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A digraph with » vertices and fixed outdegree m is generated randomly so that each such
digraph is equally likely to be chosen. We consider the probability of the existence of a
‘Hamiltonian cycle in the graph obtained by ignoring arc orientation. We show that there exists
m (=23} such that a Hamiltonian eycle exists with probability tending to 1 as n tends to infinity.

1. Introduction

In this paper digraphs do not have loops or repeated arcs.

For a digraph D let GD be the graph obtained by replacing each directed arc
(v, w) by an undirected edge {v, w}.

For positive integers m and n with m<n, let F(m, n) be the set of all
vertex-labelled digraphs with n vertices and mn arcs such that each vertex has
outdegree m.

Let M =|@(m, n)|=(")". We consider the following problem: If I? is chosen
at random from % (m, n) so that each such digraph has probability 1/M of being
chosen, what is the probability that GI? has a Hamiltonian cycle?

The main result of this paper is that there exists my=23 such that
lim,,_,.. Prob(GD is Hamiltonian) =1 if and only if m = m,,.

One motivation for Jooking at this problem is that when a random graph is
chosen by choosing edges independently with the same probability, Hamiltonian
cycles appear (in a probabilistic sense) at the same time that the minimum vertex
degree reaches 2 (Komids and Szemerédi [2]). This requires about inlogn+
n log log n, edges, and its is of interest to try and reduce this number by ensuring,
in some way, that each vertex has at least a certain degree.
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In a previous paper [1] we studied the probable connectivity of these graphs:
work on this was stimulated by Walkup’s results on random regular bipartite
digraphs [5].

2. Main result

Notation. V, ={1,..., »n}. For >0, V(a, n}={S< V,:|S|=an}.
For a-digraph D with vertex set V and arc set A, we define, for Sc V
p(S)={we V—8§: there exists ve S such that (v, w)e AL
For a graph G with vertex set V and edge set E, we define, for ScV
5c(8)={we V—8§: there exists v< S such that {v, wle E}.

Lemma 2.1 [1]. If m=2 and C(m, n) ={D & B(m, n): GD is connected}, then
lim Prob(D e C(m, n))=1.

By Prob(D e C(m, n)) we mean {C(m, n)|/\@(m, n)|.

Suppose now P=(v,,..., v} is a longest path in a graph G=(V,E). Ii
t#k—1 and {y, v} F, then P'=(v;,..., 0, U, Vg1, ..., Vpuy) is also a longest
path of G. If s#¢,t+2 and {v,., v,}€ E, we can create another longest path P’
using a similar “flip’.

Keeping v, fixed, let EP(v;) be the set of other endpoints of longest paths
formed by doing all possible sequences of flips.

Lemma 2.2 (Pdsa [4]). If we P—EP(v,), then w is adjacent to a vertex of EP(v,)
in G if and only if w is adjacent to some vertex of EP(v,) on P.

Corollary 2.3. [55(EP(v )| <2 |EP(vy)|~ 1.

i

Remark 2.4. We can of course take each ve EP{v,) and use this as a fixed
endpoint to create another set of endpoints EP(v) satisfying Corollary 2.3.

Lemma 2.5. Let A(a, mn)={Dec%(m, n): Se V(a, n) implies 185(8)| =3 181}
Then, for any a <4, there exists m{a) such that, for m = m(a),

Prob(D e @(m, n)— A, m, 1)) =0O(1/n).

Proof. If D e%(m, n)— Ala, m, n), then there exists S< V, with [S|<an, and
T< V,—8 with [ T| =3{S|—1 such that §}5(S)< T. The probability of this event is
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clearly bounded above by -
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Let m be such that

e=m—4— sup

O<x=g

((1 —4x)log(l—4x)—x log(256/27)) ~0
x log 4x )

Then for 1=k =an we have
() 2=y
n 27 n T\n/
Thus the probability in question is bounded above by
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Definition. A graph G has property LC if a longest cycle of G has the same
number of vertices as a longest path of G.

Lemma 2.6. Let B=B(m, n)={D e D (m, n): GD does not have Property LC}. For
a>0 and m=m(a),

Prob(D e B) = ((m/(m - 2))"2(1~ a)*)" + O(1/n).

Proof. Let @D(m,n}={D,,...,D,} and suppose  that A=Al m, n)=
{Dy, ..., Dy} It follows from Lemma 2.5 that 1—M'/M = O(1/n).

Given D, € A, construct N=m" coloured digraphs D,,, . .., D,y as follows: for
each vertex v of D, choose one arc leaving v and colour it green; colour the
remaining arcs blue.

