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Abstract

We study two problems related to the existence of Hamilton cycles in random graphs. The
first question relates to the number of edge disjoint Hamilton cycles that the random graph
Gn,p contains. δ(G)/2 is an upper bound and we show that if p ≤ (1 + o(1)) lnn/n then this
upper bound is tight whp. The second question relates to how many edges can be adversarially

removed from Gn,p without destroying Hamiltonicity. We show that if p ≥ K lnn/n then there
exists a constant α > 0 such that whp G−H is Hamiltonian for all choices of H as an n-vertex
graph with maximum degree ∆(H) ≤ αK lnn.

1 Introduction

In this paper, we give results on two problems related to Hamilton cycles in random graphs.

1.1 Edge Disjoint Hamilton Cycles

It was shown by Komlós and Szemerédi [8] that if p = ln n+ln ln n+c
n

then,

lim
n→∞

Pr(Gn,p is Hamiltonian) = lim
n→∞

Pr(δ(Gn,p) ≥ 2).

Bollobás [3], Ajtai, Komlós and Szemerédi [1] proved a hitting time version of this statement, i.e.,
whp1, as we add random edges e1, e2, . . . , em one by one to an empty graph, the graph Gm =
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([n], {e1, e2, . . . , em}) becomes Hamiltonian at exactly the point when the minimum degree reaches
two.

Let us say that a graph G has property H if it contains ⌊δ(G)/2⌋ edge disjoint Hamilton cycles
plus a further edge disjoint (near) perfect matching in the case δ(G) is odd. (Here a (near) perfect
matching is one of size ⌊n/2⌋). Bollobás and Frieze [5] showed that whp Gm has property H as
long as the minimum degree is O(1).

It is reasonable to conjecture that whp Gn,p has property H for any 0 ≤ p ≤ 1. Our first result is
to show that this is true for p ≤ (1 + o(1)) lnn/n which strengthens the non-hitting time version
the result quoted from [5].

Theorem 1 Let p(n) ≤ (1 + o(1)) lnn/n. Then whp Gn,p has property H.

We remark that Frieze and Krivelevich [7] showed that if p is constant then whp Gn,p almost satisfies
H in the sense that it contains (1 − o(1))δ(Gn,p)/2 edge disjoint Hamilton cycles.

1.2 Robustness of Hamiltonicity

In recent times, there is increasing interest in graphs which are only partially random. For example,
Bohman, Frieze and Martin [2] considered graphs of the form G = H + R where H is arbitrary,
but with high minimum degree and R is random. In this section we consider graphs of the form
G = R − H where R is random and H is an arbitrary subset of R, subject to some restrictions. In
particular R = Gn,p

Sudakov and Vu [10] have recently shown that if p > (lnn)4/n and if G = Gn,p then whp G−H is
Hamiltonian for all choices of H as an n-vertex graph with maximum degree ∆(H) ≤ (1/2 − ε)np.
Here ε > 0 is an arbitrarily small constant. Note that this bound on ∆(H) is essentially best
possible, otherwise R − H could be a bipartite graph with an uneven partition. In this note we
reduce p to O(ln n/n) but unfortunately, we have to reduce the bound on ∆(H) as well.

Theorem 2 Let G = Gn,p where p ≥ K ln n/n for some sufficiently large constant K > 0. There
exists a constant α > 0 such that whp G − H is Hamiltonian for all choices of H as an n-vertex
graph with maximum degree ∆(H) ≤ αK ln n.

2 Proof of Theorem 1

2.1 Preliminaries

Observe first that the assumption on the edge probability in this theorem can be easily seen to
be essentially equivalent to the assumption that the minimum degree δ(G) of Gn,p almost surely
satisfies: δ(G) = o(log n).
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Notation: For a graph G = (V,E) and two disjoint vertex subsets U,W we denote:

N(U,W ) := {w ∈ W : w has a neighbor in U} ;

N(U) := N(U, V \ U) ;

E(U,W ) := {e ∈ E(G) : |e ∩ U | = 1, |e ∩ W | = 1} ;

e(U,W ) := |E(U,W )| .

