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SEPARATING EFFECT FROM SIGNIFICANCE IN MARKOV
CHAIN TESTS

MARIA CHIKINA, ALAN FRIEZE, JONATHAN MATTINGLY, AND WESLEY PEGDEN

ABSTRACT. We give qualitative and quantitative improvements to theorems
which enable significance testing in Markov Chains, with a particular eye to-
ward the goal of enabling strong, interpretable, and statistically rigorous claims
of political gerrymandering. Our results can be used to demonstrate at a de-
sired significance level that a given Markov Chain state (e.g., a districting)
is extremely unusual (rather than just atypical) with respect to the fragility
of its characteristics in the chain. We also provide theorems specialized to
leverage quantitative improvements when there is a product structure in the
underlying probability space, as can occur due to geographical constraints on
districtings.

1. MOTIVATION

At its core, this note discusses improvements on a number of theorems for signifi-
cance testing in Markov Chains. The improvements to the Theorem statements are
both qualitative and quantitative to enable strong, easily interpretable statistical
claims, and include extensions to settings where more structural assumptions lead
to huge improvements in the bounds. This class of theorems is particular interest
because they do not assume that the chain has converged to equilibrium. This can
be of huge practical importance.

Yet, this tells only part of the story. The development of this class of algorithms
and these particular extensions have been directly motivated by a question of great
contemporary interest; detecting and quantifying gerrymandering.

The definiteness and correctness provided by these theorem provide substantial
weight in a legal setting. The basic recipe in the gerrymandering context is the
following. One starts a reversible Markov change from a particular redistricting
map which claims to be typical among maps one which the Markov chain’s invariant
distribution is concentrated.
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Operationally, this allows one to rigorously assess the likelihood of choosing a par-
ticular map if one was only considered a specific collection of non-partisan consid-
erations. These methods (and theorems) have been used successfully by one of the
authors in Gerrymandering court cases in Pennsylvania and North Carolina.

The first part of this article gives new results along these lines, extending the
work in [CFP] to allow separation of effect size from the quantification of statistical
significance. The second part, in Section 7, develops versions of some of these results
in a special setting with a particular structure on the probability space motivated
by recent legal proceedings. In particular, in balancing the federal one-person-
one-vote mandate with the “keep counties whole” prevision of the North Carolina
Constitution, the North Carolina courts ruled in Stephenson v. Bartlett that a
particular algorithm should be used to “cluster” the counties into independent
county groups which are districted separately. This gives a product structure to
the underlying probability space which can be exploited in theorems designed to
take advantage of it.

2. INTRODUCTION

Consider a reversible Markov Chain M whose state-space X is endowed with some
labeling w : ¥ — R, and for which 7 is a stationary distribution. M, 7, w, and a
fixed integer k determine a vector

k k k
pOapla' -y Pre

where for each 4, p¥ is the probability that for a k-step 7-stationary trajectory
Xo, - -, Xk, the minimum w value occurs at X;. In other words, p¥ is the probability
that if we choose X randomly from the stationary distribution 7 and take k steps
in M to obtain the the trajectory Xo, Xi,..., Xy, that we observe that w(X;) is
the minimum among w(Xp),...,w(Xx). Note that if we adopted the convention
that we break ties among the values w(Xy),...,w(X})) randomly, we would have
that p& + -+ pk =1, for any M, 7, and k.

At first glance, it might be natural to assume that we must have something like
ko~ k+r1 for all 0 <4 < k. But this is actually quite far from the truth; [CFP]

k : 1
showed that for some M, m, k, we can have pj as large as essentially Woret

As shown in [CFP], this is essentially the worst possible behavior for pk. In par-
ticular, we can generalize the vector {pf} defined above as possible: let us define,
given M, m, k, and e, the vector

k k k
PoesPres- s Pre

where each pﬁ . is the probability that w(X;) is among the smallest ¢ values in the
list w(Xp),...,w(Xk). Then in [CFP] we proved:

Theorem 2.1. Given a reversible Markov chain M with stationary distribution T,
ane >0, k>0, and With pﬁg defined as above, we have that

p’&s < V2e.
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1

Tk shows that this theorem is

Note that the example from [CFP] realizing pk ~
best possible, up to constant factors.

One important application of Theorem 2.1 is that it characterizes the statistical
significance associated to the result of a natural test for gerrymandering of political
districtings. In particular, consider the following general procedure to evaluate a
districting of a state:

Local Outlier Test

(1) Beginning from the districting being evaluated,

(2) Make a sequence of random changes to the districting, while preserving
some set of constraints imposed on the districtings.

(3) Evaluate the partisan properties of each districting encountered (e.g., by
simulating elections using past voting data).

(4) Call the original districting “carefully crafted” or “gerrymandered” if the
overwhelming majority of districtings produced by making small random
changes are less partisan than the original districting.

Naturally, the test described above can be implemented so that it precisely satisfies
the hypotheses of Theorem 2.1. For this purpose, a (very large) set of comparison
districtings are defined, to which the districting being evaluated belongs. For exam-
ple, the comparison districtings may be the districtings built out of Census blocks
(or some other unit) which are contiguous, equal in population up to some specified
deviation, or include other constraints. A Markov chain M is defined on this set
of districtings, where transitions in the chain correspond to changes in districtings.
(For example, a transition may correspond to randomly changing the district as-
signment of a randomly chosen Census block which currently borders more than one
district, subject to the constraints imposed on the comparison set.) The “random
changes” from Step 2 will then be precisely governed by the transition probabilities
of the Markov chain M. By designing M so that the uniform distribution 7 on the
set of comparison districtings ¥ is a stationary distribution for M, Theorem 2.1
gives an upper bound on the false-positive rate (in other words, global statistical
significance) for the “gerrymandered” declaration when it is made in Step 4.

Apart from its application to gerrymandering, Theorem 2.1 has a simple informal
interpretation for the general behavior of reversible Markov chains, namely: typical
(i.e., stationary) states are unlikely to change in a consistent way under a sequence
of chain transitions, with a best-possible quantification of this fact (up to constant
factors).

Also, in the general setting of a reversible Markov chain, the theorem leads to
a simple quantitative procedure for asserting rigorously that o¢ is atypical with
respect to 7 without knowing the mixing time of M: simply observe a random
trajectory o9 = Xo, X1, Xo ..., Xy from oq for any fixed k. If w(og) is an e-outlier
among w(Xo),...,w(X}), then this is statistically significant at v/2¢ against the
null hypothesis that oy ~ 7.
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This quantitative test is potentially useful because v/2e converges quickly enough
to 0 as ¢ — 0; in particular, it is possible to obtain good statistical significance
from observations which can be made with reasonable computational resources. Of
course, faster convergence to 0 would be even better, but, as already noted, p ~ /¢
is roughly a best possible upper bound.

