Parallel Computing 11 (1989) 151-162 151
North-Holland

Algorithms for assignment problems
On an array processor

AM. FRIEZE
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.

J. YADEGAR *
DAP Support Unit, Queen Mary College, London University, United Kingdom

S. EL-HORBATY
Department of Mathematics, Ain Shams University, Cairo, Egypt

D. PARKINSON

DAP Support Unit, Queen Mary College, London University, United Kingdom,
and Active Memory Technology Ltd., Reading, United Kingdom

Received August 1987

Abstract. The innovation of parallel computers has added a new dimension to the design of algorithms. Parallel
programming is not a simple extension of serial programming. We describe parallel algorithms for the quadratic
assignment problem and present our computational experience using the massively parallel processor, DAP. We
further report the speedup obtained by parallelising algorithms for solving the 2-dimensional and 3-dimensional
assignment problems on the DAP.

Keywords. Quadratic assignment problem, 2- and 3-dimensional assignment problems, heuristic parallel
algorithm, distributed array processor, SIMD computer.

1. Introduction

The problem of finding an optimal assignment arises under many circumstances: for
example, assigning indivisible resources to different geographical locations, assigning students
to schools who need to be supervised by tutors, or simply assigning men to jobs. These are
examples of combinatorial optimisation problems, in which it is required to determine an optimal
solution from a large but finite set of feasible solutions.

The major difficulty with most of the problems of this type is in finding efficient algorithms
to solve them. Indeed, many of these problems are known to belong to the special class of
NP-hard problems, see [10].

* Currently at Active Memory Technology, Inc. Irvine, CA 92714, U.S.A.

0167-8191,/89,/33.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

152 A.M. Frieze et al. / Algorithms for assignment problems

The innovation of parallel computers has added a new dimension to the design of
algorithms. Parallel programming is not a simple, extension of serial programming. Our
motivation in this research has been to develop parallel algorithms for such problems, in
particular the well-known quadratic assignment problem, the 2-dimensional and 3-dimensional
assignment problems. These algorithms have then been implemented on the Distributed Array
Processor (DAP).

The general principle of the DAP is that of a SIMD (Single Instruction stream-Multiple
Data stream) machine as defined by Flynn [6). On an n X n DAP, one can perform up to n?
operations (of the same type) in parallel, that is, simultaneously. This parallel processing
capability of the DAP is achieved by an n X n matrix of processors, called Processing Elements,
each of which may operate independently on its own local store. Thus, it is convenient to think
of the DAP as a square array of processors placed on a 2-dimensional grid in which each
processor can communicate directly with its four neighbours. Extra communication facilities,
along rows and columns, coupled with the bit serial nature of the processors allow the DAP to
exhibit many properties of the associative or content addressable processors {8].

For further details on the DAP and its programming language, DAP-Fortran, we refer the
reader to the papers of Gostick [11], Parkinson [19,20], Reddaway [22], and the book by
Hockney and Jesshope [13].

The rest of the paper is organised as follows: In Section 2, after defining the quadratic
assignment problem, we describe two heuristic parallel algorithms to solve this problem and
present our computational results in Section 2.4. We outline very briefly in Section 3 a parallel
version of the primal dual method for solving the assignment problem, and give computational
results in Section 3.1. In Section 4, we describe the 3-dimensional assignment problem and
discuss a parallel heuristic for its solution followed by some results in Section 4.1. We conclude
the paper in Section 5.

2. The Quadratic Assignment Problem - QAP

This is the problem of assigning a number of discrete facilities to a number of discrete
locations when there is an interchange or material flow between each pair of facilities. Unlike
the classical assignment problem, the cost’ of assigning each facility is dependent on the
assignment of the rest of the facilities.

The QAP has proved to be extremely difficult to solve optimally in practice as well as in
theory. In its most general form it can be succinctly defined as follows:

minimise f(¢) = Y 3 @iy a0y (2.1)

i=1j=1
subject to ¢ € S,

where S, is the set of permutations of [#] = {1, 2,...,n} and a,,;,, >0, for i, p, j, g€[n], is
the cost of pair assignment of facilities / and j to locations p and q.

The QAP models a number of practical problems — see [4] for a recent survey ~ but the
problem becomes very difficult for n as low as 20 and ‘impossible’ for n = 30.