Definition 1 A graph G = (V,E) is called a (k, c)-expander if |N(U)| ≥ c|U | for every subset
U ⊆ V (G) of cardinality |U | ≤ k.

Set

d0 = d0(n, p) = min

{

k : n

(

n − 1

k

)

pk(1 − p)n−1−k ≥ 1

}

.

One can prove that whp δ(Gn,p) satisfies (say):

|δ(G) − d0| ≤ ln lnn .

Indeed, uk = n
(

n−1
k

)

pk(1 − p)n−1−k is the expected number of vertices of degree k and uk+1/uk =
(n−1−k)p

(k+1)(1−p)
. Since d0 = o(lnn) we see that ud0−ln ln n = o(1). Furthermore, ud0+ln ln n → ∞ and we can

use the Chebyshev inequality to show that ud0+ln ln n 6= 0 whp.

Define

ρ =
2001(d0 + ln lnn)

n ln n
,

observe that ρ = o(1/n). Define p0 = p0(n) by

1 − p = (1 − p0)(1 − ρ) , (1)

observe that p0 = p − ρ(1 − o(1)). We can thus decompose G ∼ Gn,p as G = G0 ∪ R, where
G0 ∼ Gn,p0, R ∼ Gn,ρ.

Notation. δ0 = δ(G0).

Claim 1 For a fixed G0, almost surely over the choice of R ∼ Gn,ρ, δ(G0) = δ(G0 ∪ R).

Proof Clearly, δ(G0) ≤ δ(G0 ∪ R). In the opposite direction, take a vertex v of minimum
degree in G0. Recall that ρ = o(1/n), and therefore the edges of R almost surely miss v, implying
δ(G0 ∪ R) ≤ dG0∪R(v) = dG0(v) = δ(G0). 2

It thus follows that in order to prove Theorem 1 it is enough to prove that almost surely G0 ∪ R
contains ⌊δ0/2⌋ disjoint Hamilton cycles, plus an edge disjoint (near) perfect matching if δ0 is odd..

Of course we may (and will indeed) assume that p(n) = (1 + o(1)) lnn/n, as otherwise whp δ0 ≤ 1
and there is nothing new to prove.
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2.2 Properties of G0 = Gn,p0

Define
SMALL = {v ∈ V : dG0(v) ≤ 0.1 lnn} .

Lemma 3 The random graph G0 = Gn,p0, with p0 defined by (1), has whp the following properties:

(P1) G0 does not contain a path of at most four distinct edges (with possibly identical endpoints),
both of whose endpoints lie in SMALL.

(P2) Every vertex has at most one neighbor in SMALL.

(P3) Every set U ⊂ V of size |U | ≤ 100n/ lnn spans at most |U |(ln n)1/2 edges in G0.

(P4) For every two disjoint subsets U,W ⊂ V satisfying: |U | ≤ 100n/ lnn, |W | ≤ 10−4|U | ln n,

eG0(U,W ) < 0.09|U | lnn .

(P5) For every two disjoint subsets U,W ⊂ V satisfying: |U | ≥ 100n/ lnn, |W | ≥ n/4,

eG0(U,W ) ≥ 0.1|U | lnn .

Proof The above are rather standard statements about random graphs, so we will be relatively
brief in our arguments.

We start with proving P1. Observe that for a vertex v ∈ V (G0), the degree of v is binomially
distributed with parameters n − 1 and p0. Therefore,

Pr[v ∈ SMALL] =
∑

k≤0.1 ln n

Pr[B(n − 1, p0) = k] ≤ 0.1 lnn

(

n − 1

0.1 ln n

)

p0.1 ln n(1 − p)n−1−0.1 ln n

≤ 0.1 lnn

(

10enp

lnn

)0.1 ln n

e−p(n−1−0.1 ln n) < 290.1 ln ne−(1−o(1)) ln n

< n−0.6 .