Unknown to the authors at the time of the publication of [CFP], a 1989 paper of
Besag and Clifford described a test related to that based on Theorem 2.1, which
has essentially a one-line proof, which we discuss in Section 4:

Theorem 2.2 (Besag and Clifford serial test). Fiz any number k and suppose that
oo is chosen from a stationary distribution w, and that £ is chosen uniformly in
{0,...,k}. Consider two independent trajectories Yy, Y1,... and Zo, Zy1,... in the
reversible Markov Chain M (whose states have real-valued labels) from Yo = Zy =
oo. If we choose oo from a stationary distribution m of M, then for any k we have
that

Pr (w(oy) is an e-outlier among w(og),w(Y1),...,w(Ye),w(Z1),...,w(Zy—¢)) <e.

Here, a real number ag is an e-outlier among ag, . .., a if
#{ie{0,...,k}|a; <ap} <e(k+1).

In particular, the striking thing about Theorem 2.2 is that it achieves a best-possible
dependence on the parameter . (Notice that £ would be the correct value of the
probability if, for example, the Markov chain is simply a collection of independent
random samples.) The sacrifice is in Theorem 2.2’s slightly more complicated in-
tuitive interpretation, which would be: typical (i.e., stationary) states are unlikely
to change in a consistent way under two sequences of chain transitions of random
complementary lengths. In particular, in applications of these statistical tests to
aspects of public policy, it is desirable to have tests with simple, intuitive interpre-
tations. To enable better significance testing in this sphere, one goal of the present
note is to prove a theorem enabling Markov chain significance testing which is in-
tuitively interpretable in the sense of Theorem 2.1, while having linear dependence
on g, as in Theorem 2.2.

One common feature of the tests based on Theorem 2.1 and 2.2 is the use of
randomness. In particular, the probability space at play in these theorems includes
both the random choice of oy assumed by the null hypothesis and the random steps
taken by the Markov chain from og. Thus the measures of “how (globally) unusual”
09 is with respect to its performance in the local outlier test and “how sure” we are
that o( is unusual in this respect are intertwined in the final p-value. In particular,
the effect size and the statistical significance are not explicitly separated.

To further the goal of simplifying the interpretation of the results of these tests, our
approach in this note will also show that tests like these can be efficiently used in
a way which separates the measure of statistical significance from the question of
the magnitude of the effect. In particular, recalling the probabilities p’é)a, ceey pﬁ)a

defined previously, let us define the probability p’&s(ao) to be the probability that
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on a trajectory o9 = Xg, X1,...,Xg, w(op) is among the smallest e fraction of the
list w(Xo),...,w(Xk). Now we make the following definition:

Definition 2.3. With respect to k, the state o is an (g, «)-outlier in M if, among
all states in M, p§ .(00) is in the largest o fraction of the values of pf (o) over all
states o € M, weighted according to .

In particular, being an (g, a)-outlier measures the likelihood of o to fail the local
outlier test, ranked against all other states o ~ m of the chain M. For example, fix
k=10° If og is a (1075,1075)-outlier in M and 7 is the uniform distribution, this
means that among all states ¢ € M, o is more likely than all but a 1075 fraction

of states to have an w-value in the bottom 1076 values w(Xo),w(X1),...,w(X1g9).
Note that the probability space underlying the “more likely” claim here just con-
cerns the choice of the random trajectory Xi, ..., X po from M.

Note that whether oq is a (g, a)-outlier is a deterministic question about the prop-
erties of og, M, and w. Thus it is a deterministic measure (defined in terms of
certain probabilities) of the extent to which o is unusual (globally, in all of M)
with respect to it’s local fragility in the chain.

The following theorem enables one to assert statistical significance for the property
of being an (e, @)-outlier. In particular, while tests based on Theorems 2.1 and 2.2
take as their null hypothesis that og ~ m, the following theorem takes as its null
hypothesis merely that oq is not an (g, a)-outlier.

Theorem 2.4. Consider m independent trajectories

Tl :(XO:L’X%?" '7Xé)’

T =(Xy, XL X

of length k in the reversible Markov Chain M (whose states have real-valued labels)
from a common starting point X} = --- = X" = 0q. Define the random variable p
to be the number of trajectories T' on which oq is an e-outlier.

If o9 is not an (e, a)-outlier, then

(1) Pr <P >m % —I—T) < efmin(r%/a/2s/3m,r/3)'

In particular, apart from separating measures of statistical significance from the
quantification of a local outlier, Theorem 2.4 connects the intuitive Local Outlier
Test tied to Theorem 2.1 (which motivates the definition of a (e, «)-outlier) to the
better quantitative dependence on ¢ in Theorem 2.2.

To compare the quantitative performance of Theorem 2.4 to Theorems 2.1 and 2.2,
consider the case of a state o for which a random trajectory og = X, X1,..., Xj is
likely (say with some constant probability p’) to find oy an &’-outlier. For Theorem
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2.1, significance at p ~ v/2¢ would be obtained!, while using Theorem 2.2, one
would hope to obtain significance of =~ ¢’. Applying Theorem 2.4, we would expect
to see p around m - p’. In particular, we could demonstrate that g is an (&, @)

outlier for a = (;’% (a linear dependence on ¢) at a p-value which can be made

arbitrarily small (at an exponential rate) as we increase the number of observed
trajectories m. As we will see in Section 5, the exponential tail in (1) can be
replaced by a binomial tail. In particular, the following special case applies:

Theorem 2.5. With T',...,T™ as in Theorem 2.4, we have that if og is not an
(e, ) outlier, then

m/2
2
Pr (0 an e-outlier on all of 7',...,7™) < (_E> .

T\«

Theorem 2.5 also has advantages from the standpoint of avoiding the need to correct
for multiple hypothesis testing, as we discuss in Section 3.

To prove Theorem 2.4, we will prove the following, which has a quantitative depen-
dence on ¢ which is nearly as strong as in Theorem 2.2, while eliminating the need
for the random choice of ¢ there.

Theorem 2.6. Consider two independent trajectories Yo, ...,Yy and Zy, ..., Zy
in the reversible Markov Chain M (whose states have real-valued labels) from a
common starting point Yo = Zy = 0¢. If we choose o from a stationary distribution
w of M, then for any k we have that

Pr (w(oy) is an e-outlier among w(og),w(Y1),...,w(Yi),w(Z1),...,w(Zy)) < 2e.

