# NOTE

# ON THE EXISTENCE OF HAMILTONIAN CYCLES IN A CLASS OF RANDOM GRAPHS

## T.I. FENNER

Department of Computer Science, Birkbeck College, University of London, England

#### A.M. FRIEZE

Department of Computer Science & Statistics, Queen Mary College, University of London, England

Received 19 August 1981 Revised 7 September 1982

A digraph with n vertices and fixed outdegree m is generated randomly so that each such digraph is equally likely to be chosen. We consider the probability of the existence of a Hamiltonian cycle in the graph obtained by ignoring arc orientation. We show that there exists  $m \ (\le 23)$  such that a Hamiltonian cycle exists with probability tending to 1 as n tends to infinity.

#### 1. Introduction

In this paper digraphs do not have loops or repeated arcs.

For a digraph D let GD be the graph obtained by replacing each directed arc (v, w) by an undirected edge  $\{v, w\}$ .

For positive integers m and n with m < n, let  $\mathfrak{D}(m, n)$  be the set of all vertex-labelled digraphs with n vertices and mn arcs such that each vertex has outdegree m.

Let  $M = |\mathfrak{D}(m, n)| = \binom{n-1}{m}^n$ . We consider the following problem: If D is chosen at random from  $\mathfrak{D}(m, n)$  so that each such digraph has probability 1/M of being chosen, what is the probability that GD has a Hamiltonian cycle?

The main result of this paper is that there exists  $m_0 \le 23$  such that  $\lim_{n\to\infty} \operatorname{Prob}(GD)$  is Hamiltonian = 1 if and only if  $m \ge m_0$ .

One motivation for looking at this problem is that when a random graph is chosen by choosing edges independently with the same probability, Hamiltonian cycles appear (in a probabilistic sense) at the same time that the minimum vertex degree reaches 2 (Komlós and Szemerédi [2]). This requires about  $\frac{1}{2}n \log n + n \log \log n$ , edges, and its is of interest to try and reduce this number by ensuring, in some way, that each vertex has at least a certain degree.

0012-365X/83/\$03.00 © Elsevier Science Publishers B.V. (North-Holland)

In a previous paper [1] we studied the probable connectivity of these graphs; work on this was stimulated by Walkup's results on random regular bipartite digraphs [5].

### 2. Main result

**Notation.**  $V_n = \{1, \ldots, n\}$ . For  $\alpha > 0$ ,  $V(\alpha, n) = \{S \subseteq V_n : |S| \le \alpha n\}$ .

For a digraph D with vertex set V and arc set A, we define, for  $S \subseteq V$   $\delta_D^+(S) = \{w \in V - S : \text{ there exists } v \in S \text{ such that } (v, w) \in A\}.$ 

For a graph G with vertex set V and edge set E, we define, for  $S \subseteq V$   $\delta_G(S) = \{w \in V - S : \text{ there exists } v \in S \text{ such that } \{v, w\} \in E\}.$ 

**Lemma 2.1** [1]. If  $m \ge 2$  and  $C(m, n) = \{D \in \mathcal{D}(m, n) : GD \text{ is connected}\}$ , then  $\lim_{n \to \infty} \text{Prob}(D \in C(m, n)) = 1.$ 

By  $\text{Prob}(D \in C(m, n))$  we mean  $|C(m, n)|/|\mathfrak{D}(m, n)|$ .

Suppose now  $P = (v_1, \ldots, v_k)$  is a longest path in a graph G = (V, E). If  $t \neq k-1$  and  $\{v_k, v_t\} \in E$ , then  $P' = (v_1, \ldots, v_t, v_k, v_{k-1}, \ldots, v_{t+1})$  is also a longest path of G. If  $s \neq t, t+2$  and  $\{v_{t+1}, v_s\} \in E$ , we can create another longest path P' using a similar 'flip'.

Keeping  $v_1$  fixed, let  $EP(v_1)$  be the set of other endpoints of longest paths formed by doing all possible sequences of flips.

**Lemma 2.2** (Pósa [4]). If  $w \in P - EP(v_1)$ , then w is adjacent to a vertex of  $EP(v_1)$  in G if and only if w is adjacent to some vertex of  $EP(v_1)$  on P.

**Corollary 2.3.**  $|\delta_G(EP(v_1))| \le 2 |EP(v_1)| - 1$ .

**Remark 2.4.** We can of course take each  $v \in EP(v_1)$  and use this as a fixed endpoint to create another set of endpoints EP(v) satisfying Corollary 2.3.