Also, for a fixed pair u 6= v ∈ V (G0) the probability that u and v are connected by a path of length
ℓ in G0 is at most nℓ−1pℓ

0 = ((1 + o(1)) lnn)ℓn−1. Therefore, using the FKG inequality,

Pr[(u, v ∈ SMALL)&(dist(u, v) ≤ 4)] ≤ Pr[u ∈ SMALL]Pr[v ∈ SMALL]Pr[dist(u, v) ≤ 4]

≤ 4 · n−0.6 · n−0.6 ·
(1 + o(1)) ln4 n

n
< n−2.1 .

Applying the union bound over all possible pairs of distinct vertices u, v (O(n2) of them), we
establish P1. The case where u = v is treated similarly.
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Property P2 follows directly from P1. Properties P3, P4 are straightforward first moment calcu-
lations which we thus omit.

We conclude with proving P5. Fix U,W . Then the number of edges between U and W is distributed
binomially with parameters |U ||W | and p0 and has thus expectation |U ||W |p0 ≥ (1+o(1))|U | lnn/4.
Therefore by applying standard Chernoff-type bounds on the lower tail of the binomial distribution,
it follows that

Pr[eG0(U,W ) ≤ 0.1|U | lnn] ≤ exp

{

−
(0.25|U | lnn − 0.1|U | ln n)2

2 · 0.25|U | lnn

}

= exp{−2 · 0.152|U | ln n}

< exp{−4n} .

As the pair (U,W ) can be chosen in at most 4n ways, P5 follows by applying the union bound. 2

2.3 Pósa’s Lemma and its consequences

Definition 2 Let G = (V,E) be a non-Hamiltonian graph with a longest path of length ℓ. A pair
(u, v) 6∈ E(G) is called a hole if adding (u, v) to G creates a graph G′ which is Hamiltonian or
contains a path longer than ℓ. In addition, if the maximum size of a matching in G is m < ⌊n/2⌋
then (u, v) 6∈ E(G) is called a hole if adding (u, v) to G creates a graph G′ which is contains a
matching of size m + 1.

Lemma 4 Let G be a non-Hamiltonian connected (k, 2)-expander. Then G has a path of length at
least 3k − 1 and at least k2/2 holes.

Proof

Let P = (v0, . . . , vk) be a longest path in graph G. A Pósa rotation of P [9] with v0 fixed gives
another longest path P ′ = (v0, . . . vivk . . . vi+1) created by adding edge (vk, vi) and deleting edge
(vi, vi+1). Let ENDG(v0, P ) be the set of endpoints obtained by a sequence of Pósa rotations
starting with P , keeping v0 fixed and using an edge (vk, vi) of G.

Each vertex vj ∈ ENDG(v0, P ) can then be used as the initial vertex of another set of longest paths
whose endpoint set is ENDG(vj, P ), this time using vj as the fixed vertex, but again only adding
edges from G. Let ENDG(P ) = {v0} ∪ ENDG(v0, P ).

The Pósa condition (see, e.g., [4], Ch.8.2)

|N(ENDG(v, P ))| ≤ 2 |ENDG(v, P )| − 1

for v ∈ ENDG(P ) together with the fact that G is a (k, 2)-expander implies that |ENDG(v, P )| > k.
The connectivity of G implies that closing a longest path to a cycle either creates a Hamilton cycle
or creates a longer path. For every v ∈ ENDG(P ) and for every u ∈ ENDG(v, P ), a pair (u, v) is
a hole. This shows that the number of holes is at least k2/2 (each hole is counted at most twice
for both its endpoints). As all neighbors in G of a subset U ⊆ ENDG(v, P ) of size |U | = k belong
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to P , due to the maximality of P , and G is a (k, 2)-expander, it follows that the length of P is at
least 3k − 1. 2

The following lemma is taken from [5].

Lemma 5 Let G be a (k, 1)-expander which does not contain a matching of size ⌊n/2⌋. Then G
has a matching of size at least k and at least k2/2 holes.