Note that Theorem 2.6 is equivalent to the statement that the probabilities pf_ﬁ
always satisfy

(2) it < 2e.

,€

Remark 2.7. As in the case of Theorem 2.1, it seems like an interesting question
to investigate the tightness of the constant 2; we will see in Section 7 that there are
settings where the impact of this constant is inflated to have outsize-importance.
We point out here that at least for the case of k =1, =1/3, pi% can be at least as

large as %, showing that the constant 2 in (2) cannot be replaced by a constant less
than %, in general. To see this, consider, for example, a bipartite complete graph
K., where the labels of the vertices of one side are 1,...,n and the other are
n+1,...,2n. For the Markov chain given by the random walk on this undirected

graph, we have that pf 1= % Note that for this example, it is still the case that
)3

p%’fa — € as k — 00, leaving open the possibility that the 2 in (2) can be replaced
with an expression asymptotically equivalent to 1.

1Multiple tests have limited utility here or with Theorem 2.2 since there is no independence
(the null hypothesis og ~ 7 is not being resampled). In particular, multiple runs might be done
merely until a trajectory is seen on which o¢ is indeed an & outlier (requiring 1/p’ runs, on
average), in conjunction with multiple hypothesis testing.
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The following theorem is the analog of Theorem 2.4 obtained when one uses an
analog of Besag and Clifford’s Theorem 2.2 in place of 2.6 in the proof. This
version pays the price of using a random k instead of a fixed k for the notion of
an (g, a)-outlier, but has the advantage that the constant 2 is eliminated from the
bound. (Note that as in Theorem 2.4, the notion of (g, «)-outlier used here is still
just defined with respect to a single path, although Theorem 2.2 depends on using
two independent trajectories.)

Theorem 2.8. Consider m independent trajectories

T = (X3, X1, ..., X},

T = (X5, XT LX)

in the reversible Markov Chain M (whose states have real-valued labels) from a
common starting point X} = -+ = X' = og, where each of the lengths k; are
independently drawn random numbers from a geometric distribution. Define the
random variable p to be the number of trajectories T* on which oq is an e-outlier.

If 0 is not an (e, «)-outlier with respect to k drawn from the geometric distribution,
then

(3) Pr (p > m\/g_i_r) < e—min(r2\/a/a/3m,r/3)'

Again, there is an analogous version to Theorem 2.5, where 2¢ is replaced by .

In their paper, Besag and Clifford also describe a parallel test, which we will discuss
in Section 6. In particular, in Section 6 we will describe a test which generalizes
Besag and Clifford’s serial and parallel tests in a way which could be useful in
certain parallel regimes.

Finally, we consider an interesting case in the analysis of districtings that arises
when the districting problem can be decomposed into several non-interacting dis-
tricting problems; for example, for the districting for the state Senate of North
Carolina, the state is divided into 29 “county clusters”, each corresponding to a
prescribed number of districts based on their populations, so that a districting of
the whole state is obtained by non-interacting districting processes in these differ-
ent county clusters. In this case, the probability space of random districtings is
really a product space, and this structure can be exploited in a strong way for the
statistical tests developed in this manuscript. We develop results for this setting in
Section 7.

3. MULTIPLE HYPOTHESIS CONSIDERATIONS

When applying Theorem 2.4 directly, one cannot simply run m trajectories, observe
the list €1, €9, ..., &, where each g; is the minimum ¢; for which o is an ¢;-outlier
on 7', and then, post-hoc, freely choose the parameters a and ¢ in Theorem 2.4 to
achieve some desired trade-off between v and the significance p.
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The problem, of course, is that in this case one is testing multiple hypotheses
(infinitely many in fact; one for each possible pair € and «) which would require a
multiple hypothesis correction.

One way to avoid this problem is to essentially do a form of cross validation, were
a few trajectories are run for the purposes of selecting suitable € and «, and then
discarded from the set of trajectories from which we obtain significance.

A simpler approach, however, is to simply set the parameter e = £(;) as the tth-
smallest element of the list €4,...,¢,, for some fixed value t. The case t = m, for
example, corresponds to taking € as the maximum value, leading to the application
of Theorem 2.5.

The reasons this avoids the need for a multiple hypothesis correction is that we can
order our hypothesis events by containment. In particular, when we apply this test
with some value of ¢, we will always have p = t. Thus the significance obtained
will depend just on the parameter €(;) returned by taking the ¢-th smallest &; and
on our choice of « (as opposed to say, the particular values of the other &;’s which
are not the ¢-th smallest). In particular, regardless of how we wish to trade-off the
values of o and p we can assert from our test, our optimum choice of « (for our
fixed choice of ¢) will depend just on the value £¢. In particular, we can view «a
as a function a(e)), so that we when applying Theorem 2.4 with with & = €, we
are evaluating the single-parameter infinite family of hypotheses He ) a(ew) and
we do not require multiple hypothesis correction since the hypotheses are nested;
i.e., since

(4) €(t) < E/(t) — I’IE

= ty,(e(t)) C H.

(tew)

Indeed, (4) implies that

Pr| |J Hepato) | =Pr(Hpap),
ey <p

which ensures that when applying Theorem 2.4 in this scenario, the probability of
returning a p-value < pq for any fixed value pg will indeed be at most pg.

4. PROOF BACKGROUND

We begin this section by giving the proof of Theorem 2.6. In doing so we will
introduce some notation that will be useful throughout the rest of this note. To
make things as accessible as possible, we give every detail of the proof.

In this manuscript, a Markov Chain M on X is specified by the transition proba-
bilities {7¢, 5, | 01,02 € X} of a chain. A trajectory of M is a sequence of random
variables Xy, X1, ... required to have the property that for each i and oy,..., o,
we have

(5) Pr (Xl = 0; | Xi,1 = O'ifl,Xi,Q =0;—2... ,XO = 0'0) = To;,04-1-
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In particular, the Markov property of the trajectory is that the conditioning on
X 9,X;_3,... is irrelevant once we condition on the value of X; ;. Recall that
7 is a stationary distribution if Xy ~ 7 implies that X; ~ 7 and thus also that
X; ~ m for all i > 0; in this case we that the trajectory Xo, X1, ... is w-stationary.
The Markov Chain M is reversible if any m-stationary trajectory Xy, ..., X} is
equivalent in distribution to its reverse Xk, ..., Xjp.

We say that a; is ¢-small among ao,...,as if there are at most ¢ indices ¢ # j
among 0, ..., s such that a; < a;. The following simple definition is at the heart of
the proofs of Theorems 2.1, 2.6, 2.2.

