-

Annals of Discrete Mathematics 19 (1984) 135—146

© Elsevier Science Publishers B.V. (North-Holland) 135
ALGEBRAIC FLOWS
A.M. Frieze
Department of Computer Science & Statistics
Queen Mary College
University of London
Mile End Road
London E1 4NS, G.B.
We consider a natural generalisation of the maximum value
flow problem, where flow values are elements of an ordered
d-monoid. Assuming conservation of flow at vertices and
capacity constraints on the arcs we are able to prove a Max-
Flow Min-Cut Theorem using a flow augmenting path algorithm.
If the monoid is weakly cancellative then we can make the
algorithms polynomially bounded.
INTRODUCTION
We consider here the problem studied by Hamacher [3]: we are given
a digraph D = (V,A) with vertices V and arcs A€ V x V which
(1.1a)

is loopless and symmetric

a totally ordered commutative d-monoid (H,*,<) with identity e (1.1b)

i.e. a set H totally ordered by < and an associative, commutative
binary operation * satisfying

(1) a < b implies a*c < b*c for all a,b,c eH.

(2) a < b implies there exists ¢ > e such that a*c = b for a,b ¢ H.

a capacity function c:A -~ H such that c(u) > e for u € A. (1.1¢c)

2 special vertices s and t. (1.1d)

An s-t flow is a function f:A > H satisfying

e s f(u) s c(u) forueA (1.2a)

f(v:V) = f(V:v) for v # s,t (1.2b)

where for sets X,Ys V X:Y = {{v,w) ¢ A:v e X,w e Y} and for S< A

£(S) = D f(v,w)

(v,W)eS

Naturally v:V is an abbreviation of {v}:V.
The value val(f) of flow f is defined to be f(s:V).

The problem of finding the s-t flow that maximises val(f) is a natural

136 A.M. Frieze

generalisation of the classical maximum flow problem of Ford and Fulkerson [2] and
examples can be found in [3]. Hamacher made the point that in practice, minimum
capacity cuts are more important than maximum flows, which stresses the importance
of a Max-Flow Min-Cut Theorem.

Unfortunately, 1.2 is not quite restrictive enough to make a 'sensible' problem
and further restrictions are required. Indeed we can see from the following ex-
ample that the given definition of flow leaves problems:

Figure 1

Here H = (R+,max,g). Note that 1.2b is satisfied and yet f(s:V) = f(V:t) as one
might expect. We will consider 2 essentially different ways of overcoming this
problem.

Cuts

As usual a set X €V such that s ¢ X, t € X = V-X generates a cut X:X which has
capacity c(X:X). Note that if in the above example we assume f(u) = c(u) for each
arc, then where X = (s,1,2,3) we have val(f) = 2 > 0 = ¢(X:X) and so there is no
Max-Flow Min-Cut Theorem for arbitrary flows.

Hamacher dealt with this problem by putting a return arc (t,s) and replacing 1.2b
by
f(X:X) = £(X:X) for all Xg V (1.3)

and assuming that (H,*) has a weakly cancellative property (see Section 3). Thus

to make any progress we must restrict our attention to flows with additional
properties.

In Section 2 we consider a class of flows for which we are able to prove, con-
structively, a Max-Flow Min-Cut Theorem without making any extra assumptions about
the d-monoid H. Unfortunately, this algorithm is not (proved to be) polynomially
bounded.

In Section 3 we consider a different class of flows and assume H is weakly cancel-
lative so that we again have a Max-Flow Min-Cut Theorem and this time a poly-
nomially bounded algorithm for constructing a maximum flow.

—_ L 18A

Algebraic flows 137

DECOMPOSABLE FLOWS

For a flow f led D(f) be the digraph (V,A(f)) where A(f) = {u ¢ A: f(u) > e}. A
flow f is a P-flow if

D(f) is a simple path P(f) from s to t (plus isolated vertices) (2.12)

there exists a = a(f) H such that f(u) = a for u ¢ A(f) and
f(u) = e for u e A-A(F). (2.1b)

A flow f is decomposable if there exist P-flows fl’fZ""’fk (k = k(f)) such that
f= f.l*fz*...fk(i.e. f(u) = f](u)*fz(u)*...fk(u) for u ¢ A).