We note that, for D, ¢ A, the blue subdigraph A; of D, satisfies

Se Vi{a,n} implies {55(S)|=2|S|, where A =4, (2.1)

Next let a;z =1 if no arc joins 2 endpoints of a longest path of GA;; otherwise
a; = 0.
We show next that if D, e B, then

1]

N
a3 =Ny = ((m —2)/m)"2N. 2.2)
=}
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Suppose then that D; ¢ B and GD, has a longest path P with k vertices. At least
one colouring ¢ yields a GD; in which the edges of P are blue. Clearly a,=1
since D; e B.

Now in Dy fix k —1 arcs Q that together produce P (there may be some choice
here). In the subdigraph induced by these k—1 arcs, let there be k; vertices of
outdegree i =0,1,2.

Now, for any colouring j of I; in which the arcs in Q are coloured blue, a; = 1.
Since there are

2
mn 1‘[ (m— i)k = m"”‘”z(m )z)klz
i=0

such colourings, (2.2) follows immediately.
Thus, if M;={ANB]|,

M N
M= 3. 2 aiNy (2.3)
i=1j=1 i

To bound the double sum we construct the following partition: for A€
@(m s 1, n), let XA :{Dl] :Aii = A}. Let NA :H'Di]' 1< XA i sl\{[’, a;; = 1}]. We shall
show next that

N,=(1—a)*(n—m)* forall A. (2.4)
Thus
N
Y@= ) N4
i=1 AcB(m—1.n}

s(1—a)y™(n—m)" |D(m—-1, n)=(1—a)"MN.
Then, from (2.2) and (2.3), Ml-'—’:(l—a)“"(m/(m—Z))“mM The resuli now

© follows as |B|=M, +(M—M'}.

To prove (2.4), select a particular 4. Let P={(v,, ..., ) be some longest path
of GA. Let EP = EP(v)U{v,} and for v EP let EP(v) be defined as in Remark
2.4.

It follows from Corollary 2.3 and (2.1) that, if Na>0, |EP|= an and |EP(v)|=
an for all ve EP.

Now consider all ways of adding 1 new green arc to each vertex of A. There are
(n—m)" ways of doing this and of these no more than (1—a)*™(n—-m)" ways
avoid joining some ve EP to some v € EP(v); this is necessary if the coloured
digraph constructed is to be a Dy with a; = 1. (2.4) now follows. L1

Using the above lemma, we are now able to prove the main resuit.

Theorem 2.7. Let H(m, n)={D e %(m, n): GD has a Hamiltonian cycle}. There
exists mq such that, for m=my,

lim Prob(D e H(m, n))= 1.

n-——co
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Proof. Fix >0 and mg=m(a) such that 1=2/me>(1-a)y** and choose De
% (my, n) at random, Suppose that a longest path in GD has k vertices. We know
from Yemma 2.6 that, with probability tending to 1, GD has a cycle C with &

vertex not in C, since GI? has no path with k+1 vertices. But for m=2, by
Lemma 2.1, the probability that GD is connected tends to 1. Thus k =n with
probability tending to 1 and the result follows, [

Remark 2.8, We know that Mo =23 by taking a = 0.202 in Lemmas 2.5 and 2.6.
We conjecture that the smallest value of m, is 3.

Remark 2.9, The problem of when D (as opposed to GD) has a Hamiltonian

cycle has been solved by McDiarmid [3]; m = log n is (about) the required value
for m. :

Using a similar technique, we have recently proved [6] that, for rz=796, the
probability that a random vertex-labelled r-regular graph with »n vertices is

Hamiltonian tends to 1 as n tends to infinity. Bollobas [7] has obtained a similar
result,

References

[1] TI1. Fenner and A.M. Frieze, On the connectivity of random m-orientable graphs and digraphs,
Combinatorica, 2 (1982).

[2] J. Komlés and E. Szemerédi, Limit distribution for the existence of hamiltonian ¢ycles in random
graphs, Discrete Math. 43 (1983) 55-63.

[3] C.1H. McDiarmid, Generat percolation and random graphs, Adv. Appl. Prob. 13 (1981} 40-60.

[4] L. Pésa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976) 359-364.

[5} D.W. Walkup, Matchings in random regular bipartite digraphs, Discrete Math, 31 (1980) 59-64.

[6] T.1. Fenner and A.M. Frieze, Hamiltonian cycles in random regular graphs, J. Combin. Theory, to
appear.

[7]1 B. Bollobss, Almost all regular graphs are Hamiltonian, European 7J, Combinatorics, io appear.



