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An Algorithm for Solving 3-Dimensional
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A scheduling problem associated with teaching practices a1 colleges of education is formulated as a

d-dimensional assignment problem. An efficient algorithm for its solution. based on Lagrangean
relaxation. 1s described. v

THE PROBLEM motivating the work described in this paper is the following: student
teachers at colleges of education have periodically to undertake teaching practices. Each
of a group of students will be assigned to one of a set of schools and his or her practices
will be supervised by a tutor from the college.

Arranging which school each student is assigned to and which tutor will carry out a
student’s supervision is complicated by the fact that. quite naturally. students and tutors
have requirements and preferences. and one should try to arrange things so that these are
taken into account.

Formally suppose there are m students. n tutors and p schools. Let | = albe s
J=1l....n.K = !1l....p.. For student i = I. tutor j= J and school k= K let t;i be a
satisfaction value associzted with an assignment of student i 1o school k under super-
vision by tutor j.

Tutor j1s willing to supervise no more than 1, students for j< J and school k< K can
have at most 5, students assigned to it.

A schedule is a pair v. - of integer m-vectors where 1,z J and =,¢€ K for i = I. The triple
i.y7.2;) corresponds to student i being assigned to schooi =, and supervised by tutor y;.
The schedule is feasible

J

in

if Biy=jlil g1 for
and |[ji:z; =kt <5, for keK.
The value of a schedule is v, .. An important objective in arranging a teaching
el

practice is to try and maximise the schedule value.
This problem can be formulated as an integer program in the following way:

Let the 0-1 variable x;
iel jelJ kekK
have the following significance:
x; = 1 if student i is supervised at school k by tutor j—sometimes referred to as

triple (i, j. k).
= ( otherwise.

We then have the problem AP3:

maximise g E .; Ui Xija (la)

Jed
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subject to
Y xp=1 i€l (1b)
Jjel kekK
iezié:xx”"sri jeld el
Z ZX.‘,‘& < 5 ke K ] T
iel jeJ

Xi = 0or 1, iel jeJ keK (e

We use the notation 1(x) to denote the sum in (la).

Constraint set (1b) says each student i occurs in exactly one triple. Constraint set (¢
says that each tutor j supervises no more than ¢; students and constraint set (1d) says tha
each school k takes no more than s, students. 4

AP3 is a 3-dimensional assignment problem.

It is unfortunately an NP-hard problem—see Garev and Johnson' for a detaijled
analysis of this statement—and as such is unlikely to be solvable by an algorithm with
time bound which is polynomial in the size of the problem.

One is almost forced therefore to use a heuristic as in Frieze? or to try a branch and
bound approach or possibly a cutting plane approach.

Very little material has been published on this problem. Branch and bound algorithm,
are described in Pierskalla® and Hansen and Kaufman.* where only small problems up
to size m = 8 and m = 16 respectively were solved. (This latter problem took 674 secs on
a CDC 6400.) '

A branch and bound algorithm using Lagrange multipliers for constraints (1¢) and (1d)
was tested in Frieze® but the results were inferior to those proposed here. Burkard® also
mentions the possibility of using Lagrangean relaxation on this problem.

We shall describe an approach using the idea of Lagrangean relaxation introduced by
Held and Karp'—see also Fisher.® Geoffrion® or Shapiro.'?

We relax constraints (1d) and use multipliers u, = 0 for k = 1.....p and consider the
dual function ¢ #7 — A defined by

o) = max. ¥ © S (Cijn — x5 — AT (2)
iz )-:l kek ! Kek
subject to (1b), (1c). (le).
If x* is an optimum solution for AP3 it is easy to show that

du) = to{x*) for all ueA7.

The aim is to find a u that minimises or nearly minimises @. This will generally give a
good upper bound which can be used in the normal way in a branch and bound
algorithm.

The procedure used to ‘minimise’ ¢ is the sub-gradient algorithm. We outline the
bounding procedure before going into details.