Proof Let M denote the set of maximum size matchings in G and let M ∈ M. Fix v uncovered
by M and now let S0 be the set of vertices reachable from v by an even length alternating path
with respect to M . Clearly, every vertex of S0 is either v or is covered by M . Let x ∈ N(S0). Then
x is covered by M , as otherwise we can get a larger matching by using an alternating path from v
to y ∈ S0, and then an edge (y, x).

Let y1 satisfy (x, y1) ∈ M . We show that y1 ∈ S0. Now there exists y2 ∈ S0 such that (x, y2) ∈ E(G).
Let P be an even length alternating path from v terminating at y2. If P contains (x, y1) we can
truncate it to terminate with (x, y1), otherwise we can extend it using edges (y2, x) and (x, y1).

It follows that |N(S0)| < |S0| (as v ∈ S0, v is not covered by M). Recalling that G is a (k, 1)-
expander, we derive that |S0| > k. But then obviously the union S0 ∪N(S0) has at least 2k vertices
and thus has at least 2k − 1 vertices from M . This implies: |M | ≥ k.

Now we prove that G has at least k2/2 holes. Fix v uncovered by M and now let S 6= ∅ be the other
vertices uncovered by M . Let S1 ⊇ S be the set of vertices reachable from S by an even length
alternating path with respect to M . As before we can prove that |S1| > k. For every u ∈ S1 there
is an even length alternating path with respect to M ending at u. Replacing the edges along this
path belonging to M with those outside of M gives a maximum matching M ′ ∈ M not covering u.
Thus (u, v) is a hole. Repeating now the above argument with u,M ′ instead of v,M , respectively,
gives at least k holes touching u. Since |S1| ≥ k, and each hole is counted at most twice, altogether
we get at least |S1|k/2 ≥ k2/2 holes, as required. 2

2.4 Proof idea

We split the random graph R into ⌈δ0/2⌉ identically distributed random graphs Ri. We then create
⌊δ0/2⌋ Hamilton cycles Hi (plus a matching if needed). We use the random edges of Ri to fill a
hole. Once Hi is created its edges are deleted from the graph and we proceed to the next phase. At
the i-th stage, by the definition of δ0, the graph Gi has minimum degree at least 2, moreover, most
vertices in it have degree around ln n (as each vertex loses at most δ0 = o(lnn) neighbors during
the process), and therefore Gi is connected, is an (n − cn/ ln n, 2)-expander by properties P1-P5
and has a path Pi of length at least n− cn/ ln n. We gradually augment Pi to a Hamilton path, and
then to a Hamilton cycle. At each substage of augmenting Pi, the current graph has a quadratic
number of holes, and therefore a constant number of random edges are expected to augment the
current path to a longer one/close a Hamilton cycle. If δ0 is odd, we need a final stage to create a
(near) perfect matching.
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2.5 Formal argument

We may assume that δ0 ≥ 2 as otherwise there is nothing new to prove.

Define ρi by
1 − ρ = (1 − ρi)

⌈δ0/2⌉

observe that

ρi ≥
ρ

⌈δ0/2⌉
=

2001(d0 + ln lnn)

⌈δ0/2⌉n lnn
≥

4000

n ln n
.

We then represent

R =

⌈δ0/2⌉
⋃

i=1

Ri ,

where Ri ∼ G(n, ρi).

For i = 1, . . . , ⌈δ0/2⌉, let Gi be a graph obtained from G0 ∪
⋃i−1

j=1 Rj after having deleted the first
i − 1 Hamilton cycles (assuming that the previous i − 1 stages were successful, of course). Each
vertex v has its degree in G0 reduced by at most 2(i − 1) in Gi. Therefore if i ≤ ⌊δ0/2⌋ then the
minimum degree δ(Gi) satisfies δ(Gi) ≥ δ0 − 2(i − 1) ≥ 2. If δ0 is odd, then δ(G⌈δ0/2⌉) ≥ 1.

We will now show that if i ≤ ⌊δ0/2⌋ then Gi is a (k, 2)-expander for k = n/3 − 100n/(3 lnn). Let
X ⊂ V be a set of |X| = t vertices.

Case 1: t ≤ 100n/ lnn.