Definition 4.1. Given a Markov Chain M with labels w : ¥ — R and stationary
distribution m, we define for each ¢, j < k a real number pf) ¢» which is the probability
that for a m-stationary trajectory Xo, X7,..., X, we have that w(X;) is ¢-small
among w(Xo),...,w(Xk).

Observe that (5) implies that all m-stationary trajectories of a fixed length are all
identical in distribution, and in particular, that the pé?/s are well-defined.

Next observe that if the sequence of random variables Xy, X1, ... is a w-stationary
trajectory for M, then so is any interval of it. For example,

(Xi—jsooos Xigy ooy Xok—j)
is another stationary trajectory, and thus the probability that w(Xj) is ¢-small
among w(Xy—;),...,w(Xak—j) is equal to p;ﬁé. In particular, since
(w(Xy) is L-small among w(Xi—,), ..., w(Xok—;))
follows from
(w(Xk) is £-small among w(Xo),...,w(Xzx))
for all 7 =0,...,k, we have that

(6) Pi?@ < P?,e-

k
We also have that Zo pf ¢ < €+ 1. Indeed, by linearity of expectation, this sum
j=
is the expected number of indices j € 0,...,k such that w(X;) is f-small among
w(Xo), ..., w(Xk). Thus, averaging the left and right sides of (6) over j from 0 to

k, we obtain

(41 041
7 2k < 2. )
(7) Pt = 551 S 7 241

Line (7) already gives the theorem, once we make the following trivial observation:
Observation 4.2. Under the hypotheses of Theorem 2.6, we have that
Y, Yeo1,...,Y1,00, 21, 22, ..., Zy

is a mw-stationary trajectory.

This is an elementary consequence of the definitions, but since we will generalize
this statement in Section 6, we give all the details here:
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Proof of Observation 4.2. Our hypothesis is that Y7,Y5,..., Y, and Z1,25,..., Zk
are independent trajectories from a common state Yy = Zy = 0y chosen from the
stationary distribution 7. Stationarity implies that

(Zo, 21,5 Zy) ~ (X, Xpy1s -, Xok).
Similarly, stationarity and reversibility imply that
(Ye, Yi—1,...,Y0) ~ (Xo, X1,..., Xi).

Finally, our assumption that Y7,Y5,... and Z1, Zs, ... are independent trajectories
from og is equivalent to the condition that, for any s, y1, 21, Y2, 22, - - -, Yk, 2k € 2,
we have for all j > 0 that

8) Pr(Zj=zj|Zj1=2j-1,....21=21,%0 =Yy =50, Y1 = y1,---, Y& = Yk)
:Pr(ZjZZj|Zj_1:Zj_1,...,ZlZZl,ZQZSO)

Of course, since M is a Markov Chain, this second probability is simply
Pr(Zj =z | Zj1 = zj1) = Pr(Xey; = 25 [ Xpyj1 = 2j-1)-
In particular, by induction on j > 1,
Yi,Yior,.... Yo =20, 21,...,Z;) ~ (Xo, X1, ..., Xi, Xit1, - - Xtj),
and in particular
9) (Yiyeoes00,-y Zk) ~ (X0, ooy Xiey o ooy Xog).
O

Pared down to its bare minimum, this proof of Theorem 2.6 works by using that
pi’fg is a lower bound on each péﬁ ¢» and then applying the simple inequality

k
(10) ook <+t
§j=0

The proof of Theorem 2.2 of Besag and Clifford is in some sense even simpler,
using only (10), despite the fact that Theorem 2.2 has better dependence on e
(on the other hand, it is not directly applicable to (e, «)-outliers in the way that
we will use Theorem 2.6). Recall from Definition 4.1 that the p?_l’s are fixed real
numbers associated to a stationary Markov Chain. If ¢,k are fixed and ¢ is cho-
sen randomly from 0 to k, then the resulting plg) , is a random variable uniformly
distributed on the set of real numbers {pgyg, P]f,w oo, p¥ 3. In particular, Theo-
rem 2.2 is proved by writing that the probability that w(cg) is f-small among
w(oo),w(Y1),...,w(Ye),w(Z1),...,w(Zk_¢) is given by
1 (+1
) (Plg,e + P]f,e +o Pz,é) < %Ha

where the inequality is from (10). Note that we are using an analog of Observation
4.2 to know that for any j, Yj,...,Y1,00, 21, Zj—; is a m-stationary trajectory.
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5. GLOBAL SIGNIFICANCE FOR LOCAL OUTLIERS
We now prove Theorem 2.4 from Theorem 2.6.

Proof of Theorem 2.4. For a w-stationary trajectory Xo, - - , X, let us define pf)a(o)
to be the probability that w(X) is in the bottom ¢ fraction of the values w(Xp), . . ., w(Xy),
conditioned on the event that X; = o.

In particular, to prove Theorem 2.4, we will prove the following claim:
Claim: If 0 is not an (g, a)-outlier, then

2e

(1) pholo0) <4/ =

Let us first see why the claim implies the theorem. Recall the random variable
p is the number of trajectories 7* from oy on which oq is observed to be an e-
outlier with respect to the labeling w. The random variable p is thus a sum of m
independent Bernoulli random variables, which each take value 1 with probability

< % by the claim. In particular, by Chernoff’s bound, we have
(12) Pr (p > (14 68)m %) < e~ min(6:8")my/E /3,
giving the theorem. (Note the key point of the claim is that « is inside the square

root in (11), while a straightforward application of of Theorem 2.1 would give an
expression with « outside the square root.)

To prove (11), consider a m-stationary trajectory Xo,...,Xk,..., Xor and con-
dition on the event that X; = o for some arbitrary ¢ € 3. Since M is re-
versible, we can view this trajectory as two independent trajectories Xy41,. .., Xog

and Xy 1, Xg_o2,...,Xo both beginning from o. In particular, letting A and B
be the events that w(X}) is an e-outlier among the lists w(Xp),...,w (X)) and
w(Xk), ... ,w(Xak), respectively, we have that

(13) p6.(0)* =Pr(ANB) < pi’ (o).

Now, the assumption that the given oy € ¥ is not an (e, @)-outlier gives that for a
random o ~ 7, we have that

(14) Pr (pg,a(o) > pg,a(oo)) > .

