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Gn,p: Each edge e of the complete graph Kn is included
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Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

Whp Gn,p has ∼
(n

2

)

p edges, provided
(n

2

)

p → ∞

p = 1/2, each subgraph of Kn is equally likely.

Gn,m: Vertex set [n] and m random edges.

If m ∼
(n

2

)

p then Gn,p and Gn,m have “similar” properties.
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Random graphs first used to prove existence of graphs with
certain properties:

Erdős (1947): Whp the maximum size of a clique or
independent set in Gn,1/2 is ≤ 2 log2 n.

Therefore
R(k , k) ≥ 2k/2.



Random graphs first used to prove existence of graphs with
certain properties:

Mantel (1907): There exist triangle free graphs with arbitrarily
large chromatic number.
Erdős (1959): There exist graphs of arbitrarily large girth and
chromatic number.

m = cn, c > 0 is a large constant. Whp Gn,m has o(n) vertices
on cycles of length ≤ log log n and no independent set of size
more than 2 log c

c n.

So removing the vertices on small cycles gives us a graph with
girth ≥ log log n and chromatic number ≥ c+o(1)

2 log c .



Erdős and Rényi began the study of random graphs in their
own right.
On Random Graphs I (1959): m = 1

2n(log n + cn)

lim
n→∞

Pr(Gn,m is connected) =







0 cn → −∞
e−e−c

cn → c
1 cn → +∞

= lim
n→∞

Pr(δ(Gn,m) ≥ 1)

m

Pr(Gn,m is connected)
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The evolution of a random graph, Erdős and Rényi (1960)

m Structure of Gn,m whp

o(n1/2) Isolated edges and vertices

n1/2 log n Isolated edges and vertices and paths of length 2

n2/3 log n Components are of the form

n
k−1

k log n Components are trees of vertex size 1, 2, . . . , k + 1.
Each possible such tree appears.



m Structure of Gn,m whp

1
2cn Mainly trees. Some unicyclic components. Maximum
c < 1 component size O(log n)

1
2n Complicated. Maximum component size order n2/3.

Has subsequently been the subject of moreintensive
study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1
2cn Unique giant component of size G(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)



m Structure of Gn,m whp

1
2cn Mainly trees. Some unicyclic components. Maximum
c < 1 component size O(log n)

1
2n Complicated. Maximum component size order n2/3.

Has subsequently been the subject of moreintensive
study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1
2cn Unique giant component of size G(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

Only very simple probabilistic tools needed. Mainly first and
second moment method.



Connectivity threshold

p = (1 + ǫ)
log n

n

Xk = number of k-components, 1 ≤ k ≤ n/2.
X = X1 + X2 + · · · + Xn/2
Gn,p is connected iff X = 0.



Connectivity threshold

p = (1 + ǫ)
log n

n

Xk = number of k-components, 1 ≤ k ≤ n/2.
X = X1 + X2 + · · · + Xn/2
Gn,p is connected iff X = 0.

Pr(X 6= 0) ≤ E(X )

≤
n/2
∑

k=1

(

n
k

)

kk−2pk−1(1 − p)k(n−k)

≤ n
log n

n/2
∑

k=1

(

e log n
n(1+ǫ)(1−k/n)

)k

→ 0.
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Whp m2 is the “time” when Gm first has a Hamilton cycle.
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Whp At time m2 there are (log n)n−o(n) distinct Hamilton
cycles.
Cooper and Frieze (1989).



Hitting Time: Consider G0, G1, . . . , Gm, . . . , where Gi+1 is Gi

plus a random edge.
Let mk denote the minimum m for which δ(Gm) ≥ k .

Whp m1 is the “time” when Gm first becomes connected.

Whp m1 is the “time” when Gm first has a perfect matching.
Erdős and Rényi (1966).

Whp m2 is the “time” when Gm first has a Hamilton cycle.
Ajtai, Komlós and Szemerédi (1985), Bollobás (1984).

Whp mk is the “time” when Gm first has k/2 edge disjoint
Hamilton cycles.
Bollobás and Frieze (1985).
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Some Open Problems

Is it true that whp Gm has δ(Gm)/2 Hamilton cycles, for
m = 1, 2, . . . ,

(n
2

)

?