Denote X0 = X∩SMALL, |X0| = t0, X1 = X\X0, |X1| = t1. Observe first that |NGi
(X0, V \X)| ≥

2t0 − t1. Indeed, in Gi all edges touching X0 have their second endpoint outside X0, by Property
P1. We currently have at least two edges per each vertex in X0. By Property P2 each vertex
outside SMALL has at most one neighbor in X0 in the graph Gi. Thus the other endpoints of the
edges from Gi touching X0 are distinct, and at most t1 of them land in X1.

Now, X1 spans at most t1(ln n)1/2 edges in G0, by Property P3. As the degrees in G0 of all vertices
in X1 are at least 0.1 ln n, by the definition of SMALL, at least 0.09t1 lnn edges leave X1 in G0.
But then by Property P4 |NG0(X1)| ≥ 10−4t1 lnn. By Property P1 at most t1 of those neighbors
fall into X0 ∪ NG0(X0), implying:

|NG0(X1, V \ X) − NG0(X0, V \ X)| ≥ 10−4t1 ln n − t1 .

As in Gi every vertex lost at most δ0 neighbors compared to G0, we have

|NGi
(X1, V \ X) − NG0(X0, V \ X)| ≥ 10−4t1 ln n − t1 − δ0t1

≥ 10−5t1 ln n .

Altogether,
|NGi

(X)| ≥ 2t0 − t1 + 10−5t1 lnn ≥ 2t ,

as claimed.
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Case 2: t ≥ 100n/ lnn.

Recall that t ≤ n/3 − 100n/(3 lnn). Assume to the contrary that |NGi
(X)| < 2|X|. Then in Gi

there is a vertex subset Y disjoint from X such that |Y | = n − 3t, and Gi has no edges between X
and Y . But then there were at most 2 min {⌊δ0/2⌋ |X|, ⌊δ0/2⌋ |Y |} edges between X and Y in G0.

If t ≤ n/4, then n−3t ≥ n/4, and we get a contradiction to Property P5 with X,Y substituted for
U,W , respectively. If n/4 ≤ t ≤ n/3−(100n)/(3 lnn), then n−3t ≥ 100n/ lnn, again contradicting
Property P5 with Y,X instead of U,W , respectively.

We have proved that given properties P1-P5 of G0, for each i the graph Gi is deterministically an
(n/3 − 100n/(3 lnn), 2)-expander.

A similar argument, in the case where δ0 is odd, shows that the graph G⌊δ0/2⌋ is an (n/2 −
100n/(2 lnn), 1)-expander.

Recall that a random graph Ri added at the i-th stage is distributed according to Gn,ρi
with

ρi ≥
4000
n ln n

, so ρi ≥
120
n2 · 100n

3 ln n
and ρi > 20

n2 ·
100n
2 ln n

. Theorem 1 will thus follow from:

Lemma 6

(a) Let G = (V,E) be a (n/3 − k, 2)-expander on n vertices, where k = o(n). Let R be a random
graph Gn,p with p(n) = 120k/n2. Then

Pr[G ∪ R is not Hamiltonian] < e−Ω(k) .

(b) Let G = (V,E) be a (n/2 − k, 1)-expander on n vertices, where k = o(n). Let R be a random
graph Gn,p with p(n) = 20k/n2. Then

Pr[G ∪ R does not contain a (near) perfect matching] < e−Ω(k) .

Proof
(a) Observe that by Pósa’s Lemma and its consequences (Lemma 4):

• G is connected
(Due to expansion of G there is no room for two connected components);

• G has a path of length at least n − 3k − 1
(due to Lemma 4);

• If a supergraph of Gi is non-Hamiltonian it has at least (n/3 − k)2/2 > n2/20 holes.

We split the random graph R into 6k independent identically distributed graphs

R =
6k
⋃

i=1

Ri ,
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where Ri ∼ Gn,pi
and pi ≥ p/(6k) = 20/n2. Set G0 = G, and for each i = 1, . . . 6k define

Gi = G ∪
i

⋃

j=1

Rj .