**Lemma 2.5.** Let  $A(\alpha, m n) = \{D \in \mathcal{D}(m, n): S \in V(\alpha, n) \text{ implies } |\delta_D^+(S)| \ge 3 |S| \}$ . Then, for any  $\alpha < \frac{1}{4}$ , there exists  $m(\alpha)$  such that, for  $m \ge m(\alpha)$ ,

$$\operatorname{Prob}(D \in \mathfrak{D}(m, n) - A(\alpha, m, n)) = \operatorname{O}(1/n).$$

**Proof.** If  $D \in \mathcal{D}(m, n) - A(\alpha, m, n)$ , then there exists  $S \subseteq V_n$  with  $|S| \le \alpha n$ , and  $T \subseteq V_n - S$  with |T| = 3|S| - 1 such that  $\delta_D^+(S) \subseteq T$ . The probability of this event is

clearly bounded above by

$$\begin{split} &\sum_{k=\lceil (m+2)/4\rceil}^{\lfloor \alpha n\rfloor} \frac{n!}{k! (3k-1)! (n-4k+1!)} \left( \binom{4k-2}{m} \middle/ \binom{n-1}{m} \right)^k \\ & \leq \frac{1}{2\pi} \sum_k \frac{3(1+o(1))k}{n-4k+1} \left( \frac{n}{3k^2(n-4k)} \right)^{1/2} \frac{n^n}{k^k (3k)^{3k} (n-4k)^{n-4k}} \left( \frac{4k}{n} \right)^{km} \\ & = \frac{1}{2\pi} \sum_k \left( \frac{3(1+o(1))n}{(n-4k)^3} \right)^{1/2} \left( \left( \frac{4k}{n} \right)^{m-4} \frac{256}{27} \right)^k \left( \frac{n-4k}{n} \right)^{4k-n}. \end{split}$$

Let m be such that

$$\varepsilon = m - 4 - \sup_{0 < x \leq \alpha} \left( \frac{(1 - 4x)\log(1 - 4x) - x \log(256/27)}{x \log 4x} \right) > 0.$$

Then for  $1 \le k \le \alpha n$  we have

$$\left(\left(\frac{4k}{n}\right)^{m-4}\frac{256}{27}\right)^{k}\left(\frac{n-4k}{n}\right)^{4k-n} \leqslant \left(\frac{4k}{n}\right)^{\epsilon k}.$$

Thus the probability in question is bounded above by

$$\frac{1}{2\pi} \sum_{k=1}^{\alpha n} \left( \frac{3(1+o(1))n}{(n-4k)^3} \right)^{1/2} \left( \frac{4k}{n} \right)^{\epsilon k} = O(n^{-(1+\epsilon)}). \quad \Box$$

**Definition.** A graph G has property LC if a longest cycle of G has the same number of vertices as a longest path of G.

**Lemma 2.6.** Let  $B = B(m, n) = \{D \in \mathfrak{D}(m, n): GD \text{ does not have Property LC}\}$ . For  $\alpha > 0$  and  $m \ge m(\alpha)$ ,

$$\text{Prob}(D \in B) \leq ((m/(m-2))^{1/2}(1-\alpha)^{\alpha})^n + O(1/n).$$

**Proof.** Let  $\mathcal{D}(m, n) = \{D_1, \dots, D_M\}$  and suppose that  $A = A(\alpha, m, n) = \{D_1, \dots, D_{M'}\}$ . It follows from Lemma 2.5 that 1 - M'/M = O(1/n).

Given  $D_i \in A$ , construct  $N = m^n$  coloured digraphs  $D_{i1}, \ldots, D_{iN}$  as follows: for each vertex v of  $D_i$  choose one arc leaving v and colour it green; colour the remaining arcs blue.

We note that, for  $D_i \in A$ , the blue subdigraph  $\Delta_{ij}$  of  $D_{ij}$  satisfies

$$S \in V(\alpha, n)$$
 implies  $|\delta_{\Delta}^{+}(S)| \ge 2 |S|$ , where  $\Delta = \Delta_{ij}$ . (2.1)

Next let  $a_{ij} = 1$  if no arc joins 2 endpoints of a longest path of  $G\Delta_{ij}$ ; otherwise  $a_{ij} = 0$ .

We show next that if  $D_i \in B$ , then

$$\sum_{j=1}^{N} a_{ij} \ge N_1 = ((m-2)/m)^{n/2} N. \tag{2.2}$$

Suppose then that  $D_i \in B$  and  $GD_i$  has a longest path P with k vertices. At least one colouring t yields a  $GD_{it}$  in which the edges of P are blue. Clearly  $a_{it} = 1$  since  $D_i \in B$ .

Now in  $D_{ii}$  fix k-1 arcs Q that together produce P (there may be some choice here). In the subdigraph induced by these k-1 arcs, let there be  $k_i$  vertices of outdegree i=0,1,2.

Now, for any colouring j of  $D_i$  in which the arcs in Q are coloured blue,  $a_{ij} = 1$ . Since there are

$$m^{n-k} \prod_{i=0}^{2} (m-i)^{k_i} \ge m^{n-k/2} (m-2)^{k/2}$$

such colourings, (2.2) follows immediately.