It is known to be true as long as δ(Gm) = o(average degree).

It is known that Gn,1/2 has ∼ n/4 edge disjoint Hamilton cycles,
Frieze and Krivelevich (2005).



Some Open Problems

Is it true that if we include the edges of the n-cube, Qn with
constant probability p > 1/2 then the resulting random
subgraph is Hamiltonian whp ?

It is known to have a perfect matching whp - Bollobás (1999).



Some Open Problems

If we randomly color the edges of Gn,Kn log n with Kn colors and
K is sufficiently large, then whp there exists a Hamilton cycle
with every edge a different color – Cooper and Frieze (2002).

If we only have ∼ 1
2n log n random edges, then how many

colors do we need to get such a cycle whp ?

If we only have n colors then how many edges do we need to
get such a cycle whp ?



Some Open Problems

If we randomly color the edges of Gn,Kn log n with Kn colors and
K is sufficiently large, then whp there exists a Hamilton cycle
with every edge a different color – Cooper and Frieze (2002).

If we only have ∼ 1
2n log n random edges, then how many

colors do we need to get such a cycle whp ?

If we only have n colors then how many edges do we need to
get such a cycle whp ?

If we replace Hamilton Cycle by Spanning Tree then the
problem is solved: The hitting time for a multi-colored spanning
tree is the maximum of the hitting time for connectivity and the
appearance of n − 1 colors – Frieze and McKay (1994).



Some Open Problems

If we consider digraphs and ask for a multi-colored Hamilton
cycle or spanning arborescence then nothing(?) is known.



Some Open Problems

Is it true that if T is a degree bounded tree with n vertices then
whp Gn,Kn log n contains a spanning copy of T , for sufficiently
large K = K (T ). Problem posed by Jeff Kahn.

True if T has a linear number of leaves.

The tree below seems to be a difficult one:

n1/2 paths of length n1/2



Small Subgraphs

Given a fixed graph H, one can ask when does Gn,p contain a
copy of H.

If XH is the number of copies of H in Gn,p then

E(XH) ∼ CHnvH peH

where CH is a constant, vH , eH are the number of vertices and
edges in H.



Small Subgraphs

Given a fixed graph H, one can ask when does Gn,p contain a
copy of H.

If XH is the number of copies of H in Gn,p then

E(XH) ∼ CHnvH peH

where CH is a constant, vH , eH are the number of vertices and
edges in H.

Does E(XH) → ∞ imply that there is a copy of H whp ?
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If p = o(n−2/3) then E(XH) → 0.
If p = ωn−2/3 then E(XH) → ∞ and
a copy of H exists whp .

If p = n−3/4 then E(XH) → ∞
but whp there is no copy of H .

What we need is that E(XH′) → ∞ for all subgraphs H ′ ⊆ H.
Bollobás (1981), Karoński and Ruciński (1983).
Study of this problem has led to important probabilistic tools:
Suen’s inequality (1980), Janson’s Inequality (1990) and the
concentration inequality for multivariate polynomials by Kim and
Vu (2004).



Graph Coloring



Graph Coloring

Matula (1970) showed using the second moment method that
whp the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Thus, whp χ(Gn,1/2) ≥∼ n
2 log2 n

Bollobás and Erdős (1976) and Grimmett and McDiarmid
(1975) showed that whp a simple greedy algorithm uses
∼ n

log2 n colors.



Graph Coloring

A simple first moment calculation shows that whp α(Gn,d/n) is

≤ 2
log d

d
n

for d sufficiently large.

Thus, whp

χ(Gn,d/n) ≥∼ d
2 log d

Shamir and Upfal (1984) showed that a slight modification of
the greedy algorithm uses ∼ d

log d colors.
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It seemed “impossible “ to make any progress on this problem
until the random graph community discovered
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Graph Coloring

It seemed “impossible “ to make any progress on this problem
until the random graph community discovered

Martingale Tail Inequalities

Azuma/Hoeffding

Let Z = Z (X1, . . . , XN) where X1, . . . , XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Pr(|Z − E(Z )| ≥ t) ≤ e−t2/(2n).

