we have
Exp(w) < ((m+1)/ (m+2))k*/s

where
S= zo(ﬁ)er(l—e)""(r+ 1)
We now use the Chernoff bounds [3]): for 0 << 1
(1—-B)€n R
ny\ _r n—r —B2ne
S (Fea-grTsetnn,
“ 2
§ (N)et—greesmn
r=(1+B8)En

In particular putting 8 =1 we get
en/2

> (';)e’(l —¢)" TeT"/B,

r=0

Now putting 8= (logn/n)'/? we obtain

S<e-r/b4 (l/m)n/m(zl/mn—c/z +n2+ (l/(l - (logn/n)l/z))‘/m)

s(l/cn)'/'"(l +y,(logn/n)'/2) for some y, > 0.

(3.5a)

(3.5b)
(3.5¢)
(3.5d)

(3.62)
(3.6b)
(3.6c)
(3.6d)

(3.7)

-
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Thus
Exp(w,) <((m+1)/(m+ 2))(k/cn)'/m(1 + y,(logn/n)l/z). (3.8a)
" A similar argument now gives
Exp(wey) = ((m+ 1)/ (m +2))((k = 1)/en) """ (1 = y,(log n/n)"/?) (3.8b)
for some vy, > 0.

Using the fact

.k i'/m= (m/ (m+ 1))k D/7(1 4 o(k)

i=

we obtain (3.5a).
Proof of (3.5¢). As w,,,/cny =+ =W, /¢, to get Exp(c,,) we apply Lemma 3.2 with p=1, g=m,
a=1and b=0and n—k + 1 in place of & to get

n—k n

Exp(c(r,) = E(:’)m’-f- > (;’)m'ﬂ, /((m+l)"—'(m+2)).

r=0 r=n—k+1

We are only interested in small k& and for these values the first summation dominates the second giving
Exp(c(x)) ~ (m+1)/(m+2) and (3.5¢) follows immediately.
Proof of (3.5b). Using Lemma 3.1 we obtain

Exp(wg,) < (k(k+ 1)(m+1)/n2)"" ((m+1)/(m+ 3))(1 + v;(log n/n)'?) (3.92)
for some y, >0,

Exp(win) < (K(1+ 1) (m+1)2/n2)"" ((m+ 1)/ (m+2)")(1 +v,(logn/n)'?)  (3.9b)
for some v, >0.

We now express the variance Var(W, ) by

k k-1 k
var(Wk)= 2 )\s+2 2 2 F’:l
s=1 s=1=s+1
where
2 2
A.\' = Exp(w(s)) - EXP( W(s))
and

ps, = Exp( W(s)w(:)) — Exp( W(s))ExP( W(:))-
From (3.9a) we can deduce that

k
2 A_‘, is O(kl+2/m/n2/m).

s=1

From (3.8b) and (3.9b) we deduce that
K, is 0((t/n2)'/'" + (st/nz)'/m(logn/n)'/z).

For m=2 it is clear that we can ignore the second term as s <n'/("*!_ When m =1 however we can
replace (logn/n)'/2 by 1/n in (3.8).

Here 6, of Lemma 3.1 is simply k/(r + 1). One then uses (?)/(r+ 1)=(7}1)/(n+1) to give Exp(w))
=4k/(n+1)— O((3)") when k<n'/2,
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Thus
k—1 k
S 3 wisO(kam O/ /)
s=1t=s5s+1

and (3.5b) follows immediately.
The proof of (3.5d) is similar (and easier).

We immediately obtain a nice tight asymptotic result for Knapsack Problems (m = 1):
Theorem 3.1. Z,,~(2n/3)!/? a.s.
Proof. X,,=Z,,,.

For m =2 all we know at present is

Theorem 3.2,

(1 - o(n))amnl/(m+l)< me <Ymnl/(m+ " a.s.

where v,, = e™/(m+h,

Proof. The lower bound is from Lemma 3.2 and the upper bound is obtained as follows. Let
Y,,,=max 3 x,,
j=1

subject to 2a;,x;<1, i=1,...,m,

x;=0orl, j=1,..,n.

Clearly Y,,,= Z,,,. We obtain a probabilistic upper bound for Y,,,. For S C N={1,...,n} let Eg be the
event: 3,c5a;,,<1fori=1,...,m.
If | S| = k the Pr(Eg) = (1/k!)™ and hence

Pb(Y,,, > k) =Pr(S C N: Eg occurs) <} )(1/k1)".

If k=v,n"/"*D we find that (})(1/k!)™ is O(n~'/2).

A simple consequence of the preceding analysis is the following: Let Z,,, be the objective value of the
solution to (1.1) obtained by rounding down the solution to LP(¢).
Since Z,,,— Z,,, <<m we have

Zpy—Zun<e€Z a.s.

provided € is O(n~“) where a<1/(m+1).

The main questions about the above model that this paper leaves unresolved are

(i) does Z,,,~cn'/"* D as, for some a,, <c<y,?

(ii) what is the effect on accuracy of applying the approximation scheme of Section 2 for a small value
of k?
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