Thus, if  $M_1 = |A \cap B|$ ,

$$M_1 \le \sum_{i=1}^{M'} \sum_{j=1}^{N} a_{ij} / N_1 \tag{2.3}$$

To bound the double sum we construct the following partition: for  $\Delta \in \mathcal{D}(m-1, n)$ , let  $X_{\Delta} = \{D_{ij} : \Delta_{ij} = \Delta\}$ . Let  $N_{\Delta} = |\{D_{ij} \in X_{\Delta} : i \leq M', a_{ij} = 1\}|$ . We shall show next that

$$N_{\Delta} \le (1 - \alpha)^{\alpha n} (n - m)^n$$
 for all  $\Delta$ . (2.4)

Thus

$$\sum_{i=1}^{M'} \sum_{j=1}^{N} a_{ij} = \sum_{\Delta \in \mathcal{D}(m-1,n)} N_{\Delta}$$

$$\leq (1-\alpha)^{\alpha n} (n-m)^{n} |\mathcal{D}(m-1,n)| = (1-\alpha)^{\alpha n} MN.$$

Then, from (2.2) and (2.3),  $M_1 \le (1-\alpha)^{\alpha n} (m/(m-2))^{n/2} M$ . The result now follows as  $|B| \le M_1 + (M-M')$ .

To prove (2.4), select a particular  $\Delta$ . Let  $P = (v_1, \ldots, v_k)$  be some longest path of  $G\Delta$ . Let  $EP = EP(v_1) \cup \{v_1\}$  and for  $v \in EP$  let EP(v) be defined as in Remark 2.4.

It follows from Corollary 2.3 and (2.1) that, if  $N_{\Delta} > 0$ ,  $|EP| \ge \alpha n$  and  $|EP(v)| \ge \alpha n$  for all  $v \in EP$ .

Now consider all ways of adding 1 new green arc to each vertex of  $\Delta$ . There are  $(n-m)^n$  ways of doing this and of these no more than  $(1-\alpha)^{\alpha n}(n-m)^n$  ways avoid joining some  $v \in EP$  to some  $v \in EP(v)$ ; this is necessary if the coloured digraph constructed is to be a  $D_{ij}$  with  $a_{ij} = 1$ . (2.4) now follows.  $\square$ 

Using the above lemma, we are now able to prove the main result.

**Theorem 2.7.** Let  $H(m, n) = \{D \in \mathcal{D}(m, n) : GD \text{ has a Hamiltonian cycle}\}$ . There exists  $m_0$  such that, for  $m \ge m_0$ ,

$$\lim_{n \to \infty} \operatorname{Prob}(D \in H(m, n)) = 1.$$

**Proof.** Fix  $\alpha > 0$  and  $m_0 \ge m(\alpha)$  such that  $1 - 2/m_0 > (1 - \alpha)^{2\alpha}$  and choose  $D \in$  $\mathcal{D}(m_0, n)$  at random. Suppose that a longest path in GD has k vertices. We know from Lemma 2.6 that, with probability tending to 1, GD has a cycle C with kvertices. Now, if k < n, GD is not connected as no vertex of C can be joined to a vertex not in C, since GD has no path with k+1 vertices. But for  $m \ge 2$ , by Lemma 2.1, the probability that GD is connected tends to 1. Thus k = n with probability tending to 1 and the result follows.  $\square$ 

**Remark 2.8.** We know that  $m_0 \le 23$  by taking  $\alpha = 0.202$  in Lemmas 2.5 and 2.6.

We conjecture that the smallest value of  $m_0$  is 3.

Remark 2.9. The problem of when D (as opposed to GD) has a Hamiltonian cycle has been solved by McDiarmid [3];  $m = \log n$  is (about) the required value

Using a similar technique, we have recently proved [6] that, for  $r \ge 796$ , the probability that a random vertex-labelled r-regular graph with n vertices is Hamiltonian tends to 1 as n tends to infinity. Bollobás [7] has obtained a similar

# References

- [1] T.I. Fenner and A.M. Frieze, On the connectivity of random m-orientable graphs and digraphs, Combinatorica, 2 (1982).
- J. Komlós and E. Szemerédi, Limit distribution for the existence of hamiltonian cycles in random graphs, Discrete Math. 43 (1983) 55-63.
- [3] C.J.H. McDiarmid, General percolation and random graphs, Adv. Appl. Prob. 13 (1981) 40-60.
- [4] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976) 359-364.
- [5] D.W. Walkup, Matchings in random regular bipartite digraphs, Discrete Math. 31 (1980) 59-64.
- [6] T.I. Fenner and A.M. Frieze, Hamiltonian cycles in random regular graphs, J. Combin. Theory, to
- [7] B. Bollobás, Almost all regular graphs are Hamiltonian, European J. Combinatorics, to appear.