There has therefore been intensive research to find good heuristics for this problem. While it
is NP-hard to approximate the optimal value within a constant factor, see [23], probabilistic
analysis, [3], suggests that it is usually not too hard to find a good solution. (Dyer et al. [5] show
however that it is usually very hard to find an exact solution by branch and bound.)

A.M. Frieze et al. / Algorithms for assignment problems 153

2.1. r-Optimality

A standard procedure, which can be used as an add-on to any heuristic is that of checking
for r-optimality, provided that r is reasonably small, =2 or 3 say.
A permutation ¢ is said to be r-optimal if

f(9)<f(¥) forall y&N,(4) (2.2)

where
N(e)={ves,: [{iy(i)+#e(i)}<r)
('=the set of r neighbours of ¢).

Since | N,(¢) | = O(n") and it takes O(n?) time to evaluate f, one can check (2.2) and find an
improved solution, if one exists, in O(n"*?) time. This process can be repeated until an
r-optimal solution is found. Even for r=2 and n =30, each test of (2.2) can be rather
expensive.
Fortunately, some improvements are possible. In most cases that occur in practice the values
a;,;, ‘decompose’ so that we can write
aiqu= %Cijdpq fOl' i’ p, j’ qe [n]‘ (2.3)

This is the so-called Koopmans-Beckmann [15] version of the problem. We will assume for
simplicity that the terms ¢;; =d,; =0 for i €[n] and that the matrices || ¢i;ll, 1d;; || are both
symmetric. (The substitution of ¢;;=(c;;+ ¢;;)/2 and ¢;}=(c;;—c;;)/2 and similarly for d, j
produces the sum of two symmetric functions. The values ¢;;, d,; represent ‘linear’ terms and it
is easy to modify what follows to accomodate them.)

Thus f as defined In (2.1) now becomes

n—1 n
()= X X cijdyirec (24)
i=1 j=i+1

Los [18] showed that it is possible to check for the satisfaction of (2.2) much faster than is
immediately obvious. In this paper we show how a modification of Los’s idea can be used in
conjunction with parallel computation in order to substantially reduce the running time of a
basic algorithm for finding r-optimal solutions for r= 2 or 3.

2.2. A 2-optimising heuristic
Let us first consider the case r=2. For ¢ €S, and distinct k, /€[n], let ¢*' be the

permutation obtained by interchanging the images of k, /; that is,

o(i) ifi#k, I,
(i) ={¢(1) ifi=k,
o(k) ifi=1.

Now let
DIFF(¢; k, 1) =f(¢) = f(¢"') fork, I€[n].

Clearly ¢ is 2-optimal if and only if DIFF(¢; k, /) <0 for all k, /€[n]. (Note that
DIFF(¢; k, I)= DIFF(¢; I, k) and DIFF(¢; k, k) =0.)

154 A.M. Frieze et al. / Algorithms for assignment problems

2-Optimality Algorithm
begin
compute an initial permutation ¢; {see [4] for a review of good starting methods}
20PTIMAL := false; compute DIFF(¢,-,-);
repeat
if DIFF(¢;-,) < 0 then 20PTIMAL := true
else begin
let DIEF(xp; k, 1) = max{DIFF(¢; i, j):i, j€[n]};
P:=¢"
re-compute (update) DIFF(¢;-,-)
end
until 20PTIMAL
end

As suggested by the structure of the algorithm, the statement re-compute DIFF is executed
differently from the statement compute DIFF and it is here that we can make some savings.
First note that

DIFF(¢; i, j)=A'($; i, j)+A(¢; j, i) fori, j€[n]
where

A(¢; 0, j)= 21 ¢ip(datrocr) — dotprecr) (2.5)
P
#i,j

is the change in cost attributed to i being reassigned to ¢(j) from ¢(i).
Now, by completing the sum in (2.5) from 1 to n, we can rewrite DIFF(¢; i, j) as

DIFF(¢; i, j)=A(®; i, j)+A(; Jj, i) = 2¢;;d 4ye()

where
n

A(e; i, j) = Zlcip(dwmp)‘dq»(/)q»(p)) (2.6)
=

and 2c¢;;d ;)4 1S @ ‘correction’ term.
Suppose then that at some stage we have DIFF, ¢, k, / and we wish to re-compute DIFF.
That is to calculate

DIFF(¢"; i, j)=A(¢"; i, j) +A4(¢"; j, i) —2¢,d gy for i, j€[n].
Thus, for i, j€[n]— {k, I}, let