The main result of this section is the following

Theorem 2.1. The maximum value of a decomposable s-t flow is equal to the minimum
capacity of a cut separating s and t.

This will be proved using a flow augmenting path argument, but first we need to
introduce some notation and prove some simple lemmas.

For a ¢ H dom(a) = {b ¢ H: a*b = a} and for a flow f dom(f) = dom(val(f)).
Lemma 2.1. a e dom(b) and ¢ > b implies a ¢ dom(c)

Proof. Let ¢ = b*d, then a*c = a*b*d = b*d = ¢

Lemma 2.2. If f is a decomposable flow then val(f) > f(u) for all u ¢ A.

Proof. Straightforward by induction on k(f).

(note that our example of Figure 1 shows this is not true in general for d-monoid
flows).

For a decomposable flow let K = K(f) = [k(f)] where for positive integer n

[n] = 00,2,...n}. For &K let f = inlifi.

Lemma 2.3. Let f be a decomposable flow. If there exists ueA and sets I,J
I € J e K such that

(1) fi(u) > e for i e L = J-1

(2) fylu) = f,(u)

then val(f) = va](fM) where M = K-L.

Proof. Let a = fL(u) = va](fL) by (1). Letb = fI(u) and ¢ = val(fM). Then

138 AM. Frieze

b ¢ fM(u) < ¢ by Lemna 2.2. a ¢ dom(b) by (2). Applying Lemma 2.1 gives
a £ dom(c).

Lemma 2.4. Let f be a decomposable flow and X:X a cut. Then

val{f)*f(X:X) = F(X:X) (2.2)

Proof. Equation 2.2 holds for P-flows using the fact that an s-t path has one more
arc in X:X than it has in X:X. The truth of 2.2 in general follows by combining
the separate equations for each path.

Note that 2.2 is essentially Hamacher's condition and generally speaking one has
to add extra conditions to 1.2b in order that 2.2 or 1.3 holds.

Corollary 2.5. Let f be a decomposable flow and X:X a cut. Then

val(f) ¢ c(X:X) (2.3)

43

N

Proof. ’ val{f) s val(f)*f(X:X)
f(X:X)
c(X:X)

n

”n

Corollary 2.6. If f is a decomposable flow then

f(s:V) = f(V:t)

Proof. Put X = V-{t} in 2.2.

We define next the incremental graph G(f) = (V,E(f)) with respect to a given flow
f. For (v,w) e V x V let p(v,w) = (w,v) then
E(f) = {u=(vow) e VxV): (a) v=tandw=s
and

(b) ue A,f(u) < c(u) and
{x:x*f(u) = c(u)}r] dom(f) = @
or
(c) o{u) ¢ A and f(p(u)) ¢ dom(f) }
The set of arcs EF of G(f) defined in (b) are called forward arcs and the set of
arcs EB defined in (c) are called backward arcs.

A simple path from s to t in G(f) is called a flow augmenting nath with respect to
f. We next prove

-
>

Algebraic flows 139

Lemma 2.5. Let f be a decomposable flow for which G(f) has no flow augmenting
paths. Then f is a maximum flow.

Proof. Let X = {v ¢ V: v is reachable from s by a path in G(f)}. Then s ¢ X and
t ¢ X by assumption.

For u ¢ X:X let g(u) ¢ dom(f) be such that f(u)*g(u) = c(u) . g(u) exists else we
can reach a vertex of X. Note also that similarly u e X:X implies f(u) e dom(f).
Thus

val(f) = val(F)*F(X:X)*g(X:X)
f(X:X)*g(X:X)

c(X:X)
Thus f is a maximum flow and X generates a minimum cut.

Proving the converse result i.e. that given a flow augmenting path we can actually
augment the flow has proved somewhat more difficult. This is in effect why we
are looking at decomposable flows.

Lemma 2.6. If f is a decomposable flow and G(f) has a flow augmenting path then
there is a decomposable flow f with val(f) > val(f).

