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Let Dy denote the underlying graph of a random k-outregular digraph B,. We shall
show that the probability that D, is hannltoman tends to 1 as the number of its
vertlees tends to mﬂmty L o : .

- 1. Introductl;o‘n

Let D, = D,(n) be a digraph with the vertex sct ¥, ={1,2,...,n} in which each
vertex chooses randomly and independently & out-nelghbours from V, and
let D, be the underlying graph of D,. We shall say that D, has some property
a.s. (almost surely) if the probabxhty that D, has this property tends to 1 as
n—'co. In ‘this paper we shall consider the problem of the existence of
a hamiitonian cycle in D,. In [4] Fenner and Frieze showed that D, is as.
hamiltonian for k>23 and in [5] it has been established algorithmically
that D, has this property for k> 10. On the other hand, D, as. contains
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a vertex adjacent to three others of degree two, $O three is the smal]est
possible candidate for Dy to a.s. have a hamiltonian cycle. This paper is
a further small step toward the solution of this problem.

Main Theorem. D is a.s. hamiltonian. Moreover, there is an aigonthm which
a.s. finds a ham:lton:an cycie in D5 in polynomzal time. «

2. Description of the Algorithm

The following result of Frieze [6] about matchmgs in D 2 will be needed
for our arguments. : . : o

Lemma 1. D, a.s. contains a matching of size L31- N

Remark. Actually [6] shows only that D,(n) with n even as. contains
a perfect matching. But if n is odd, consider Dy(n+1). With: probability
1—o(1), Dy(n+1) contains a perfect matching’ and with probability

e~ 2+ o{l1) vertex n+1 has indegree O in D (n+ 1) But conditional on this
!atter event, the first  vertices induce D,(r) and so we can. extend the result
of [6] to n odd.

It is well known that the problem of ﬁndmg alargest matchmg is solvable
in polynomial time, Edmonds [2]. Furthermore, an algorithm with time
complexity O(n!-%) (when run on D,(n)) is described by Micali and Vazirani
7). Let us call this algorithm FINDMATCH. However, to obtam
a “random” matching we shall modify this procedure slightly. ‘

FUNCTION RFM (D,);
mput 1'52 plus a, random. permutatlon o of V'"
B :={{ati)o()} : (.1)eDa};

; “find matching M in D using. FINDMATCH (or FAIL) :

(FINDMATCH isallowed to take account of the onentatlon of the edges

« of D, but has no reason to do:it. Also it is 1gnorant of a)

‘:‘-'output RFM —{{ :"1(1)0' 1(J)} (I»J)EM}

Lemma 2. Each possible matching of size |_ | is equally hkely as output
Jrom RFM. : :
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Proof. For a matching M and permutation o let oM = {{a'(;),a(J)} {i.))
€ M}. Note that if M is fixed and ¢ ranges over all permutatlons then cM
ranges over all matchings of size |M [ and each such matching arises the
same number of times, u say. Also for any fixed o, D above has the same
dlstnbutmn as D Thus

Prob{RFM = M*} =Z};17 Prob{ff=c*M*|o=0t]

=Y.£ Prob {FINDMATCH finds M in D}
M ’

which is independent of M*. | | 0

The idea of the proof of the Main Theorem goes as follows. We split all
arcs randomly into five groups E,, E,,..., E, in such a way that every vertex
is a head of one arc from each group and each arc is equally likely to be in
each group. Since E, UE, and E,;UE, are copies of D, we can apply RFM to .
find matchings M, and M, in them. Thus we obtain a 2-factor in
D,=E,VE,UE;UE, (to be precise we can also have some number of
isolated edges and one other path when the number of vertices of D4 is odd).
Then we shall join all components of the 2-factor into one cycle, using edges
from E if necessary. To do it we shall need another procedure, known as
Pésa’s transformation, finding for a given path P=1v, v,...v, 2 family of paths
IT and a set. of vertices X< V(P) such that.for each xeX the, family
IT contains a umque path with cnd pomts vo, x whxch uses all the vertloes V(P).

PROCEDURE ROTATION (P vo,H )
input path P=v,v,..1,, E;
Hl :={(P= UOnv[)};
I :=9;
X 5={vt};
for (P',vo, w))ell, do
suppose P'=v,..w,_ lwl’ S
n =ITU{(P’, vo, w))};

Y i={w,: {wow}eE, Wi X, 1<ii— 2} ; :
I,:={(P,v, w;,,): P= Do Wewe W Wi Wy g “:’.+2Wz+1 and Wi+1EY}
I, := 1,0l \{(P', 2o, Wy)};
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—(xw)\{w,}
end
return
end _

Our algorithm consists of an initialization phase and a rotation phase.
Initialization Phase
input Dg;
find E,,E,,E,,E, E;

M,:=RFM(E,UE)); -

M,:=RFM(E,UE));

M :=M;uM,;

E :=E,UE,uE,UE,;

."'We observe that the graph induced by M consists of a set of components
which are even cycles C,, C,,...C, (some of which are merely double edges)
and if n is’odd there is a further component P, whichisa path (may be just
isolated vertex). -

We now-find a path P.If nis odd then P= P, otherwxse take asPa path
obtained from C, by deleting an edge Assume now that the initialization
phase ends:with a path P and remaining cycles Cl, Cz, ,C
Rotation Phase ' IR o
for t=1 tos do
begin