Line 13 gives that p§ .(0)? < p".(0), and Theorem 2.6 gives that pi* < 2. Thus
taking expectations with respect to a random o ~ 7, we obtain that

EUNTI' (pg,a(U)Q) S EUNT" (pil,ca(o')) - pil,ga S 2e.
On the other hand, we can use (14) to write

E;r (pg,s(o)z) >« 'pg,s(UO)zv

so that we have

[\]

k E
pO,E(UO)Q < E
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The proof of Theorem 2.8 is quite similar:

Proof of Theorem 2.8. For a m-stationary trajectory X, - -, X and a real number
1, let us define pfy (o) to be the probability that w (X)) is in the bottom ¢ fraction
of the values w(Xy),...,w(Xk), conditioned on the event that Xy = o, where the
length k& is chosen from a geometric distribution with mean p supported on 0,1,2,.. . ;
. . s 1 1yt

Le., k=t with probability -5 (1 — +57)".

To prove Theorem 2.8, it suffices to prove that if o( is not an (g, «)-outlier with
respect to k drawn from the geometric distribution with mean g, then

(15) pg,a(UO) S \/g

To prove (15), suppose that k1 and ko are independent random variables which are
are geometrically distributed with mean p, and consider a m-stationary trajectory

X0,y Xigs oo Xy ko

of random length k;+ko, and condition on the event that X, = o for some arbitrary
o € ¥. Since M is reversible, we can view this trajectory as two independent
trajectories Xp,, Xky41, -« Xky+ko and Xpy, X, —1, Xgy—2, - .., Xo both beginning
from Xy, = o, of random lengths ko and ki, respectively. In particular, letting A
and B be the events that w(X},) is an e-outlier among the lists w(Xy), ..., w(Xs,)
and w(Xg, )y ..., w(Xk, +k, ), respectively, we have that

(16) ph.(0)> =Pr(ANB)
< Pr (w(Xp,) is an e-outlier among w(Xo), ..., w(Xp,4k,) | Xi, = 0)
where, in this last expression, k; and ko are random variables. Now, the assumption

that the given oy € ¥ is not an (e, o)-outlier gives that for a random o ~ =, we
have that

(17) Pr (py (o) = pf-(00)) = .

Thus we write

(18) 0 pf(00)* < Eonr (pf-(0)?)
< Pr (w(Xy,) is an e-outlier among w(Xo), ..., w(Xk,1k,)),

where the last inequality follows from line (16).

On the other hand, considering the righthand side of Line (18), we have that con-
ditioning on any value for the length ¢ = k; + ko of the trajectory, k1 is uniformly
distributed in the range {0,...,¢}. This is ensured by the geometric distribution,
simply because for any ¢ and any = € (0,...,£), we have that the probability

1 1 \z_1 1 \¢—x 1 2 1 ¢

is independent of z. In particular, conditioning on any particular value for the
length ¢ = k1 + ko, we have that the probability that w(Xy, ) is an e-outlier on the
trajectory is at most ¢, since Xy, is a uniformly randomly chosen element of the
trajectory Xo,..., Xk, +k,; note that this part of the proof is exactly the same as
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the proof of Theorem 2.2. In particular, for the righthand-side of line (18), we are
writing

(19) a-pf.(00)* < Pr(w(Xy,) is an e-outlier among w(Xo), ..., w(Xk, +4,))
< m?xPr (w(Xk,) is an e-outlier among w(Xo), ..., w(Xk, 1&,)|k1 + k2 = £)
<e.

This gives line (15) and completes the proof. O

We close this section by noting that in implementations where m is not enormous,
it may be sensible to use the exact binomial tail in place of the Chernoff bound in
(12). In particular, this gives the following versions:

Theorem 5.1. With p as in Theorem 2.4, we have that if oo is not an (g,q)
outlier, then

T m\ (202 22\ "
(20) Pr(pZK)SZ<k> (E) (1— E) .

k=K

Theorem 5.2. With p as in Theorem 2.8, we have that if oo is not an (e, )
outlier, then

(21) Pr(p>K) < ij (Z‘) (g)k/2 <1— §>mk.

k=K

6. GENERALIZING THE BESAG AND CLIFFORD TESTS

Theorem 2.4 is attractive because it succeeds at separating statistical significance
from effect size, and at demonstrating statistical significance for an intuitively-
interpretable deterministic property of state in the Markov Chain. This is especially
important when public-policy decisions must be made by non-experts on the basis
of such tests.

In some cases, however, these may not be important goals. In particular, one may
simply desire a statistical test which is as effective as possible at disproving the null
hypothesis 0 ~ w. This is a task at which Besag and Clifford’s Theorem 2.2 excels.

In their paper, Besag and Clifford also prove the following result, to enable a test
designed to take efficient advantage of parallelism:

Theorem 6.1 (Besag and Clifford parallel test). Fiz numbers k and m. Suppose
that oy is chosen from a stationary distribution 7 of the reversible Markov Chain
M, and suppose we sample a trajectory Xy, Xs, ..., Xg from Xg = o9, and then
branch to sample m — 1 trajectories Z7,Z5, ..., Z; (2 < s < m) all from the state
Z§ = Xi. Then we have that

Pr (w(0o) is an e-outlier among w(oy), w(Z?),w(Z}), ... ,w(Zi) <e.
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Proof. For this theorem it suffices to observe that og, ZZ,..., Z" are exchangable
random variables—that is, all permutations of the sequence oo, ZZ,...,Z]" are
identical in distribution. This is because if o( is chosen from 7 and then the Z,i’s
are chosen as above, the result is equivalent in distribution to the case where X} is
chosen from 7 and then each Z,i is chosen (independently) as the end of a trajectory
Xy, Z%,...,Z}, and 09 = Y}, is chosen (independently) as the end of a trajectory
Xk, Y1,...,Y;. Here we are using that reversibility implies that (X, Y1,...,Y%) is
identical in distribution to (oo, X1,..., X). O

With an eye towards finding a common generalization of Besag and Clifford’s serial
and parallel tests, we define a Markov outlier test as a significance test with the
following general features:

e The test begins from a state oy of the Markov Chain which, under the null
hypothesis, is assumed to be stationary;

e random steps in the Markov chain are sampled from the initial state and/or
from subsequent states exposed by the test;

e the ranking of the initial state’s label is compared among the labels of some
(possibly all) of the visited states; it is an e-outlier if it’s label is among
the bottom e of the comparison labels. Some function p(e) assigns valid
statistical significance to the test results, as in the above theorems.