Proof. Let P be a flow augmenting path with respect to f and let the arcs X of P
be divided into forward arcs XF and backward arcs XB (it simplifies things
slightly to refer to the arcs in XB as they are in A instead of in p(A)). For

u ¢ XF let g(u) £ dom(f) be such that f(u)*g(u) = c(u). Let

6 = min(min(g{u): u ¢ XF), min(f(u): u ¢ XB).

As expected we are going to construct a flow f for which va1(?) = val(f)*e > val (f)
as 0 ¢ dom(f) by construction.

A problem arises for u ¢ XB if we want to 'subtract' 8 from f(u) i.e. choose %(u)
such that %(u)*e = f(u), as one expects to do if one follows an analogous proce-
dure to the classical real case. The problem arises from the possibility of there
being several choices for %(u) and it is not clear (to the author) which, if any,
maintain conservation of flow. This we hope will justify the rather complex pro-
cedure that we now describe. There are 3 phases to the update of f.

Phase 1. At the end of this phase, the decomposition of f will have been amended
(but not f itself) so that for each u ¢ XB

there exists r = r(u) such that 8 = f](u)*fz(u)*...*fr(u). (2.3)

140 AM. Frieze

Suppose there exists u ¢ XB for which 2.3 fails, then for some p ¢ k(f) we have

f[p_]](u) <9 < f[p](u)

Define x,y ¢ H by 8 = f[p_]J(u)*x and x*y = fﬁﬂ(u) which will be possible as
fDﬂ(u) > x necessarily.

Now renumber fp+]""’fk as f ’fk+1 to leave a gap for a new f

p+23--- p+~|o
Let Q = P(fp). Replace a(fp) by x and add a new P-flow fp,7 to the decomposition
with P(fp+1) = Q and a(fp+1) = y. Clearly 2.3 now holds for u with r = p+1 and

if 2.3 held for u' = u before this change, it will still hold but r(u') may have

increased by 1.

We shall use the term splitting f_using x,y to denote the above construction.

p
Phase 2. At the end of this phase the decomposition of f will have been amended
so that

there is a sequence a1,a2,...,ap of members of H-{e}

such that for each u ¢ XB there exists a permutation
of the non-identity members of the sequence (2.4)
f](u),fz(u),...,fr(u), r = r(u), which is identical

).

_ *_ . *
to L TRRRELM (thus 6 = a;a, “edp
Suppose then that XB = {u],uz,...,u]} and assume inductively that 2.4 holds for
ue {u],uz,...,um_]}, which holds trivially for m = 2. We show now how to extend
2.4 to include Upe

Suppose then that the non-identity members of the sequence f](um),fz(um),...
fr(”m)’ r=r{u,) are b],bz,...,bq.
We then iteratively do the following:

q

if a; > b]: Tet a; = ai*b1; Cq:= b]; for i:= 1 to m-1 let j(i) be such that a,

if a = b]: Cri= ays continue with az,...ap,bz,...b

corresponds to fj(i)(ui) in the given permutation of the non-identity

members of f](u]); for je{j(1),...j(m-1)} split fj using aj,bys
continue with ai,az,...ap,bz,...bq.
if a; < by: let by = by*a;s Cy:= ap; split the P-flow fj such that fj(um)

corresponds to bys using bi,a]; continue with 32""ap’bi’b2”"bq‘

“After at most p+g-1 iterations of the above we will have produced a sequence

Algebraic flows 141

CyaCpse- Cpn and have exhausted one (or both) of the sequences a],...ap or

b1,...b Let d],...d , denote the remainder of the unexhausted sequence. For

qQ q
convenience assume that b],...bq gets exhausted first, the other case is similar.
We now find that for i = 1,...,m-1 the non-identity members of the sequence

f](”i)""fr(”i)’ r= r(ui) are a permutation of c],...cp.,d],...dq. and that the

non-identity members of the sequence f1(um)""fr(um)’ r = r(um) are a permuta-

tion of cy,...cp. and further that d]*dz*...*dq. € dom(c1*c2*...c Note that

p D')'
the P-flows corresponding to d],...d » are distinct from those corresponding to
Cys--eChr @S the former have not been affected by the above procedure. We can
then apply Lemma 2.3 to remove the flows corresponding to d],...dq. and we find
that 2.4 holds with Un included.

