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We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have
the same color.

If b ≤ (n − 1)/4e then every b-bounded coloring of Kn,n

contains a rainbow perfect matching – Erdős and Spencer.

If b ≤ n/64 then every b-bounded coloring of Kn contains a
rainbow Hamilton cycle – Albert, Frieze and Reed.
Extends to complete digraph with b ≤ n/128.

Both theorems use the (lop-sided) local lemma.
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Rainbow Cycles

For smaller k we use the following: If c > 0 and an edge
colouring of Kn is cn-bounded, then there exists a set S ⊆ [n]
such that |S| = N = n/2 and the induced colouring of the
edges of S is c′N-bounded where c′ = c(1 + 1/(ln n)2).

To prove this, we take a random n/2 set S.

To complete the theorem, we take c sufficiently small and we
apply this ∼ log2 n times until we have shown the existence of
rainbow cycles of length N ≤ k ≤ n where cN ≤ 1 and a set of
N vertices for which the edge coloring is cN bounded.
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Theorem

Given a real constant ǫ > 0 and a positive integer ∆, there
exists a constant c = c(ǫ, ∆) such that if n ≥ (1 − ǫ)∆ and an
edge colouring of Kn is cn-bounded, then it contains a rainbow
copy of every tree T with at most (1 − ǫ)n vertices and
maximum degree ∆.

Conjecture: There is a constant c = c(∆) such that every
cn-bounded edge colouring of Kn contains a rainbow copy of
every spanning tree of Kn which has maximum degree at most
∆.
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Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that ∆ ≥ 2 and 0 < ǫ < 1/2. Let H be a graph on N
vertices with minimum degree δH and maximum degree ∆H .

Suppose that

N is sufficiently large.

∆H is not too large w.r.t. δH .

H has sufficiently good expansion.

Then H contains a copy of every tree with ≤ (1 − ǫ)N vertices
and maximum degree ≤ ∆.
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Strategy: Given cn-bounded coloring,

Construct G1 = Gn,p where p = d/n.

Remove all edges from G1 that contain repeated colors.

Remove vertices of degree outside [d/2, 2d ] to create G2.

Remove some more vertices so that minimum degree is
now ≥ d/4.

Show that whp G3 satisfies the AKS conditions.

Existence of rainbow trees has now been demonstrated.



Using the (lop-sided) local lemma one can also prove:

Let T be an arbitrary rooted tree with ν vertices.

Let T1, T2, . . . , Tν be copies of T with roots x1, . . . , xν .

Run a path through x1, . . . , xν to create the tree T (ν).
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There exists an absolute constant c > 0 such that if an edge
colouring of Kn is cn-bounded then there exists a rainbow copy
of every possible T (ν).
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Open Questions

Tighten the constants.

Show that there exists c = c(∆) so that every cn-bounded
colouring of Kn contains a rainbow copy of every tree with
n vertices and with maximum degree ≤ ∆.

Show that there exists a constant c > 0 such in every
cn-bounded colouring of Kn there are an exponential
number of rainbow Hamilton cycles.

Construct a polynomial time algorithm to find a rainbow
Hamilton cycle in a cn-bounded coloring of Kn.

Construct a polynomial time algorithm to find a random
rainbow Hamilton cycle in a cn-bounded coloring of Kn.

For what values of c, p does a cnp bounded coloring of
Gn,p contain a rainbow Hamilton cycle whp?



THANK YOU