8A(i, j)=A(¢"; i, j) — A($; i, j).
Then it is not difficult to drive the following expression for 84(i, j):

84(i, j) = (cix = ci)(dgneny ~ docracr + daciyocr — dopyowy)- 2.7
To re-compute the kth and /th rows and columns of DIFF, we use (2.6).
2.2.1. Computational considerations

Consider first a normal serial computer. The initial computation of DIFF using (2.6) is

O(n*) time (= number of arithmetic operations). However, to re-compute DIFF we can use

(2.7) to compute DIFF(¢*/; i, j) for i, j€[n]— {k, I} and (2.6) to compute the remaining
entries, which results in an O(n?) time computation.

re

A.M. Frieze et al. / Algorithms for assignment problems 155

Table 1
Ratio of the DAP computation time for an operation compared to that of a 32-bit floating point matrix (element by
element) multiplication

Function Operation time
Multiply time

* 1.0

+ 0.64

/ 1.42
A(i)=Vor A, j)=V 0.15
MATR(V) or MATC(V) 0.11
SUMR(4) or SUMC(4) 1.28
MAXV(4) 0.21

TRAN(A) 2.60

The main purpose of this paper however is to present the results obtained when implement-
ing the above approach on the Distributed Array Processor (DAP).

The abstract model of the computer that we use is that of a 2-dimensional mesh connected
system with some extra communication facilities and computing power. Specifically, we have
an array of n? processors P, j» I j€[n), where P;; can communicate directly with its four
neighbours, P,_, ;, P,y ;s P;j_1, P j+1, where1 —1=n and n + 1 =1. In addition, processors
are connected via row and column highways to a set of edge registers such that in unit time
data can be selected from any set of processors, one per row (or column), into the correspond-
ing register; or data can be broadcast from a register to some or all processors in the same row
(or column). The DAP satisfies this abstract model.

We measure the complexity of the algorithm in terms of number of ‘DAP operations’. Each
one is executable very ‘efficiently’ on the DAP. These are to

(i) Compute the result matrix | a,;°b;;|| where o = +,—,% or/. The nXn matrices
lla;;l and || b;;|| are stored one element per processor.

(ii) Overwrite a row or column of an n X n matrix with a given n-vector.

(iii) Given an n-vector V, construct an n X n matrix MATR(V') where each row is identical
to V. Similarly, MATC(V) has each column identical to V.

(iv) Given an n X n matrix A, create an n-vector SUMR(4) in which component i is the
sum of the elements of column i of A. Similarly, the SUMC(A) has its ith component equal to
the sum of the elements in row i of 4.

(v) Compute the maximum element of an n X n matrix.

Thus, using the DAP one is able to execute these operations in O(1) time. To get a feeling of
the actual computational times for these operations on the existing DAPs with n =32 and 64,
Table 1 gives the ratio of the time for an operation compared to that for a 32-bit floating point
matrix (element by element) multiplication as defined in (i) above. For n = 32 and n = 64, the
times for matrix (element by element) multiplication are 210 and 270 ps respectively.

In Table 1, 4 is an nXn matrix and V is an n-vector. The assignment A(i,)=V
(A(j)=V) overwrites the ith row (,jth column) of 4 by V. Functions MATR, MATC,
SUMR and SUMC have already been defined in (iii) and (iv). Function MAXV(A) returns a
value equal to the maximum value in the matrix argument 4, and the function TRAN(A)
returns the transpose of A. For more detail on these functions, we refer the reader to [20,21].

In this model our algorithm requires

(a) O(n) DAP operations to compute DIFF ‘from scratch’ using (2.6),

(b) O(1) DAP operations to re-compute DIFF using (2.7).

It is assumed that at the beginning of each iteration

Processor P;; contains the values c;; and dy;4(j) in its local memory. (2.8)

156 A.M. Frieze et al. / Algorithms for assignment problems

To achieve (2.8), there is an initial complete shuffling of the rows and columns of || d;; || using
the permutation ¢. Subsequently, once k and / are determined, as described in the 2-optimality
algorithm, it is only necessary to interchange the kth row and column with the /th row and
column of | d;;||. This is an O(1) time operation on the DAP.

Details of (a). We compute || A(¢; i, j)|| as defined in (2.6) and then compute DIFF(¢;-,-)
using type (i) DAP operations. We note that in order for processor P;; to contain || A(¢; J, i),
it is only necessary to transpose the matrix || A(¢; i, j)||.