PROCEDURE BOUND

" Parameters: N = A limit to the number of iterations to be performed in com-
. puting the bound.

= 0 = A tolerance, i.e. we will be satisfied with a feasible solution X
satisfying t{X) = (1 — ep(x™)
(a) (Initialisation)
u = up—starting value of w. 1, = 0 seems remarkably good
ub = > —smallest upper bound computed so far
Ib = — > —value of best solution to AP3 found so far
t =0 teration count
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t=t+1

if t > N terminate bo
Compute ¢{u), i.e. sol
ub = min(ub, $(u))

Use the solution to (z
b = max (Ib, t{x))

If Ib = (1 — €)ub tern
Compute a direction
Compute a step leng’
u, = max(0. u, + o

#  Goto (b
‘iole that the algorithm wil'

ainimises ¢ and bound car

%  We next provide details |
o 0

Foreachicl. jeJ define I

We argue next that
subject 10

This is proved formally
First let (x%) be an optit

(EF) satisfies (4b) and (4¢)

Also

Suppose next that (<,

Continuing the seque
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(bl r=1r -1
if 1 > N termunate bound
) Compute o). e, solve (2)
ub = muntub. dlu))
(d Use the solution 1o (2) to generate a solution x.

Ih = max (lb. v(x))
If b = (1 — gwh terminate bound.

(e Compute a direction of search .

N Compute a step length ¢ > 0.

(2) w, = max(0,u, + o) keK
Go to (b).

Note that the algorithm will have the property that if 4 = 0 in step (e). then the current u
minimises ¢ and bound can be terminated.
We next provide details for the various undcﬁgcd steps.

COMPUTING o
€ K and w,, by

L

Foreachis l. j= J define h

Wij = Ugp,, — Uy, = Max (v — i) (3)
hek
We argue next that
o) =max ¥ Y w;ii+ N sy (4a)
icl J':I A=k
subject to

N8 = | il (4b)

=7
Nyt jeJ (4c)

=1
Zy=0o0rl (4d)

This 1s proved formally as follows:
First let (x%) be an optimum solution to (2). Let 2% = S x*.. (1b) and (Ic) imply that
(2¥) satisfies (4b) and (dc). The integrality of (23 plus Mbl“i?nplies (4d).

Also

(l"';g T “1\).\‘:;1\ (5:1]
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(Lijn,, — Un,, )Xk (5b)
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O/ (5¢)

ij=ij

m
-
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-
~

Suppose next that (:_’,-,} is an optimum solution to (4). Define (X;;) by

Mgy

>

Xijh,, = Cij
Xijn = 0 otherwise.

Continuing the sequence of equations and inequalities (5) we get

< Z, .Z-,W”EU (5d)
iel je
= ‘ez' ,g g':t (Cije — )X (Se)
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Now (x;;,) can be seen to satisfy (1b), (Ic) and (le). As (x*;) is optimal. this implies
that the inequalities in (5) can be replaced by equations, which gives our result.

Problem (4) is relatively easy to solve. We used a primal-dual algorithm based on tha;
of Ford and Fulkerson''. We had a program available for this algorithm and so we useq
it.

FINDING GOOD SOLUTIONS TO AP3

The vector (x,;*) obtained from solving (2) does not necessarily satisfy (1d) but it does
satisfly the remaining constraints of AP3.

The following decomposition of solutions to AP3 was noted in Frieze:* any 0-1 vector
(x;j) satisfying (1b) can be decomposed into x;; = Z;nu where I,y satisfy (4b) and

-

Y Ha=1 for iz 1 (6u)
keK
(1c) is then satisfied if and only if (4c) is. and (1d) is satisfied if and only if
Y na € s for k= K : (6h)
il
In other words AP3 can be shown equitalent to the problem
maximise Y YN i (Tu
l?f- ,l.o._:' L?k .
subject to (4b). (4¢). (6a). (6b):
Sij- M = 0or 1. icl.j=J. hs K (7by

(One can in fact drop the integrality requirement for 2.y but it does not help very much.)
Having solved (4). we have (hopefully) a good value for 2. Let this be c*. We can
construct the n that maximises (7) given 2 = Z* as follows:

Let ay = ¥ u 2f; for i= 1. A=K,
1ed

The # that maximises (7) under the constraint & = J* is one that maximises
S E i ik (81
el kK
subject to (6a). (6b). (7b).