ROTATION (P uo, i ) whcre vy is one endpomt of P

tet IT={(P,, 05, w)):i=1,2,..,p} and g= mm{p [3log® n'l }
for i=1 to g do ROTATION (P, w,, IT l) ‘

ﬂ U; IH i

if {s,v'} € E for some (B,v,wyell,, v'¢P, veC'cM then

P:= a longest path with vertices in PuC’
else do

begin
find {v, w} € E; for some (P,v,w)ell,;
FAIL, if none found; '
C:=FP+{ow};
if C is a hamiltonian cycle then HALT else
find {v',w}€eE, veC,w¢C;
FAIL, if none found;
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P:=a longest path with vertices in CUM
. .end . B

end
output C
stop
end

3. Proof of the Main Theorem

The assertion of the Main Theorem is an easy consequence of the fact that
M has few components and the graph D, = E, UE,UE, UE, is so dense that
each time the procedure ROTATION leads to a family IT either the set
W= {w:(P,v,w)} has neighbours outside P ot |I7|>0.001 n. Note first that
since D, is a.s. connected [3] the probability that we halt F AIL, tends to
zero. So itis only the possibility of FAIL, that needs to be conmdered further.

Let us start with the following result.

Lemma 3 Let X bea number of components of M. Then, X <3 logn as:

Proof. We shall only consnder the case when n, the number of vertices of D4,
iseven (for n odd, delete Po and note that what we have left is a random pair
of matchings of the remaining vertices).

Consider the cycle C containing vertex 1. We show

@ Prob{|C|>1in}>1
and observe that

(i) deleting C from M leaves a random palr of matchmgs of the
remaining vertices.

To prove (i) note that

G\ 1
- Pmb{lcl Zk} ,131( —2i+ 1) n—2k+ 1‘11.—2!:;{— 1
Indeed cbnside‘r!M' ;-edge {1 —-il; i,}JeC conteinihg w}e;tex L. iet {iis}eC
be the M,-edge containing iz Prob{i,#1}=" =2=2_ Assume i, #1 and let
{is,1,#1} € C be the M, -edge containing i, Let {:4, is}eChbethe Mz-edge
containing #,. Then Prob{:, #1[13#1}—"" and so on. )
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Hence Prob{|C|<in}< Z:}:]l +=ax¥1 <3 and () follows. Consider next
the following experiment to determine the sizes of the cycles in M. Choose
the size of the cycle containing vertex 1. Now choose the size of the cycle
containing a particular vertex from the remaining n—s vertices. Continue
until the cycle chosen contains all remaining vertices. Then (i) and (ii) imply
that whatever the currently chosen cycle sizes, with the probability at least
1/2 the size of remaining vertex set halves. It is now straightforward to show
that it is unlikely that this process continues for 2log,n < 3logn iterations.

: =

We need also the result.of Pésa [8]. ©

Lemma 4. Let a graph G"ihab_e, the prbpérty that for every set S of G, S| <m,
we have : : - o o

soNel=3s . @

where N(S) denotes the set of all neighbours of S. Moreover, let IT be a family
of paths in G obtained as a result of applying procedure ROTATION to any
path P. Then either for some (P, v,w)€ I we have N({(w\ P’ %0, or |IT| >m.

Now we shall show that for D . the assumption of Lemma 4 holds
a.s. with m=0.001n. Indeed, let X be a random variable which counts all
sets in D, for which () fails. Then : ;

o< £ (GG (7))

= 83n3 81k4 k m Sleak k TR BPS
<Y (B Y . ol
21(41& né) Z( n ) o(t)

k=1

Hence, for any path P, the family IT either contains a triple (P, v, w) such
that the vertex w has a neighbour outside P’ and P’ can be extended in this
way,-or |IT|>0.001n. In the last case set W= {w: (P',0,w)eII}. Then, from
Lemma ‘4; for each vertex w. from W we can find a family V,,. of paths,
beginning in wbut.with different ends, such that either one of the paths can
be extended or |V,,|>0.001n. We shall show that in the latter case for'some
w there is a.s. an edge from E which joins w with some ve V,,. Indeed, so far
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we have dealt only with edges from E, so the edges from E, are distributed
independently of sets Wand V,,. Thus, the probability that if we choose

[log?x1] arcs with tails in vertices wy, wj,..,.Wiapgsm all of them miss
appropriate V,,, is less than 0.999"°%** < n~ 2, So we can assume that in each
step we use only | log®n | elements of E4 and, due to Lemma 3, s <3logn,
so we always find | log?n | vertices for which the arcs of E with the head
in them have not been used yet. Hencs the probability that we shall halt in
FAIL, in some 3logn steps is at most

1_(1_n—2)alogn=o(n— 1)_

Now we should only count the number of steps in the algorithm. The
procedure RFM needs O(n'-%) steps, and for each value of ¢t procedure
ROTATION appears at most [3log®n7 +1 times. Furthermore, the
complexity of ROTATION is of the order of the number of all neighbours
of vertices in P times the time per rotation. The first quantity is O(n) and the
second is O(logn) — see Angluin and Valiant [1]. Thus the complexity of
ROTATION can be estimated as O(nlogn). Since s <3logn the most time
consuming part of the algorithm is that dealing with matchings and it
determines its complexity to be O(n-3). 0
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