In particular, such a test may consist of single or multiple trajectories, may branch
once or multiple times, etc. In this section, we prove the validity of a parallelizable
Markov outlier test with best possible function p(e) = &, but for which it is natural
to expect the e-power of the test—that is, its tendency to return small values of
when o truly is an outlier—surpasses that of Theorems 2.2 and 6.1. In particular,
we prove the following theorem:

Theorem 6.2 (Star-split test). Fiz numbers m and k. Suppose that oq is chosen
from a stationary distribution 7w of the reversible Markov Chain M, and suppose
that £ is chosen randomly in {1,...,k}. Now sample trajectories X1,...,X¢ and
Yi,...,Yi_¢ from og, and then branch and sample m —1 trajectories 27,75, ..., 7},
(2 < s <m) all from the state Z§ = X¢. Then we have that

Pr (w(cro) is an e-outlier among w(op),w(X1) ..., w(Xe_1),

w(Y1), . (Vie),
w(Z?),...,w(Z})

w(ZM), ... ,w(Z,T)) <e.
In particular, note that the set of comparison random variables used consists of all
random variables exposed by the test except Xe¢.

To compare Theorem 6.2 with Theorems 6.1 and 2.2, let us note that it is natural
to expect the e-power of a Markov chain significance test to depend on:
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(a) How many comparisons are generated by the test, and

(b) how far typical comparison states are from the state being tested, where we
measure distance to a comparison state by the number of Markov chain tran-
sitions which the test used to generate the comparison.

If unlimited parallelism is available, then the Besag/Clifford parallel test is essen-
tially optimal from these parameters, as it draws an unlimited number of samples,
whose distance from the initial state is whatever serial running time is used. Con-
versely, in a purely serial setting, the Besag/Clifford test is essentially optimal with
respect to these parameters.

But it is natural to expect that even when parallelism is available, the number n of
samples we desire will often be be significantly greater than the parallelism factor
¢ available. In this case, the Besag/Clifford parallel test will use n comparisons at
distance d & (t/n, where t is the serial time used by the test. In particular, the
typical distance to a comparison can be considerably less than ¢ when ¢ compares
unfavorably with n.

On the other hand, Besag/Clifford serial test generates comparisons whose typical
distance is roughly ¢/2, but cannot make use of parallelism beyond ¢ = 2. For an
apples-to-apples comparison, it is natural to consider the case of carrying out their
serial test using only every dth state encountered as a comparison state for some
d. This is equivalent to applying the test to the dth-power of the Markov chain,
instead of applying it directly. (In practical applications, this is a sensible choice
when comparing the labels of states is expensive relative to the time required to
carry out transitions of the chain.) Now if £ is a small constant, we see that with
t-d steps, the BC parallel test can generate roughly n comparisons all at distance d
from the state being tested, the serial test could generate comparisons at distances
d,2d,3d, ..., kd (measured in terms of transitions in M), where these distances
occur with multiplicity at most 2, and k& = max(§,n — &) > n/2. In particular,
the serial test generates a similar number of comparisons in this way but at much
greater distances from the state we are evaluating, making it more likely that we
are able to detect that the input state is an outlier.

Consider now the star-split test. Again, to facilitate comparison, we suppose the
test is being applied to the dth power of M. If serial time ¢ ~ sd is to be used, then
we will branch into £ — 1 trajectories after £&- M? chain, where ¢ is randomly chosen
from {0,5}. Thus comparisons used lie at a set of distances d,2d,...,({ + 5)d
similar to the case of the Besag/Clifford serial test above. But now the distances
d,2d,...,(&d — 1)d will have multiplicities at most 2 in the set of comparison dis-
tances, while the distances (§ + 1)d, (§ +2)d, ..., (£ + 5)d all have multiplicity at
least ¢ — 1. In particular, the test allows us to make more comparisons to more
distance states, essentially by a factor of the parallelism factor being used. In par-
ticular, it is natural to expect performance to improve as ¢ increases. Moreover,
the star-split test is equivalent to the Besag/Clifford serial test for £ < 2, and es-
sentially equivalent to their parallel test in the large ¢ limit. (To make this latter
correspondence exact, once can apply Theorem 6.2 to the dth power of a Markov
chain M, and take k = 1.)
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We now turn to the task of proving Theorem 6.2. Unlike Theorems 2.1, 2.6, and
2.2, the comparison states used in Theorems 6.1 and 6.2 cannot be viewed as a
single trajectory in M. This motivates the natural generalization of the notion of
a m-stationary trajectory as follows:

Definition 6.3. Given a reversible Markov Chain M with stationary distribution
7 and an undirected tree T, a w-stationary T -projection is a collection of random
variables { X, },er such that:

(i) forallv e T, X, ~m;
(i) for any edge {u,v} in T, if we let T, denote the vertex-set of the connected
component of u in T\ {u, v} and {0y }wer is an arbitrary collection of states,

then
/\ Xy = Uw> = Toy.,00-

Pr (XU = 0oy
weTy

In analogy to the case of w-stationary trajectories, Definition 6.3 easily gives the
following, by induction:

Observation 6.4. For fized © and T, if { Xy} wer and {Yy}twer are both 7-
stationary T-projections, then the two collections { Xy fwer and {Yy, }wer are equiv-
alent in distribution. [l

This enables the following natural analog of Definition 4.1:

Definition 6.5. Given a Markov Chain M with labels w : ¥ — R and stationary
distribution 7, we define for each /¢, each undirected tree T, each vertex subset
S C T and each vertex v € S a real number pa’f , which is the probability that
for a m-stationary T-projection {X,, fwer, we have that w(X,) is f-small among

{w(X’LU)}’UJGS'

Observe that as in (10) we have for any tree T" and any vertex subset S of T, we
have that

T,S
(22) P SL+1.
weS

The following Observation, applied recursively, gives the natural analog of Obser-
vation 4.2. Again the proof is an easy exercise in the definitions.

Observation 6.6. Suppose that T is an undirected tree, v is a leaf of T, T' = T\ v,
and { Xy bwer i a w-stationary T’ -projection. Suppose further that X, is a random
variable such that for all {oy }wer we have that

/\ (Xw = Uu))) = To4y,00

(23) Pr <Xv =0,
weT’

where u is the neighbor of v in T. Then { Xy }wer is a w-stationary T-projection.
O
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We can rephrase the proof of Theorem 6.1 in this language. Let T be the tree
consisting of m paths of length k sharing a common endpoint and no other vertices,
and let S be the leaves of T'. By symmetry, we have that pg’j is constant over w € S.
On the other hand, Observation 6.6 gives that under the hypotheses of Theorem
6.1, o9, Xi,..., Xk, and the Z7’s are a m-stationary T-projection, with obvious
assignments (e.g., o¢ corresponds to a leaf of T'; X, corresponds to the center). In
particular, (22) implies that pg’j < Z%l, which gives the theorem.