At Stage i we add to Gi−1 the next random graph Ri. A stage i is called successful if a longest
path in Gi+1 is longer than that of Gi, or if Gi+1 is already Hamiltonian. Clearly, if at least
3k + 1 stages are successful then the final graph G6k is Hamiltonian. Observe that for Stage i to be
successful, if Gi−1 is not yet Hamiltonian, it is enough for the random graph Ri to hit one of the
holes of Gi−1. Thus, Stage i is unsuccessful with probability at most (1 − pi)

n2/20 < 1/e. Let X be
the random variable counting the number of successful stages. Then X stochastically dominates
Bin(6k, 1 − 1/e). Hence by standard estimates on the tails of the binomial distribution,

Pr[G ∪ R is not Hamiltonian] ≤ Pr[X ≤ 3k] < e−Ω(k) ,

as claimed.

The proof of (b) is similar. 2

3 Proof of Theorem 2

We will prove the result for Gn,m, m = 1
2
Kn ln n. This implies the result for the Gn,p model.

This time we will use the coloring argument of Fenner and Frieze [6]. Consider the following
properties:

(Q1) K ln n/2 ≤ δ(G) ≤ ∆(G) ≤ 2K lnn.

(Q2) |S| ≤ n
K3(ln n)2

implies |E(S)| ≤ 2|S|.

(Q3) n
K3(ln n)2

≤ |S| ≤ n/(K ln n) implies |N(S)| ≥ (K lnn/5)|S|.

(Q4) If S, T are disjoint sets of vertices and |S| ≥ |T | ≥ n/10 then e(S, T ) ≥ (K ln n/20)|T |.

Lemma 7 If K is sufficiently large, G = Gn,m satisfies Q1–Q4 whp.

Proof We will prove that Gn,p has these properties where p = K lnn/n. Inflating error prob-
abilities by O(n1/2) will show them for Gn,m. Q1, Q2 are simple first moment calculations. We
will check Q3, Q4. The size of N(S) is distributed as the binomial B(n − s, 1 − (1 − p)s). Now
1 − (1 − p)s ≥ sp/2 if sp ≤ 1. Applying a Chernoff bound we see that

Pr(∃S failing Q3) ≤

n/(K ln n)
∑

s= n

K3(ln n)2

(

n

s

)

e−(n−s)sp/32 = o(1).
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Similarly,

Pr(∃S, T failing Q4) ≤
∑

s≥n/10

∑

t≥n/10

(

n

s

)(

n

t

)

e−K ln n|T |/80 = o(1).

2

In the following we will asssume that K is sufficiently large and α is sufficiently small so that our
claimed inequalities hold. We do not attempt to optimise, since we are far from getting α close to
1/2.

Now let H be a graph with ∆(H) ≤ αK ln n and let X be any βm subset of E(G − H) satisfying
∆(X) ≤ 2βK ln n. Here we will be assuming 1 ≫ β ≫ α. Let Γ = G − H − X.

Lemma 8 If Q1–Q4 hold then

(a) Γ is an (n/30, 2)-expander.

(b) Γ is connected.

Proof
(a)
(i) |S| ≤ n

3K3(ln n)2
.

By construction, we have δ(Γ) ≥ (1/2−α− 2β)K ln n. So if |NΓ(S)| < 2|S| we find that NΓ(S)∪S
contains at least ((1/2 − α − 2β)K ln n)|S|/2 edges, contradicting Q2.

(ii) n
3K3(ln n)2

≤ |S| ≤ n/(K ln n).
It follows from Q3 that

|NΓ(S)| ≥ ((1/5 − α − 2β)K ln n)|S| ≥ 2|S|.

(iii) n/(K ln n) ≤ |S| ≤ n/30.
Choose S ′ ⊆ S of size n/(K ln n). Then

|NΓ(S)| ≥ |NΓ(S ′)| − |S| ≥ (1/5 − α − 2β)n − |S| ≥ 2|S|.