For a fixed p (1 < p < n), we compute matrices B(") = MATC((c,p, o Cnp)) = 11652 and
E = MATC((dyyg(py»- - > dgimacp))) ~ MATR(dy1ygp: - p(p))) leffll. We can
then using type (i) operations, compute [a{?~" + (b), where a{f™b =

e, (dyiyecry — doiyecp) and alP =0 for i, j& [n] When' P takes the value n, we ; obtain
A(d;-50)

The DAP-Fortran program to achieve (a), assuming (2.8), is as follows:

Remarks
A=0 lfa;;|l =0 for all i, j
DO10p=1n
B = MATC(C(,p)) Wbisll = llc;p |l forall i, j
E = MATC(D(,p)) — MATR(D(,p)) lell =i d¢(;)¢(» oo I
for all i, J
A=A+B*E fai;ll =l a;; + b;e;; for all i, j
10 CONTINUE
DIFF = A + TRAN(A) —2*C=+D IDIFE; ||:= ||a;; + a;; — 2¢;;d g1y Il
forall i, j

In this and subsequent programs C = lleijll, D=1l d¢(i)¢(j) | and 4 = lai;ll = I AC$; i, J) -

Details of (b). In practice we actually update DIFF instead of re-computing it, using the fact
that

DIFF(¢"'; i, j) =DIFF(¢; i, j) +8A(i, j) +84(j, i)
fori, je[n]—{k, 1}.

Having already given a flavour of a DAP-Fortran program and defined various functions in the

language, it is easier to describe steps involved in (b) in terms of a DAP program as given
below

Remarks

B1 = MATC(C(,k) — C(,)) 181;;]| = |l c;x — € |l for all i, j
B2 = MATR(C()) — C(K) 162,71l = Il ey = el forall ,
E = MATC(D(,]) — D(k))

+MATR(D(k) — D(.1)) el = Il d¢(i)¢(l) ~ dyiyocny T doyack)

—dyye |l forall i, j
DIFF = DIFF + (Bl +B2)*E ||DIFE, || = ||DIFE, + (b1, + b2,)e, |
for all i, j

The element by element matrix multiplications Bl* E and B2» E coincide with matrices 84
and 84T (T = transpose) respectively, except for rows and columns £k, /.

A.M. Frieze et al. / Algorithms for assignment problems 157

It remains only to compute the & th and /th rows and columns of DIFF. To do this, as stated
earlier, we use (2.6). It is sufficient to show how to compute the kth (say) row and column of
A(¢;-,-). This is done as follows:

Remarks
C1 = MATR(C(k,)) el ll = Il ex; |l for all i, j
D1 = MATR(D(k,)) L1l = Il dygayaq |l for all i, j
Ak,) =SUMC(-C1x(D — D1)) a; = Z;f.,l = cl;;(dyiyecy — dl,.j) for all i
A(k) = SUMC(C*(D — D1)) a; = Zj,lc,.j(dwmj) —dl;;) for all i

It is now immediate to see that to update DIFF is indeed O(1) DAP operations.
A program for 2-optimising problems of size n < 64 has been produced for the DAP
Subroutine Library.

2.3. A 3-optimising heuristic

For ¢ € S, and distinct k, /, m €[n] let ¢*'” denote the following member of N;(¢):
o(i) ifie{k, I, m),

ampy_) () ifi=k,
=0 m) it
o(k) ifi=m.

We extend the use of DIFF so that DIFF (¢; k, [, m)=f(¢)— f(¢*"™).

3-Optimality Algorithm
begin
compute an initial permutation ¢;
30PTIMAL := false;
repeat
2-optimise ¢ using the algorithm of Section 2.2;
if DIFF(¢;-,-,) <0 then 30PTIMAL := true

else begin
let DIFF(¢; k, I, m) = max{DIFF(¢; u, v, w): u, v, w€[n]};

¢= q)klm
end
until 30PTIMAL
end

We should first check that on termination ¢ is 3-optimal. But this is immediate from the fact
that ¢ is 2-optimal and
Ny(9) =Ny(p)U {¢"": k, I, me[n] and k, I, m distinct }.
To see how to implement the algorithm efficiently we note first that
DIFF(¢; u, v, w)
=4 (¢; u, 0) + Cuu(dooroon — dowroun) + A’ (65 0, w)
+ ¢l dgmenn — daema)
+A4'(9; w, 1) + €y (dpiuro) — dorsim)
=A($; u, v) + A(d; v, w) + A(&; w, 1) = €4 (dguro) T Dowrswy — dowrswy)
— Cow(dacoro0n T Fotmren ~ Dowew) ~ Cuul daemew + dowrsw) — Fswsmn)-
(This is, of course, not obvious, but neither is it difficult to check, only tedious.)