“Discovered” by Shamir and Spencer (1987) and by Rhee and
Talagrand (1988).



Bollobás (1988) showed that χ(Gn,1/2) ∼ n
2 log2 n .



Bollobás (1988) showed that χ(Gn,1/2) ∼ n
2 log2 n .

Let Z be the maximum number of independent sets in a
collection S1, . . . , SZ where each |Si | ∼ 2 log2 n and
|Si ∩ Sj | ≤ 1.

E(Z ) = n2−o(1) and changing one edge changes Z by ≤ 1

So,

Pr(∃S ⊆ [n] : |S| ≥ n
(log2 n)2 and S doesn′t contain a

(2 − o(1)) log2 n independent set) ≤ 2ne−n2−o(1)
= o(1).

So, we color Gn,1/2 with color classes of size ∼ 2 log2 n until
there are ≤ n/(log2 n)2 vertices uncolored and then give each
remaining vertex a new color.



Sparse random graphs: p = d/n.
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d
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for large d , Frieze (1990).

Suppose k ∼ 2 log d
d n and Xk is the number of independent

k-sets in Gn,d/n

Pr(Xk 6= 0) ≥ E(Xk )2

E(X2
k )

≥ e−a1n.



Sparse random graphs: p = d/n.

α(Gn,d/n) =
(2 ± ǫ) log d

d
n

for large d , Frieze (1990).

Suppose k ∼ 2 log d
d n and Xk is the number of independent

k-sets in Gn,d/n

Pr(Xk 6= 0) ≥ E(Xk )2

E(X2
k )

≥ e−a1n.

But Azuma-Hoeffding gives

Pr(|α(Gn,d/n) − E(α)| ≥ ǫ1n) ≤ e−a2n.

Here a2 > a1 and so E(α) ≥ (2−ǫ2) log d
d n and ...



Taking a similar (but much more computationally challenging)
approach Łuczak (1991) showed that

χ(Gn,d/n) ∼
d

2 log d
.



Taking a similar (but much more computationally challenging)
approach Łuczak (1991) showed that

χ(Gn,d/n) ∼
d

2 log d
.

Then Łuczak (1991) proved that whp there was a two point
concentration for χ(Gn,d/n) i.e. ∃kd such that whp

χ(Gn,d/n) ∈ {kd , kd + 1}.



Achlioptas and Naor (2005) showed that kd is the smallest
integer ≥ 2 such that d < dk = 2k log k .

If d > dk and Xk is the number of k-colorings of Gn,d/n then
E(Xk ) → 0.

If d ≤ dk−1 then
Pr(Gn,d/n is k − colorable) ≥ E(Xk )2/E(X2

k ) ≥ ξ > 0.

Using the results of Friedgut (1999) and Achlioptas and
Friedgut (1999) we see that this implies Gn,d/n is k − colorable
whp for d ≤ dk−1.



Some Open Problems



Some Open Problems

Is it the case that there exist d3 < d4 < · · · < dk < · · · such that
dk < d < dk+1 implies that whp χ(Gn,d/n) = k?

The results of Friedgut (1999) and Achlioptas and Friedgut
(1999) suggests strongly that this is true.



Some Open Problems

What is the Chromatic number of a random r -regular graph
Gn,r ?

Achlioptas and Moore (2005) show that provided r = O(1) the
chromatic number is 3 point concentrated around the smallest
integer k such that r < 2k log k .

Shi and Wormald (2005) show that whp a random 4-regular
graph has chromatic number 3 and a random 6-regular graph
has chromatic number 4.

Cooper, Frieze, Reed and Riordan (2002) show that if r → ∞
then whp

χ(Gn,r ) ∼
r

2 log r
.



Some Open Problems

Is there a polynomial time algorithm that whp can color Gn,1/2

with (1−ǫ)n
log2 n colors?

Randomly generated k-colorable graphs, k = O(1), with O(n)
edges can be colored quickly, Alon and Kahale (1994).