On the other hand, the definitions makes the following proof easy as well, using the
same simple idea as Besag and Clifford’s Theorem 2.2.

Proof of Theorem 6.2. Define T to be the undirected tree with vertex set {vo}U{v; |
1<s<m,1<j <k}, with edges {vg,v§} for each 1 < s < m and {vj,vjﬂ} for
each1 <s<m,1<j<k—1. Now we let S consist of all vertices of T" except the
center vy, and let S; denote the set of m vertices in .S at distance j from vy. By
symmetry, we have that pff is constant in each Sj; in particular, we have that

m

rs _ 1 7.5
pv; N4 n —t pv;,f
and together with (22) this gives that
k
+1
7,5
(24) va;,l < n
j=1

Now if we let

Xej s=1,1<j5<¢
g0 s = 17.7 = 5

P )Y s=1g>¢

Z; 2<s<m,1<j<k,

then {W,, }wer is a m-stationary T-projection under the hypotheses of Theorem 6.2,
by recursively applying Observation 6.6. Moreover, as £ is chosen randomly among
{1,...,k}, the probability that w(og) = w(WU%) is ¢-small among {w(Wy,) bwes is
given by

L/rs T.8 (+1
- , . Sy 2T -
F (i) = 4
where the inequality is from (24), giving the Theorem. O

7. THE PRODUCT SPACE SETTING

The appeal of the theorems developed thus far in this paper is that they can be
applied to any reversible Markov chain without any knowledge of its structure.
However, there are some important cases where additional information about the
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structure of the stationary distribution of a chain is available, and can be exploited
to enable more powerful statistical claims.

In this section, we consider the problem of evaluating claims of gerrymandering with
a Markov Chain where the probability distribution on districtings is known to have
a product structure imposed by geographical constraints. For example, the North
Carolina Supreme Court has ruled in Stephenson v. Bartlett that districtings of that
state must respect groupings of counties determined by a prescribed algorithm. In
particular a set of explicit rules (nearly) determine a partition of the counties of
North Carolina into county groupings whose populations are each close to an integer
multiple of an ideal district size (see [CHTHM] for recent results on these rules),
and then the districting of the state is comprised of independent districtings of each
of the county groupings.

In this way, the probability space of uniformly random districtings is a product
space, with a random districting of the whole state equivalent to collection of ran-
dom independent districtings of each of the separate county groupings. We wish
to exploit this structure for greater statistical power. In particular, running tra-
jectories of length k in each of d clusters generates a total of k% comparison maps
with only k - d total Markov chain steps. To take advantage of the potential power
of this enormous comparison set, we need theorems which allow us to compare a
given map not just to a trajectory of maps in a Markov chain (since the k% maps
do not form a trajectory) but to the product of trajectories. This is what we show
in this section.

Formally, in the product space setting, we have a collection M4 of d Markov
Chains My, ..., Mg, each M; on state space 3; (each corresponding to one county
grouping in North Carolina, for example). We are given a label function w : X% —
R, where here X4 = ¥, x -+ x ¥,. In the first theorem in this section, which is a
direct analog of the Besag and Clifford test, we consider a o € X4 distributed as
[l where here 7% indicates the product space of stationary distributions 7;
of the M;. (In the gerrymandering case, 74 is a random map chosen by randomly
selecting a map for each separate county cluster.) In the tests discussed earlier in
this paper, a state og ~ M is evaluated by comparing a state og to other states
on a trajectory containing op. In the product setting, we compare oy against a
product of one trajectory from each M;.

gy~ T

In particular, given the collection MY, a state oy = (ob,...,08) € ¥l and
i= (1, Ja), k = (k1,...,kq), we define the trajectory product X4, jx which is
obtained by considering, for each 4, a trajectory X§,..., X/, in M; conditioned on

X ; = 0}. Xk is simply the set of all d-tuples consisting of one element from
each such trajectory.

We define the stationary trajectory product X i y, analogously, except that the
trajectories used are all stationary, instead of conditioning on X;l =ol.

Theorem 7.1. Given reversible Markov Chains My, Mo, ..., Mgy, fix any number

k and suppose that o}, ... o8 are chosen from stationary distributions my,..., 74

of My,...,Ma, and that &1,...,Eq are chosen uniformly and independently in



SEPARATING EFFECT FROM SIGNIFICANCE IN MARKOV CHAIN TESTS 19

{0,...,k}. For each s =1,...,d, consider two independent trajectories Y§, Y7, ...
and Z§,7Z7,... in the reversible Markov Chain Mg from Yy = Z5 = of. Let
w: Mg X x Mg — R be a label function on the product space, write g =
(0b,...,08), and denote by Zy, 1. the (random) set of all vectors (ai,...,aq) such

that for each i, a; € (Ué,Yf, .. .,Yé, Zi .., Z,ifgi). Then we have that

(25) Pr (w(oy) is an e-outlier among w(x),x € Zg, 1) < €.

Proof. Like the proof of Theorem 2.2, this proof is very simple; it is just a matter of
digesting notation. First observe that Zs, , is simply a trajectory product X, ¢ k,
where where k = (k, ..., k) and ¢ is the random variable (&1,...,&q).

In particular, under the hypothesis that o ~ m; for all i, Z, \ is in fact a stationary
trajectory product X a) ., In particular, by the random, independent choice of the
&’s, the probability in (25) is equivalent to the probability that the label of a
random element of the a stationary trajectory product is among e smallest labels
in the stationary trajectory product; this probability is at most €. O

The following is an analog of Theorem 2.6 for the product space setting.

Theorem 7.2. Given reversible Markov Chains My, Mo, ..., Mgy, fix any number
k and suppose that o}, ... o8 are chosen from stationary distributions my,. .., 74
of MY, ..., M®. For each s = 1,...,d, consider two independent trajectories
Y$,YE, .o and Z5, Z7, . .. in the reversible Markov Chain M? from Yy = Z§ = of.
Let w : My x -+ Xx Mg — R be a label function on the product space, write
oo = (03,...,08), and denote by Zy, 1 the (random) set of all vectors (ai,...,aq)
such that for each i, a; € (06, Yi,. .. ,Yki, Zi ..., Z}C) Then we have that

(26) Pr (w(oy) is an e-outlier among w(x),x € Zg, 1) < 2% - ¢.

Proof. First consider d independent stationary trajectories X, X1, X4, ... for each
i=1,...,d, and define X, ; to be the collection of all (k+ 1) d-tuples (a1, ..., aq)
where, for each i, a; € {X§,..., X} }.