158 A.M. Frieze et al. / Algorithms for assignment problems

Table 2
Comparison between running times of ‘serial’ and ‘ parallel’ versions of the 2-optimality and 3-optimality algorithms on
randomly generated problems

Size of 2-optimality algorithm 3-optimality algorithm

problem Average execution Average execution Speedup factor Average execution

n time on 64 X 64 DAP time on ICL 2980 of the DAP to time on 64 X 64 DAP
(ms) (ms) 2980 (ms)

10 23.69 18.10 0.76 61.23

20 45.48 91.82 2.02 160.65

30 85.15 394.83 4.64 214.15

40 107.70 896.36 8.32 394.36

50 147.38 1980.22 13.44 694.94

60 156.60 3053.77 19.51 878.40

64 182.80 4054.81 2218 1056.04

Note that after 2-optimising ¢ in the 2-optimality algorithm, the (updated) matrix A(¢;-,-)
is available to us. We can then, for a fixed u (say u = k), compute DIFF(¢; k,-,-) and then see
if there exist I, m € [n] such that DIFF(¢; k, /, m) > 0 using O(1) DAP operations. Thus, one
can check for 3-optimality in O(n) DAP operations. (O(n®) for a serial implementation as
opposed to O(n>) for a crude comparison of f(¢) and f(¢) for ¢ € Ny(¢).)

It remains only to ‘re-compute’ DIFF(¢;-,-,-) for which we must update A(¢;-,-). But
¢*'™ = (¢*')'™ and so 4 can be updated using O(1) DAP operations by applying (2.7) twice.

2.4. Computational results

We have carried out some computational experiments to try to evaluate the efficiency of the
algorithms as described in Sections 2.2 and 2.3. We have not reported on the qualities of the
solutions obtained, as these are well documented in [18].

Two sets of data were used for testing the algorithms

(i) A series of randomly generated problems. Three matrices C = ||¢;;|l, D= || d;;|| and
F= | f;; || were generated using a uniform distribution such that 1<c;;, d,;, f;;<100. The
value f;; represents the ‘linear’ term which is the fixed cost of assigning facility i to location j.
For each value of 7 (10 < n < 64) 10 problems were generated. These results are summarised in
Table 2. As we had a working version of Los’s code for the 2-optimising case, we were able to

compare the computation time of the parallel algorithm to that of the serial algorithm.

Table 3
Comparison between running times of ‘serial’ and ‘parallel’ versions of the 2-optimality and 3-optimality algorithms on
the Steinberg problem

Value of the local Execution time
optimum assignment (ms)
Los’s serial
2-optimality 4236.497 344.00
algorithm (on CDC CYBER 74)
Parallel
2-optimality 4236.497 53.00
algorithm (on 64 X 64 DAP)
Parallel
3-optimality 4223.033 382.23

algorithm (on 64X 64 DAP)

A.M. Frieze et al. / Algorithms for assignment problems 159

(ii) The Steinberg problem [24] using as the starting solution the solution reported by
Graves and Whinston [12] which has the value 4344.975. These results are given in Table 3.

3. The assignment problem

The classical linear (or 2-dimensional) assignment problem is defined as the following
integer program:

n n
minimise Y,) ¢;;X;,
i=1j=1

n
subject to) x;;=1, i=1,2,...,n,
j=1

n

inj=l’ j=1,2,...,n,
i=1

x‘,j=00rl, i,j=1,2,...,n.

This is a standard problem in Operational Research which is well studied and a number of
efficient algorithms have been proposed for its solution; e.g. [1,2,14,16]. All of these can be
implemented to run in time O(n>) on a serial machine.

One of the best known methods is the Hungarian or Primal Dual Method. This method
seems to have the most promise in a parallel setting and we programmed a version of it in
DAP-Fortran. The algorithm works with a dual solution (u, v) € R2” and the main tasks
carried out by the algorithm are to:

(i) Find a maximum matching in the bipartite graph with edge set

{(i, J): Cij=“i+vj}'
(ii) Update the dual solution by computing
min{ ¢, —u;— v;: (i, j) €IxJ}

for suitably defined sets I, J, see [17] for details.