Some Open Problems

What is the game chromatic number χg of the random graph
Gn,1/2?

There are two players: A and B who alternately properly color
the vertices of G. A tries to color the whole graph and B tries to
force a situation where some vertex cannot be colored. χg is
the minimum number of colors which guarantees a win for A.

Bohman, Frieze and Sudakov (2005) show that whp

(1 − ǫ)
n

log2 n
≤ χg(Gn,1/2) ≤ (2 + ǫ)

n
log2 n

.
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The diameter of random graphs

Suppose d ≥ 2 is a positive integer and pdnd−1 = log(n2/c) so
that average degree is Θ̃(n1/d). Then

lim
n→∞

Pr(diameter Gn,p = d + δ) =

{

e−c/2 δ = 0

1 − e−c/2 δ = 1

Bollobás (1981).

Basically, there are Θ̃(nk/d) vertices at distance ≤ k from a
fixed vertex v .



The diameter of random graphs

Diameter of the Giant Component of Gn,c/n: Fernholz and
Ramachandran (2005).
One would expect this to be ∼ A(c) log n whp . They show that

A(c) =
2

− log W
+

1
log c

where W is the solution in (0, 1) of We−W = ce−c .

Here W → 0 as c → ∞, so the diameter is “like” logc n for large
c, as one would expect.



Algorithms and Differential Equations

Karp and Sipser (1981) described a simple greedy matching
algorithm for finding a large matching in the random graph
Gn,c/n.

If there is a vertex v of degree one, choose a random degree
one vertex and the edge incident to it; otherwise choose a
random edge.



Algorithms and Differential Equations

Karp and Sipser (1981) described a simple greedy matching
algorithm for finding a large matching in the random graph
Gn,c/n.

If there is a vertex v of degree one, choose a random degree
one vertex and the edge incident to it; otherwise choose a
random edge.

They show that the algorithm is asymptotically optimal i.e. the
matching it produces is within 1 − o(1) of optimal.

Aronson, Frieze and Pittel (1998) showed that whp this
algorithm only makes Θ̃(n1/5) “mistakes”.



The proof of the above results rests on the fact that the
progress of the algorithm can whp be tracked by the solution of
a differential equation.



The proof of the above results rests on the fact that the
progress of the algorithm can whp be tracked by the solution of
a differential equation.

Karp and Sipser introduced this approach (via Kurtz theorem)
to the “CS/Probabilistic Combinatorics” community and
Wormald has “championed” its applications.
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Toy Example: Number of isolated vertices in Gm.

Let X0(m) be the number of isolated vertices in Gm. Then

E(X0(m + 1) − X0(m) | Gm) = −2
X0(m)

n
. (1)

Let x0(t) = X0(tn)/n for t > 0. Then (1) suggests the equation

x ′

0 = −2x0

which has the solution

x0 = e−2t

or
X0(m) ∼ ne−2m/n.



More typical example: From “Hamilton Cycles in 3-Out” –
Bohman and Frieze (2006).



More typical example: From “Hamilton Cycles in 3-Out” –
Bohman and Frieze (2006).

E(y′

i,j,0 − yi,j,0) = −

jyi,j,0

µ
−

X

a,b

bya,b,1

µ

„

(b − 1)
iyi,j,0

µ − 1
+ â

jyi,j,0

µ − 1

«

+
X

a,b

bya,b,1

µ

 

(b − 1)
(i + 1)yi+1,j,0

µ − 1
+ â

(j + 1)yi,j+1,0

µ − 1

!

+ Õ(µ
−1

)

E(y′

i,j,1 − yi,j,1) = −

jyi,j,1

µ
+

(j + 1)yi,j+1,0

µ
−

X

a,b

bya,b,1

µ

„

(b − 1)
iyi,j,1

µ − 1
+ â

jyi,j,1

µ − 1

«

+
X

a,b

bya,b,1

µ

 

(b − 1)
(i + 1)yi+1,j,1

µ − 1
+ â

(j + 1)yi,j+1,1

µ − 1

!

