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Modelling Wireless Networks

Sensors modelled as discs of a fixed size placed randomly in
[0, 1]2. Two discs can “communicate” if they overlap.




Suppose that there are obstacles.

Processors A, B cannot communicate. Need another model.




LINE OF SIGHT MODEL
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Sensors are at centres of crosses and can communicate with
sensors lying on their arms.

A, B can communicate, but A, C cannot.
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T ={0,1,...,n —1}?is a toroidal grid.

Distance:
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Two points are mutually visible if they are in the same row or
column and within distance w of each other.
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T ={0,1,...,n —1}?is a toroidal grid.

Distance:

d((X7 y)7 (ley/)) = min(‘X_X/’a n_|X_X/’)+min(‘y_y/‘7 n_|y_y/’)

Two points are mutually visible if they are in the same row or
column and within distance w of each other.

We study the random graph G that results if, for some
placement probability p > 0, we locate a node at each point of
T independently with probability p, and then connect those
pairs of nodes that are mutually visible.

If w = 1then G is a site percolation model.
If w = nthen G is the line graph of a random bipartite graph
with edge probability p.



Connectivity

Theorem

Suppose that w/Inn — oo where w = n?, § < 6/(8k + 7).

Let k > 1 be a fixed positive integer and let
(1-358)Inn+%Inlnn+cy

p= = . Then
0 Ch — —00
nIim Pr(G is k-connected) = { e~ ¢, —cC
—00
1 Ch — O

where




Note that if w = o(Inn) and p = x /w then the expected number
of isolated vertices is

4w 2
n2p<1—5> =n’p exp{—4x <1+2X—w+%+~-->}.

So unless n?p — 0 or X /w is very close to one, this expectation
tends to infinity. In which case a second moment calculation will
show isolated vertices exist whp.

To summarize: We need to consider w = Q(Inn) to get any
sensible results.




Giant Component

G will whp contain ~ n?p vertices. A giant component is
therefore one with Q(n?p) vertices.

Theorem

(a) If p= < where c > 1and w — oo then whp G
contains a unique component with
(1 —0(1))(1 — x2)n?/w vertices, where x. is the
unique solution in (0,1) of xe ™ = ce™°.

(b) If p= £ where c < 1/(4e) and w — oo then whp
the largest component in G has size O(Inn).

<

Since (a) is valid for arbitrary w — oo, we can get a result about
the existence of a giant component assuming only that w is
sufficiently large.



Finding Paths Between Nodes

Let p = CInn/w for a constant C > 3. There is a decentralized
algorithm that whp, given nodes s and t, constructs an s-t path
with O(d(s,t)/w + Inn) edges while involving

O(d(s,t)/w + wlnn) nodes in the computation.




Finding Paths Between Nodes

Let p = CInn/w for a constant C > 3. There is a decentralized
algorithm that whp, given nodes s and t, constructs an s-t path
with O(d(s,t)/w + Inn) edges while involving

O(d(s,t)/w + wInn) nodes in the computation.

This bound is nearly optimal, since Q(d(s,t)/w) is a simple
lower bound on the number of edges and the number of nodes
involved in any s-t path.
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would like to add a small number of additional nodes (Steiner
Set) so that the full set becomes connected.
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Relay Placement: An Approximation Algorithm

Relay Placement Problem: Given a set of nodes on a grid, we
would like to add a small number of additional nodes (Steiner
Set) so that the full set becomes connected.

There is a polynomial-time algorithm that produces a Steiner
set whose total cost is within a factor of 6.2 of optimal.

In a general graph, there is an Q(log n) hardness of
approximation result for this problem and this is matched by a
corresponding upper bound, Klein and Ravi.
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No Giant Component

We note that an r-regular, N-vertex graph contains at most
N (er)*—* trees with k vertices.

Thus the expected number of k-vertex trees in G is bounded by

n?(4ewp)<~t = n?(4ec)"1 = o(1)

if c < 1/(4e)and k > Alnn and A is sufficiently large.
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Connectivity

Assume that

(1—3%8)Inn+%Ininn+c
2w ’
Let X, denote the number of vertices of degree 0 < | < k.

0 I<k-2
E(XI)N{)\k k1"

p:

Fort = O(1).

E((Xk-1)t) ~ X
(ay=a(a—1)---(a—t+1)).




Connectivity

Assume that

(1—3%8)Inn+%Ininn+c
2w ’
Let X, denote the number of vertices of degree 0 < | < k.

0 I<k-2
E(XI)N{)\k k1"

p:

Fort = O(1).
E((Xi-1)t) ~ M

(@k=al@-1)---(a—t+1)).
So whp there are no vertices of degree < k — 2 and

Pr(0(G) =k —1) ~ 1 — e,



We condition on 6(G) > k.
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We condition on 6(G) > k.

We write G = G; U G, where G;j is defined using p; where
P1=pP— hm = (1 —o(1))pand 1 —p = (1 —p1)(1 - p2).

G, defines the red nodes and G, defines the blue nodes.
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vertices each having an arm orthogonal to « which is not
mighty.
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The following hold whp:

@ No red node has an arm « on which we can find 1000 red
vertices each having an arm orthogonal to « which is not
mighty.

@ There is no red node of degree < InInn that has a red
neighbour w which has a non-mighty arm orthogonal to vw

@ There is no red vertex with at most k — 1 red neighbours
and at least one blue neighbour.

@ There is no blue node with fewer than k red neighbours.




Assume that the previous properties hold.

Let L be the set of points in T with coordinates (i, ]), where
each of i and j is a multiple of w.

Suppose S is a set of k — 1 red nodes and let Gg = G; — S.

For each connected component K of Hg, and for each point
X € L, let vkx denote the node in K that is closest to x in Ly
distance. We claim

Vky lies within the w x w box By centered at Xx.
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It follows from the lemma that there are at most n? /w?
components in G;.
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It follows from the lemma that there are at most n? /w?
components in G;.

For each component J, K and w x w box with centre x there is a
point z(J, K, x) which is a neighbour of a point in J and K.

The probability that there is no blue node at z(J,K, x) is

(1 — p2)™/“* and so the probability that J, K do not get merged
into one component is at most n2e ~"°P2/+* < n2g—2(n?/(w*Inn))
which is small enough to handle all the < n¥ choices for S.

So, if we remove any set of k — 1 vertices S then there is a
component of G — S containing all of the red vertices.

Each blue node has at least k red neighbours and so if we
remove any set S of k — 1 vertices the remaining graph G — S
is connected.



Relay Placement

Problem: Givency, > 0forv e TandasetX CT findY such
that X U'Y is connected and c(Y) is small.

, 0 X
Define ¢} = { V€% and for an edge e = {v,w} let
v V¢&X

its weight be w(e) = max {c, ¢S }.

Let Y * be a Steiner set for X of minimum cost, and let A* be a
Steiner tree for X of minimum total edge weight.

A Steiner tree A’ whose edge weight is within a constant factor
~ < 1.55 of optimal can be computed in polynomial time —
Robins and Zelikovsky.
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W

B G(N) < ve(Y)
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Let Y’ be the Steiner nodes of A.

c(Y') Sw(N) <Aw(A*) < dyc(Y7).
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Open Questions

@ Find the exact threshold for the existence of a giant
component.

@ Remove the restrictions on w.

@ Study problems associated with the points of G moving
(randomly).
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