On a serial machine (ii) is very time consuming, but the DAP can do the minimisation in
O(1) very rapidly. To carry out (i), we use the standard labelling algorithm of Ford and
Fulkerson [7). However, because of the 0-1 nature of the problem, this can be done using
logical matrices which are represented by 1 bit in the DAP and hence is very fast.

Our experience has been limited to problems of size up to 64 X 64 and a program for solving
problems of this size has been produced for the DAP Subroutine Library. Larger problems can
be solved by using standard partitioning techniques, but we have not had the time to
implement these.

3.1. Computational results

The results of running our program on randomly generated test problems (with uniform
distribution on the interval [1.0, 10.0]) are summarised in Table 4.

160 A.M. Frieze et al. / Algorithms for assignment problems

Table 4
Comparison between running times of ‘serial’ and ‘parallel’ versions of the primal-dual algorithm for solving linear
assignment problems

Size of problem Time on Time on Speedup factor of
ICL 2980 64X 64 DAP the DAP to 2980
(ms) (ms)

10 36.74 6.33 5.80

20 65.25 11.32 5.76

30 179.66 20.65 8.70

40 264.06 21.63 12.21

50 624.66 3091 20.21

60 1816.02 51.45 35.30

64 1259.95 29.04 43.39

We can see that as the problem get larger, so do the savings in computation time. We
anticipate that for problems of size greater than 64, the speedup factor of at least 44 will be
maintained.

4. The 3-dimensional assignment problem

This is a well-known generalisation of the assignment problem described in Section 3. This
problem arises when three sets of entities, e.g. (persons, jobs and times) or (students, projects
and teachers) have to be assigned together in order to maximise some objective function, see
[9]. Expressed mathematically this is to

n n n
maximise Y, Y. Y viXiu (4.1)
i=1j=1 k=1

n n
subjectto), Y x;;=1, i=1,2,....n,

j=1k=1

n n

z Zx‘,jkzl’ j=1,2,...,n, ‘ (4‘2)
j=1 k=1

‘” n

Y Yxp=1l k=1,2,...,n,

i=1 j=1

Xix=0orl, i, j, k=1,2,...,n.

This problem is NP-Hard, see [10], and the most efficient method of solution is branch and
bound using Lagrangean relaxation [9]. By allocating Lagrange multipliers, u,, u,,..., u, to
equations (4.2) and taking them up into the objective function (4.1), we obtain the following
relaxation:

n n
maximise Y, Y ¢, (4.3)
i=1j=1

n
subjectto) y,;=1, i=1,2,...,n,
j=1

n
zyij=1, j=1’ 2‘-“1”9
i=1

yij=00r1, i, j=1,2a""n

where ¢;;=max{(v; —u.): k=1,2,..., 0} =03, — Ur j, and Yij = Xijkdi, jy-

P

A.M. Frieze et al. / Algorithms for assignment problems 161

Table 5
Comparison between running times of ‘serial’ and ‘parallel’ versions of the algorithm for solving 3-dimensional
assignment problems

Size of problem Time on Time on Speedup factor of
ICL 2980 64x 64 DAP the DAP to 2980
(s) s

30 6.70 0.75 8.93

50 36.50 1.38 26.45

60 52.15 2.03 25.69

Now (4.3) is an assignment problem and can be solved as in Section 3. The only other
difficulty is the actual calculation of the c;,’s. This is very time consuming when done serially;
it requires 3 DO-loops (in fact, construction of the matrix || ¢;;|| was a bottleneck that had to
be overcome if the method was to be practicable). But the calculation is done very quickly on
the DAP. Indeed, we can reduce the 3 DO-loops to only 1 DO-loop. The DAP-Fortran
program to achieve this is as follows:

Remark
C=VLD-U®D) el = llvijpll—llu |l forall i, j
DO10k=2,n
T=V(CK)-UK) |1l = llvll = Nuy |l for all 4, j
CC.LT.T)=T Il c;; It = li#;; | whenever the former is less than the latter,
forall i, j

10 CONTINUE

In the expression V(,,k) — U(k), the compiler first automatically expands U(k) into a matrix
each component of which has the value U(k) and then performs the subtraction.