+ Õ(µ
−1

)

E(y′

L,j,0 − yL,j,0) = −

jyL,j,0

µ
−

X

a,b

bya,b,1

µ

„

(b − 1)
3y3,j,0

µ − 1
+ â

jyL,j,0

µ − 1

«

+
X

a,b

bya,b,1

µ
· â

(j + 1)yL,j+1,0

µ − 1
+ Õ(µ

−1
).

d
= φ

in
L,j,0(y) + Õ(µ

−1
)

E(y′

L,j,1 − yL,j,1) = −

jyL,j,1

µ
+

(j + 1)yL,j+1,0

µ
−

X

a,b

bya,b,1

µ

„

(b − 1)
3y3,j,1

µ − 1
+ â

jyL,j,1

µ − 1

«

+
X

a,b

bya,b,1

µ
· â

(j + 1)yL,j+1,1

µ − 1
+ Õ(µ

−1
)
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Eigenvalues of Random Graphs

Let A be the adjacency matrix of Gn,p. Then whp

λ1(A) = (1 + o(1)) max{
√

∆, np}.

Krivelevich and Sudakov (2003)

Now let A be the adjacency matrix of a random d-regular
graph, d ≥ 3. λ1(A) = d and whp , for any constant ǫ > 0,

|λi(A)| ≤ 2
√

d − 1 + ǫ 2 ≤ i ≤ n

Friedman (2004)
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Unstructured, randomly generated(?) real world graphs like the
WWW seem to have a different distribution to Gn,p, e.g. the
number of vertices of degree k drops off like k−α instead of
e−αk .
Albert, Barabási and Jeong (1999), Faloutsos, Faloutsos and
Faloutsos (1999), Broder, Kumar, Maghoul, Raghavan,
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Modelling Choices:
Fix a degree sequence and make each graph with this degree
sequence equally likely: Bender and Canfield (1978), Bollobás
(1980), Molloy and Reed (1995) and Cooper and
Frieze(digraphs) (2004).
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Modelling Choices:
Fix a degree sequence d1, d2, . . . , dn and make edge (i , j) occur
independently with probability proportional to didj : Chung and
Lu (2002), Mihail and Papadimitriou (2002)



Typical Graphs

Unstructured, randomly generated(?) real world graphs like the
WWW seem to have a different distribution to Gn,p, e.g. the
number of vertices of degree k drops off like k−α instead of
e−αk .
Albert, Barabási and Jeong (1999), Faloutsos, Faloutsos and
Faloutsos (1999), Broder, Kumar, Maghoul, Raghavan,
Rajagopalan, Stata, Tomkins and Wiener (2002)

Modelling Choices:
Preferential Attachment Model: Vertex set v1, v2, . . . , vn, . . .;
Vertex vn+1 chooses m random neighbours in v1, . . . , vn with
probability proportional to their degree.

Introduced as a model of the web by Barabási and Albert
(1999).



Properties of the Preferential Attachment Model PAM
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Properties of the Preferential Attachment Model PAM

Power Law Degree Distribution: Bollobás, Riordan,
Spencer and Tusanády (2001).

Diameter ∼ log n/ log log n: Bollobás and Riordan (2004).

Spectral Properties: Flaxman, Frieze and Fenner (2005).

Cover Time ∼ 2m
m−1n log n: Cooper and Frieze (2005).

Conductance: Gkantsidis, Mihail and Saberi (2003)

Randomly deleting vertices preserves a giant component:
Bollobás and Riordan.

Adversarially deleting vertices preserves a giant
component: Flaxman, Frieze and Vera (2005).

Spread of viruses: Berger, Borgs, Chayes and Saberi
(2005).

Classifying special interest groups in web graphs: Cooper
(2002)
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Power Law:
Let dk (t) denote the expected number of vertices of degree k at
time t .

dk (t+1) = dk (t)+m
(k − 1)dk−1(t)

2mt
−m

kdk (t)
2mt

+1k=m+error terms.

Assume that dk (t) ∼ dk t . Then

dk

(

k
2

+ 1
)

∼ dk−1
k − 1

2
+ 1k=m

dk ∼ 2m(m + 1)

(k + 2)(k + 1)k
t for k ≥ m.