Thus solving 2 problems of the form given in (4) giving an upper bound and a good
solution to AP3. Our experiments show that these are of high quality.

CHANGING u—THE SUBGRADIENT ALGORITHM

The function ¢ can be shown to be convex. A vector ve #7 is said to be a sub-gradient of
¢ at u—written ve cd(u) if

') — dlu) = v = u) forall w = #7 (9N

The sub-gradient generalises the idea of a gradient. (Note that ¢ is not generally differen-
tiable everywhere.) The sub-gradient algorithm generalises the classical steepest descent
algorithm—see Held. Wolfe and Crowder.'* Poljuk'® or Camerini. Fratta and Maf-
fioli.'*

So in step (¢} of our algorithm the dircction taken yis such that — e Gt (Note that
in (9)if @ (') < @lu) and — e Chlu). then

O > Glu’) — eluy - et — ) — et — u) > 0,
and so u' — u makes an acute angle with the direction jo chosen.)

gy

E i

A. M. Friezc

Bending a sub-gradient is

@) solves (2), then it is

a sub-gradient of ¢ at

Having obtained a sub-

g result is useful: suppc

fu* —

As @(u*) is not known
% practice. We used 2 =1
If the procedure (a}-(g
steps. one branches. ie. ¢
bounding procedure to ¢
Our code does not ha
solutions for teaching pr
Some experimental re:

»

CcC

We have up to the pre
practice. The rest of our

In a teaching practice
input data consists of 3
C=lculisnxp. Ther

a;; = 0 if studer
> 0 the ‘sau

The values b, for stu
values for r,;, can then t

Le. the primary tash 18t
b =0undc¢,. =0T

did not use (12) but

Using (13) we have t
students that can be fo
We found 1t useful h:
(i.j. k) for which v *
n=29andp = 1060n
speeded up the constru
tion of M at each stage
practicable. Constructu
the time for cach iterat
Now one pass throu
It muy also be wort
(X, ) (2,0 1) We wo




k::. \ll', ‘ }

¢ is optimal. this implies
- gives our result

I algorithm based on that
algorithm and so we used

AP3

Iy satisly (1d) but it does

n Fricze:* any (1 vector
2.y satisfy (4b) and

{6a)
“and only if

(6b)

(7a)

(7b)

does not help very much))
Let this be 2*. We can

that maximises

(8)

ipper bound and a good
quality.

‘ORITHM
id to be a sub-gradient of .

AP | .

classical steepest
merini, Fratta and

>0,

VAL Preze and J Yadegar Scheduling a Teaching Practice

COMPUTING p
Finding a sub-gradient is fortunately a “by-product” of the calculation of ¢. In fact if
(*in) solves (2), then it is not difticult to show that v = (v,.. .. v,) where
Vi = 85— E E .\':g ke K “0]
el ged

1s i sub-gradient of ¢ at u.

Having obtained a sub-gradient, one needs to decide on the step length a. The follow-
ing result is useful: suppose «* minimises ¢ and v € é(u). Then for 0 < /. < 2 we have

fu* = (= ov)| < fu* — uj Euclidean norm (11a)

o < Adu) — du*)/Ivi> {11b)

'

As @(u*) is not known, we underestimate it by using lb. This works satisfactorily in
practice. We used ~ = | in our experiments,

If the procedure (ab(g) described above fails to find a satisfactory solution after N
steps. one branches. ie. split the problem into a number of subproblems and apply the
bounding procedure to each subproblem and so on.

Our code does not have this facility. We believe that we will usually get good enough
solutions for teaching practice problems without branching.

Some experimental results and implementational details are discussed next.