4.1. Computational results

The results of running our program on randomly generated test problems are summarised in
Table 5. We have not reported on the quality of the solutions obtained, as these are well
documented in [9].

5. Conclusion '

The idea of applying parallel programming techniques to solve combinatorial optimisation
problems is promising and deserves much more attention. Parallel programming could save
significant amount of computation times. For example, by parallising the primal dual algorithm
on the DAP, we achieved speedup factor of nearly 44 times for solving assignment problems of
size 64. Similar savings, though not as much, were also obtained for the 3-dimensional
assignment problem and the QAP. Contrary to what Los concluded in his paper [18], we were
able, using the DAP, to apply the 3-optimality algorithm in acceptable times to improve
solutions to QAPs of size > 24.

! The computations reported in this work were performed on a 64 X 64 DAP system designed by ICL. All software and
hardware rights to the original machine were sold to and enhanced by Active Memory Technology, Inc. (AMT),
Irvine, California. AMT’s newest version, the DAP 610 system, has a performance 2.25 times that reported in the

paper.

162 A.M. Frieze et al. / Algorithms for assignment problems

References

[1] M.L. Balinski, Signature methods for the assignment problem, Oper. Res. 33 (1985) 527-536.
[2] D.P. Bertsekas, A new algorithm for the assignment problem, Math. Prog. 6 (1981) 152-171.
[3) R.E. Burkard and U. Fincke, Probabilistic asymptotic properties of quadratic assignment problems, Report 81-3,
Mathematisches Institut, Universitit zu Koln, Fed. Rep. Germany, 1981.
[4] R.E. Burkard, Quadratic assignment problems, European J. Oper. Res. 15 (1984) 283-289.
(5] M.E. Dyer, AM. Frieze and CJ.H. McDiarmid, Linear program with random costs, Math. Prog. 35 (1986) 3-16.
[6] M.J. Flynn, Very high-speed computing systems, Proc. IEEE 54 (1966) 1901-1909.
[7] L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ, 1962).
[8] C.C. Foster, Content Addressable Parallel Processors (Van Nostrand Reinhold, New York, 1976).
[9] A.M. Frieze and J. Yadegar, An algorithm for solving 3-dimensional assignment problems with application to
scheduling a teaching practice, J. Oper. Res. Soc. 32 (1981) 989-995.
[10] M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to NP-Completeness (Freeman, San
Francisco, CA, 1979).
[11] B.W. Gostick, Software and algorithm for the Distributed Array Processor, ICL Tech. J. 1 (1979) 116-135.
[12] G.W.Graves and A.B. Whinston, An algorithm for the quadratic assignment problem, Manag. Sci. 17 (1970)
453-471.
{13] R.W. Hockney and C.R. Jesshope, Parallel Computers (Adam Hilger, Bristol, 1981).
{14) M.S. Hung and W.O. Rom, Solving the assignment problem by relaxation, Oper. Res. 28 (1980) 969-982.
[15]) T.C. Koopmans and M. Beckmann, Assignment problems and the location of economic activities, Econometrica
25 (1957) 53-76.
[16) H.W. Kuhn, The Hungarian method for the assignment problems, Naval Res. Logist. Quart. 2 (1955) 83-97.
[17] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).
[18] M. Los, Comparison of several heuristic algorithms to solve quadratic assignment problems of the Koopmans—
Beckmans.type, Presented at the International Symposium on Location Decisions, Banff, Alberta, Canada, (1978).
[19) D. Parkinson, Practical parallel computers and their uses, in: D.J. Evans, ed., Parallel Processing Systems
(Cambridge University Press, Cambridge, 1982) 215-235.
[20] D. Parkinson, The Distributed Array Processor (DAP), Comput. Phys. Comm. 28 (1983) 325-336.
[21] D. Parkinson, Organisational aspects of using parallel computers, Parallel Comput. 5 (1987) 75-83.
[22] S.F. Reddaway, The DAP approach, in: C.R. Jesshope and R.W. Hockney, eds., Infotech State of the Art Report:
Supercomputers, Vol. 2 (Infotech International, Maidenhead, 1979) 311-329.
[23] S. Sahni and T. Gonzalez, P-complete approximation problems, J. ACM 23 (1978) 555-565.
[24] L. Steinberg, The backboard wiring problem: A placement algorithm, SIAM Rev. 3 (1961) 37-50.

o e = R