In analogy to Definition 4.1, we define Pf,e for j = (41,72, --,jk) to be the proba-
bility that for Xj = (X} ,...,X{) € Xz 1, we have that w(Xj) is f-small among
the w-labels of all elements of X j.

Observe that for k = (k, ..., k), we have in analogy to equation (6) that

(27) Pilfe < PJ{C,@
for any j = (j1,...,ja). And of course we have that
Z pig </+1.
J
Thus averaging both sides of (27) gives that
C+1 +1
(28) < <ot

T (k+1)d T 7 (2k+1)4
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Now observe that the the statement that

w(op) is an e-outlier among w(x), X € Zg, k
equivalent to the statement that

w(op) is an f-small among w(x),x € Zg, i

for £ = ¢ - (2k + 1) — 1; thus (28) gives the theorem, since pi’fé is precisely the
probability that this second statement holds. 0

The presence of the 2¢ in (26) is now potentially more annoying than the constant

2 in (2.6), and it is natural to ask whether it can be avoided. However, using the

example from Remark 2.7, it is easy to see that an exponential factor (%)d may
really be necessary, at least if & = 1. Whether such a factor can be avoided for
larger values of k is an interesting question. However, as we discuss below, this
seemingly large exponential penalty is actually likely dwarfed by the quantitative

benefits of the product setting, in many real-world cases.

7.1. Illustrative product examples. The fact the estimate in Theorem 7.1 looks
like original Theorem 2.2, hides the power in the product version. More misleading
is the fact that Theorem 7.2 has a 2¢ which seems to make the theorem degrade
with increasing d.

Let us begin by considering the simplest example we are looking for the single
extreme outlier across the entire product space. Let us further assume that this
global extreme is obtained by choosing each of the extreme element in each part of
the product space. An example of this comes for the Gerrymandering application
where one is naturally interested in the seat count. Each of the product coordinates
represents the seats from a particular geographic region. In some states such as
North Carolina judicial rulings break the problem up into the product measure
required by Theorem 7.1 and Theorem 7.2 by stipulating that particular geographic
regions must be redistricted independently.

For illustrative purposes, lets assume that there are L different outcomes in each of
the d different factors of the product space. Hence the chance of getting the mini-
mum in any of the d different components is 1/L. However, getting the minimum in
the whole product space requires getting the minimum in each of the components
and so is 1/L¢%. Hence is this setting one can take ¢ = 1/L? in Theorem 7.1 and
Theorem 7.2. Thus even in Theorem 7.2 as long as L > 2, one has a significant
improvement as d grows.

Now lets consider a second slightly more complicated example which builds on the

proceeding one. Let us equip each M; with a function w; and decide that we are
interested in the event

d
(29) £0) = {{ey: Dwile) <3}
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Then one can take

_lEw)
Id

in Theorem 7.2 and 2¢ times this in Theorem 7.2, where |£(§)] is simply the number

of elements in the set £(d). This can lead to a significant improvement in the power

of the test in the product case over the general case when |£(d)| grows slower than

L.

There remains the task of calculating |£(d)|. In the gerrymandering examples we
have in mind, this can be done efficiently. When counting seat counts, the map w;
is a many-to—one map with a range consisting of a few discrete values. This means
that one can tabulate exactly the number of samples which produce a given value
of w;. Since we are typically interested extreme values of

d
w(é) = Zwi(gi)a

there are often only a few partitions of each value of w made from possible values
of w;. When this true, the size of £ can be calculated exactly efficiently.

For example, let us assume there are d geographical regions which each needs to
be divided into 4 districts. Furthermore each party always wins at least one seat
in each geographical region; hence, the only possible outcomes are 1, 2 or 3 seats
in each region for a given party. If w; counts the number of seats for the party of
interest in geographic region 7, let us suppose for concreteness that we want are
interested in 0 = 2d. To calculate |£(0)|, we need to only keep track of the number
of times 1, 2 or 3 seats is produced in each geographic region. We can then combine
these numbers by summing over all of the ways the numbers 1, 2 and 3 can add
numbers between d and 2d. (The smallest w(§) can be given our assumptions is
d.) This is a straightforward calculation for which there exist fast algorithms which
leverage the hierarchical structure. Namely, group each region with another and
calculate the combined possible seat counts and their frequencies. Continuing up
the tree recursively one can calculate |£(d)| in only logarithmically many levels.

It is worth remarking, that not all statistics of interest fall as neatly into this frame-
work which enables simple and efficient computation. For instance, calculating the
ranked marginals used in [HSLGBRM] requires choosing some representation of the
histogram, such as a fixed binning, and would yield only approximate results.

7.2. Towards an (g, «)-outlier theorem for product spaces. In general, the
cost of making a straightforward translation of Theorems 2.4 or 2.8 to the product-
space setting are surprisingly large: in both cases, the square root is replaced by a
2%th root, according to the natural generalization of the proofs of those theorems.

Accordingly, in this section we point out simply that by using a more complicated
definition of (e, «)-outliers for the product space setting, an analog of Theorem 2.8
is then easy. In particular, let us define

(30) plﬁys(ao) := Pr (w(0p) an e-outlier in Xy j k),
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where j = (j1,...,ja) is chosen randomly with respect to the uniform distributions
ji ~ Umf[O, kl] (here k = (kl, ceey kd))

Now we define a state o to be an (e, a)-outlier with respect to a distribution k if
among all states in X[4, we have that pl{])a(ao) is in the the largest a fraction of

the values of plf])a(a) over all states o € MY weighted according to .

Theorem 7.3. We are given Markov Chains My, ..., My. Suppose that oqy is not
an (e, a)-outlier with respect to k. Then

pl{J,s(UO) <

Qlm

Proof. This follows immediately from the definitions. From the definition of (e, «)-
outlier given above for the product setting, we have that if o is not an (¢, «)-outlier,
then for a random o ~ T,

Pr (p‘f;,aw) > p%,awo)) >a.

Thus we can write

Eoon p%ﬁ(a) > 'plL{I,a(UO)-
And of course this expectation is just the probability that a random element of
Xk is an e-outlier on X i, which is at most «. O

Of course this kind of trivial proof would be possible in the general non-product
space setting also, but the sacrifice is that (e, «)-outliers cannot be defined with
respect to the endpoints of trajectories, which appears most natural. Whether
theorems analogous to 2.4 and 2.8 are possible in the product space setting without
an explosive dependence on the dimension d seems like a very interesting question.
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