COMPUTATIONAL CONSIDERATIONS

We have up to the present time only tackled one problem arising from a teaching
practice. The rest of our experience is on randomly generated problems.

In a teaching practice problem the values r;; are generated in the following way: the
input data consists of 3 matrices A. B, C. A = Ja;} is m x n. B = byt is m x p and
C = Jcul is nx p. The matrix g;; has the following significance:

a;; = 0 1f student i cannot be supervised by tutor j.
> 0 the ‘satisfaction level’ is a;;. In practice we allow a;; = 1 or 2.

The values b, for student-school and ¢, for tutor-school are defined similarly. The
values for r;j can then be defined as

Vijk = di; + by + Cyj il . by oy = 0, (12)
=—-x otherwise
1.e. the primary task is to find as large as possible a set of triples (i.y;.z;) such that ¢,, = Q.
h. = 0andc,. = 0 The value for = in (12) was taken as M = 6 m + 1. In practice we
did not use (12) but
tiw: = M + (v;; as defined in (12)). (13)

Using (13) we have that at any stage |ub/m] is a valid upper bound to the number of
students that can be found suitable assignments.

We found it useful having input the matrices A, B, C to generate a list of L of triples
(. j. k) for which v, #= — 20 in (12). In the practical problem we tackled where m = 57,
n = 29 and p = 106 only 2430 out of the 175218 possible triples were included in L. This
speeded up the construction of the matrix W= |w;;| in (3) enormously. In fact construc-
tion of W at each stage was a bottleneck that had to be overcome if the method was to be
practicable. Construction directly from (3) was initially taking up approximately 80%, of
the time for each iteration.

Now one pass through L is all that is necded to update W.

It may also be worth mentioning that we do not need to keep room for 0-1 vectors
(Xije). (Ei;), (k). We work throughout with corresponding integer m-vectors y, z.
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RESULTS

In Tables 1 and 2 we summarise our computational experience with the method de.
scribed previously. All problems were randomly generated except for the last problem ip
Table 1.

TABLE |

. Problem m n P n: ub b nit 1
1 10 10 7 19 7 7 9(4) 4.1(18)
2 20 25 15 100 18(17) 17 10(4) 8.9110.6)
3 30 30 30 861 30 30 3 1490235
4 30 30 30 861 30 30 1 13.5(8.7)
5 50 50 40 2432 50 50 2 24.3(55.6)
6 50 50 50 382 48 43(42) 3(2) 40.3(85.2)
7 60 60 60 388 58 3| 9 198.6 (6777
8 57 29 106 2430 48 48 7 1 220

m, n, p are as previously described.
nz = number of non-zero r,,: ub = final upper bound computed: (b = value of best solution found: nir = -
number of iterations of subgradient algorithm: r = ¢.p.u. time in seconds on an ICL 1905 computer: (quantity,
refers to a version of the program that does not keep the non-zero t;1's in 4 list—where significantly different.

The problems in Table | have the following form: given 3 0-1 matrices A. B. C we take
l.ijh' = {]U‘ x hu‘ x Clj fOl’ |~EI.J’EJ, k =K.

The most impressive result is that for the practical problem 8. where after one iteration
the algorithm assigned the maximum possible number of students.

The quality of this result explains why we have not programmed a branch and bound
phase. This would be justified however for problems 6 and 7.

In the problems of Table 2 we took the value v, = a;; + b, + ¢, where a7 by. ¢,
were randomly generated integers from a uniform distribution on the interval [0-10].

TaBLE 2
Problem m n P ub b nir t
1 10 10 7 1985 198 4 20
3 20 25 15 9% 98 17 357
3 30 30 30 210 208 1 8.0
4 30 30 30 210 210 1 80
5 50 50 40 400 398 2 74.0
6 50 50 50 650 649 8 2256
7 S0 50 50 1325 1302 3 2190
8 50 50 50 400 400 1 320
9 50 50 50 600 599 8 2240
10 64 64 64 1344 1337 5 3210

For these problems £ = 0.02. step (d).
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