Some Open Problems

What is the second eigenvalue of the transition matrix of a
random walk on PAM?

It should be O(1/m).
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What is the size of the smallest dominating set in PAM?



Some Open Problems

What is the expected time to for a random walk to get within
distance d of every vertex?

d = 0 is Cover Time and is understood.

Should be o(n) for d ≥ 2.



Some Open Problems

Forest Fire Model Leskovec, Kleinberg and Faloutsos (2005).

vt+1 randomly chooses an ambassador node w from
v1, v2, . . . , vt+1 and we get the edge (v , x). Then a random
process constructs a tree rooted at w , all of whose nodes are
joined to vt+1.

The graph produced is difficult to analyse rigorously.

How many edges? What is the diameter? ...
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Suppose that e1, f1, e2, f2, . . . , is a random sequence of pairs of
edges ei , fi . You have to choose, on-line, one of ei , fi for
i = 1, 2, . . .. Can you avoid creating a giant component for
significantly beyond n/2 choices?

Subsequently several authors: Bohman and Kravitz (2005),
Spencer and Wormald (2005) and Flaxman, Gamarnik and
Sorkin (2004) studied algorithms for delaying and/or speeding
up the emergence of a giant component.

In particular, .544n can been significantly improved. SW
improve it to .829n and it is know Bohman, Frieze and Wormald
that .983n is an upper bound for the delay.



Subsequently several authors: Bohman and Kravitz (2005),
Spencer and Wormald (2005) and Flaxman, Gamarnik and
Sorkin (2004) studied algorithms for delaying and/or speeding
up the emergence of a giant component.

Related off-line problems were considered in Bohman, Frieze
and Wormald, Bohman and Kim.



In particular, the BK and SW papers show that for a restricted
class of algorithm, differential equations can be used to
accurately predict the emergence of a giant, by tracking the
parameter

Z =
1
n

∑

i

|Ci |2.

Where C1, C2, . . . are the components of the graph induced by
the edges selected so far.

The giant should appear when this parameter becomes
unbounded.



Open Questions



Open Questions

Analyze the algorithm that always chooses the edge which
produces the smallest increase in Z . When does a giant
component appear?

The differential equations method has problems here, because
the natural system of equations is infinite.



Open Questions

Consider speeding up or delaying the occurrence of other
graph properties e.g. avoid 3-colorability.
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Game Version

Suppose there are two players, Creator and Destroyer. Creator
plays on odd rounds and Destroyer plays on even rounds.
Creator wants to construct a giant component as soon as
possible and Destroyer wants to delay the occurrence for as
long as possible.

Beveridge, Bohman, Frieze and Pikhurko (2006) show that the
best strategy for Creator is to try to maximize the increase in Z
and the best strategy for Destroyer is to try to minimize the
increase in Z .

If they both play optimally, then it takes roughly n/2 rounds to
create a giant, since they tend to cancel each others advantage
over just choosing randomly.
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Random Geometric Graphs

Choose points X1, X2, . . . , Xn randomly from the unit square
[0, 1]2 and then join Xi , Xj by an edge if |Xi − Xj | ≤ r . Lets call
the graph Xn,r .

Model for Ad-Hoc/Sensor Networks.

There is a critical radius r = C0n−1/2 for Xn,r to have a giant
component.

If πr2n = log n + ω then Xn,r is connected whp .
Gupta and Kumar (1998)

If πr2n = (1 + ǫ) log n then Xn,r is Hamiltonian whp .
Díaz, Mitsche and Pérez (2006)
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k-nearest neighbour graph, where each Xi is joined by an edge
to its k nearest points.



Open Question

Given X1, X2, . . . , Xn and an integer k , we can define the
k-nearest neighbour graph, where each Xi is joined by an edge
to its k nearest points.

For what value of k does the graph have a giant component
whp ?

Teng and Yao show that k > 1 is necessary and k ≥ 212 is
sufficient.

Experiments “suggest” k = 3 is the right answer.



THANK YOU