(b) It follows from (a) that if Γ is not connected then each component is of size at least n/10. But
then Q4 implies that there are at least (1/20−α− 2β)K|T | ln n edges between each component in
Γ, contradiction. 2

We now resort to our coloring argument. Let G1, G2, . . . , GM , M =
((n

2)
m

)

be an enumeration of
graphs with vertex set [n] and m edges.

For each i let Hi be a fixed sub-graph of Gi with ∆(Hi) ≤ αK ln n such that Gi − Hi is non-
Hamiltonian, if one exists. Otherwise Hi is an arbitrary sub-graph of Gi with the same restrictions
on the maximum degree. If graph G is non-Hamiltonian, let λ(G) denote the length of the longest
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path in G and let λ(G) = n if G is Hamiltonian. Now for a graph Gi, let Xi,1, Xi,2, . . . , be an
enumeration of all βm-subsets of E(Gi − Hi). Let Γi,j = Gi − Hi − Xi,j. Then let

ai,j =































1



















(a) Gi satisfies Q1–Q4

(b) λ(Gi − Hi) = λ(Gi − Hi − Xi,j)

(c) Gi − Hi is not Hamiltonian

(d) ∆(X) ≤ 2βK ln n

0 otherwise

(2)

The notation An ' Bn stands for An ≥ (1 − o(1))Bn.

Lemma 9 If Gi satisfies (a) and (c) of (2) then
∑

j ai,j '
(

(1−α)m−n
βm

)

.

Proof Hi has at most 1
2
αKn ln n = αm edges and to ensure (b) all we have to do is avoid some

fixed longest path of Γi,j. Furthermore, almost all choices of βm edges will induce a sub-graph with
maximum degree at most 2βK lnn. 2

Lemma 10 Let N =
(

n
2

)

. Then,

∑

i,j

ai,j ≤ m

(

N

m

)(

m

βm

)(

(1 − β)m

αm

)

(899/900)βm.

Proof Let Ki,j = Gi − Xi,j and for a fixed graph K with (1 − β)m edges let us estimate the
number of (i, j) with Ki,j = K and ai,j = 1.

For each sub-graph H ⊆ K with ∆(H) ≤ αK ln n, we let θ(K,H) denote the number of choices of
βm edges X such that (i) K + X satisfies Q1–Q4 and (ii) λ(K − H) = λ(K + X − H). Then

∑

i,j

ai,j ≤
∑

K,H

θ(K,H). (3)

This is because for each (i, j) with ai,j = 1 there is a corresponding Ki,j = Gi − Xi,j such that
Gi = Ki,j + Xi,j satisfies Q1–Q4 and an Hi such that λ(Ki,j − Hi) = λ(Ki,j + Xi,j − Hi).

Now if K + X satisfies Q1–Q4 then from Lemmas 4 and 8 we see that to ensure λ(K − H) =
λ(K + X − H), X must avoid at least (n/30)2/2 edges i.e.

θ(K,H) ≤

(

N − (1 − β)m

βm

)

(899/900)βm.

Consequently,

∑

K,H

θ(K,H) ≤
αm
∑

t=0

(

N

(1 − β)m

)(

(1 − β)m

t

)(

N − (1 − β)m

βm

)

(899/900)βm

≤ m

(

N

(1 − β)m

)(

(1 − β)m

αm

)(

N − (1 − β)m

βm

)

(899/900)βm

= m

(

N

m

)(

m

βm

)(

(1 − β)m

αm

)

(899/900)βm.
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Let νH denote the number of i such that Gi satisfies Q1–Q4 and yet Gi −Hi non-Hamiltonian and
let M =

(

N
m

)

. We must show that νH = o(M).

It follows from Lemma 9 that

∑

i,j

ai,j ' νH

(

(1 − α)m − n

βm

)

.

On the other hand, Lemma 10 implies

νH
(

N
m

) /
m

(

m
βm

)(

(1−β)m
αm

)

(899/900)βm

(

(1−α)m−n
βm

)

≤ m

(

me

(1 − α)m − n − βm

)βm (

(1 − β)e

α

)αm

(899/900)βm

= o(1),

and Theorem 2 follows. 2
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