Phase 3. Let a],...ap be as in 2.4 and let S = {al,...ap}. For each a ¢ S do

the following: let I = (i: a(fi) = a}. Construct an integral flow g by sending

one unit of flow along each path P(fi) for i ¢ I. Let m be equal to the number
of times a occurs in a],...ap. Augment g by an amount m using the flow augmenting
path P to create a new integral flow h. Decompose h into a set of flows of value
1 along paths from s to t as follows: find a path Q from s to t using only arcs u
for which h(u) > 0. Decrease h by 1 on each arc of Q. Store Q. Repeat until
there is no path from s to t with positive h flow in all its arcs. Let Q],...Qq
be the paths stored. Replace the P-flows fi for i € I by the set of P-flows with
paths Q],...Qq and flow value a.

It should be clear that the above 3 phase procedure does in fact augment f to a
flow f with val(f) = val(f)*e.

To complete the proof of Theorem 2.1 we must show that we need only augment a
finite number of times. This is not difficult because after an augmentation along
a path P either a forward arc of P becomes saturated or a backward arc of P
becomes flowless. Thus if we apply the obvious analogue of the Dinic Algorithm
[, the same arguments can be used to show that no more than 0(|Vl4) augmenta-
tions are needed until G(f) has no flow augmenting paths.

Complexity of the algorithm. Although finite, the algorithm above is not poly-
nomial as the size k(f) of the decomposition seems to be capable to growing
exponentially. The problem occurs in Phase 2 where k could double (we can easily
ensure that only |A] P-flows are created for each a ¢ S in Phase 3 by reducing h
along a ¢ Q by enough to create at least one new h flowless arc).

142 A.M. Frieze

In some cases the algorithm can be made polynomial by ensuring that all the paths
P(f;), i =1,...k are distinct - if P(f,) = P(fj) we can replace a(fi) by
a(fi)*a(fj) and delete fj. Thu; if we consider a class of digraphs in which the
nunber of s-t paths is bounded by a polynomial in |V| then the algorithm becomes
polynomial.

ACYCLIC FLOWS

Recall that for a flow f satisfying 1.2 we define A(f) = {u ¢ A: f(u) > e}. We
say that a flow is acyclic if the digraph D(f) = (V,A(f)) has no (directed)
cycles. Note that our 'problem' flow of Figure 1 is not acyclic. We now assume
that t:V = V:s = @ without any real loss of generality.

Lemma 3.1. Llet f be an acyclic flow and let X:X be a cut separating s and t.
Then A
fs:V)*f(X:X) = £(X:X) (3.3)

{1,...n}, s =1and t = n and
since D(f) is acyclic we can assume that f(i,j) > e implies i < j. We temporarily
augment A with those arcs (i,j) where 1 ¢ 1 < j < n and (i,j) ¢ A. We put

f(i,J) = e for such arcs and note that f is still an acyclic flow.

Let p = p(X) = max(i:ieX), q = q(X) = min(i:i ¢ X)

Proof. For the purposes of the Lemma we assume V

Case 1:q > p. Thus X = {1,...p}, X = {p+],...n}. Note that f(X:X) = e in this
case. We verify 3.1 by induction on p.

If p=1 then s:V = X:X and so there is nothing to prove.

Suppose then we have verified this case for |X| < p and suppose now that |X| = p.
Let Y = {1,...p-1} then

FY:¥) = F(Y:p)*F(Y:X)
Fp:X)*F(Y:X) using 2.1b

f(X:X)

and the induction step is easily complieted.

Case 2: q <p. We proceed by induction on p-q. Case 1 provides the base p-q < 0.
Now

Fs:VI*F(X:X) = F(s:V)*F(X-{q}:X)*F(q:X)

f(s:V)*F(X-{a}:X [J (q})*F(q:X)

Algebraic flows 143

since f(X-{q}:=q)=e. Also

FIX:X) = F(X:q)*F(X:X-{q))
f(q:X)*f(q:X-{q))*f(X:%-{q})
since f(X:q) = f(V:q) = f(q;V). Thus

f(X:X) = f(q:X)*F(x U (q}:%-(q}).

Thus 3.1 holds if
f(s:V)*F(R-a):X |J (a}) = F(X|J (q}:K-{a})

But this can be assumed if we use induction on p-q, since if p{X) > q(X) we have
p(X) = p(x U ta(x)1) and q(x [J ta(x)1) > q(X).

Note that the conclusions of Corollaries 2.5 and 2.6 thus hold for acyclic flows.

Flow augmenting paths are defined exactly as in Section 2, (except that we can
re-define EF = {u ¢ A: c(u)-f(u) £ dom(f)} which has the advantage of being
simpler and computable in O(]A|) time).

Lemma 3.2. If f is an acyclic flow and G(f) has no flow augmenting paths then f
is a maximum flow.

Proof (identical to Lemma 2.5).

We now assume that cur d-monoid obeys the weak cancellative rule
a*b = a*c implies b = ¢ or a*b = a for a,b,c ¢ H. (3.2)

Then it can be shown that there exists another ordered set (I,¢) and a surjective
function in: H > A satisfying

a < b implies in(a) < in(b) (3.3a)
in(a*b) = max(in(a),in(b)) {3.3b)
in(a) < in{b) implies a*b = b (3.3c)
a*b = a*c and in(a) = in(b) = in(c) implies b = ¢ (3.3d)

It follows that the element c defined in 1.1(b)(2) is unique. We shall denote
this by a-b and extend the definition of - to a-a = e.

Note that in(a-b) = in(a) for a > b.
For i ¢ I Tet H(i) = {a € H:in(a) = i}
Let K = {i e I:|H(i)] = 1}.

Proofs of all these results can be found in Zimmermann [5].

144 AM. Frieze

Given a flow augmenting path P and XB,XF and & as defined in Lemma 2.5 we look in
this case at the much more straightforward way of updating the flow:

SIMPLE UPDATE -

Let f(a) = f(a)*e aceXF
= f(a)—e ae XB
= f(a) agp

We assume that we start the algorithm with f(a) = e for a € A. Now SIMPLE UPDATE
does not in fact guarantee that f is a flow, let alone acyclic. We next define
a quasi-flow f:A ~ H to be one that satisfies 1.2a and

in(f(a)) < in(f) where in(f) = in(val(f)) (3.4a)

flv:V) = f(Viv) (3.4b)
for all v € V such that in(f(v:V)) = in(f) or in(f(V:v))) = in(f).

f(s:V) = f(V:t) (3.4c)

It is easy to prove

Lemma 3.3. If f is a quasi-flow then after SIMPLE UPDATE f is also a quasi-flow.
(Some proofs will be omitted because they are obvious or a similar result has
been proved in Hamacher. Indeed Hamacher used SIMPLE UPDATE but assumed that
H(i) had its own identity e; and let a-a = e; for a H(i). This means that f
remains a flow but at the 'expense' of introducing ei).

Thus from now on flow augmenting paths are defined in terms of quasi-flows.

Lemma 3.3. If f is a quasi-flow and if G(f) has no flow augmenting paths then
there exists a cut X:X such that val(f) = c(X:X).

Lemma 3.4. Let f be a quasi-flow. Then there exists an acyclic flow f" such
that val(f) = val(f").

Proof. First define f' by
f'(a) = f(a) if (f(a) ¢ dom(f)) or (in(f) ¢ K and f(a) = val(f))
=e otherwise
(we recognise in(f) ¢ K by val(f) # e and val(f)*val(f) = val(f)).

It is easy to see that f' is a flow because of 3.4b. Note that val(f') = val(f).
However f' may not be acyclic.

Y

"

Algebraic flows 145

If in(f) ¢ K find an s-t path Q in D(f) and let f" be the P-flow with path Q and
value val(f). Such a path exists by 3.4b and 3.4c.

Otherwise if D(f') has a cycle C let 6 = min(f'(a): a ¢ C). Replace f"(a) by
f'(a)-0 for a ¢ C. One can show fairly easily that f' remains a flow and that
val(f') is unchanged. We continue until we obtain an acyclic flow f".

We can again use the Dinic algorithm to search for flow augmenting paths and
again because after augmentation along a path P, one forward arc of P becomes
saturated or one backward arc of P becomes flowless, the algorithm will run in
0(|V|4) time. We are thus led to claim the following result:

Theorem 3.1. The maximum value of an acyclic flow is equal to the minimum cap-
acity of a cut if the d-monoid is weakly cancellative.

Other algorithms e.g. Malhotra, Kumar and Maheshwari [4] use augmenting paths in a
less direct manner and it is worth checking that they do not create problems:
these algorithms proceed in a sequence of stages. The aim of each stage is to
find a flow f in the layered subgraph LG(f) = (V,E(f)) made up of the shortest

s-t paths in D(f). The flow f is chosen to saturate each s-t path in LG(f).

These algorithms have straightforward algebraic analogues where we add and sub-
tract and compare as if H was the set of reals (we never need to compute a-b

where a < b).

Having computed f, a new flow f' is computed by
f(a)*f(a) aeEF (3.5a)
£'(a) = f(a)-f(a) acEB (3.5b)

f'(a)

We need to check that 3.4 holds for f'. We note first that it can easily be
shown that in the algebraic analogue of the algorithm of [4] that f' satisfies
3.4c in LF(g). It follows from V:s = t:V = 0 and the definition of E(f) that f'
satisfies 3.4c in G also, and that

£(s:V) = F(s:V)*F(s:V) (3.6)
We can consider two cases:

Case 1: in(f') > in(f). By considering only those arcs a ¢ E(f) for which in
(f(a)) = in(f) we see that they must be forward arcs and these are the only arcs
that need be considered in confirming 3.4a and 3.4b, which follows as f is a flow.

Note that this necessarily includes the case in(f') ¢ K.

Case 2: i = in(f') = in(f) £ K. In this case H(i) is either an ordered group or
the positive cone of an ordered group Eﬂ and by considering the same set of arcs

146 A.M. Frieze

as in the first case we can reduce to the group case which is essentially the
same as the real case.

It is suggested that one works with quasi-flows until no more flow augmenting
paths can be found. Only then do we reduce the quasi-flow to an acyclic flow.
It only remains to check that we can do this in O(|V||A|) time. We outline next
how this can be done.

We use depth-first search on D(f), stacking vertices as they are visited and
removing them from the stack after all neighbours of a vertex have been visited.
If the next neighbour of the vertex currently being visited is on the stack then
a cycle has been found. In O(|V]) time we can examine the cycle, reduce the flow
in it, remove one (or more) arcs from D(f) and restart the search at the tail of
the first arc (in the order in which used in the search) removed. We continue
until no more cycles are found in this manner and the search finishes.

To bound the total time taken we apportion the work done into work done (i)
between finding cycles and restarting the search, (ii) traversing arcs between
finding cycles that do not lie on the next cycle found and (iii) traversing arcs
between finding cycles that 1ie on the next cycle found.

For each cycle found the time spent doing (i) and (iii) is O(|V]|) and as no more
than A cycles can be found, because we delete at least one arc after finding
one.

REFERENCES

D] Dinic, E.A., Algorithm for solution of a problem of maximum flow in a
network with power estimation, Soviety Mathematics Doklady 11 (1970) 1277-
1280.

[2 Ford, L.F., and Fulkerson, D.R., Flows in networks (Princeton University
Press, Princeton, 1962).

[3) Hamacher, H., Maximal algebraic flows: algorithms and examples, in: Pape, U.
(ed.), Discrete Structures and Algorithms (Hansser, Munich, 1980) 153-166.

[4] Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N., An O(|V|[3) algorithm for
finding maximum flows in networks, Information Processing Letters 7 (1978)
277-278.

[5] zimmermann, U., Linear and combinatorial optimization in ordered algebraic
structures, Annals of Discrete Mathematics 10 (North-Holland Publishing Co.,
Amsterdam, 1981).

