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Outline of the Talk

@ The Cut-Norm and a Matrix Decomposition.

@ Max-Cut given the Matrix Decomposition.

@ Quadratic Assignment given the Matrix Decomposition.

@ Constructing Matrix Decomposition via the Grothendieck
Identity — Alon and Naor

@ Multi-Dimensional Matrices



The cut-norm of the R x C matrix A is defined to be
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Relation to regularity:

D is an R x C matrix with D(i,]) = d.

W is an R x C matrix with ||W ||g < ¢|R]||C]|.
A=D+W.

IA(S,T) —d[S[|T]] < €[R[C].




Cut Matrices

Given S C R, T C C and real value d:

R x C Cut Matrix C = CUT(S,T,d):

d if(i,j) eSxT,
0 otherwise.
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Matrix Decomposition

A:D(l)+D(2)+-"+D(S)+W.
D) = CUT (Ry, Cy, dy).
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Matrix Decomposition

A:D(l)+D(2)+-"+D(S)+W.
D) = CUT (Ry, Cy, dy).

We want s, max;{|d:|} and ||W||g to be small.

Wllg < emn m=|R|.n=|C
s = 0O(1/&)
max{|di[} = O(1)

is achievable.



Let

1/2
Alle = (ZA(i,J)z)
i

be the Frobenius Norm of A.




Assume inductively that we have found cut matrices
DU) = CUT (R;, Cj, dy),

such that W = A — (D + D@ 4+ ... + D) satisfies

WO < (1= Et)l|AlE.




Assume inductively that we have found cut matrices
D) = cUT (R}, Cj, d)),
such that W = A — (D + D@ 4+ ... + D) satisfies

WO < (1= Et)l|AlE.

Suppose there exist S C R, T C C such that
(WS, T)| > ev/mn][A|¢.
Let

w(s,T)

Rij1=5,Cip1=T,dy1 = SIT]



IWED2 — WO = WO - DO 2 — w2 =

ST (WO ]) — dier)? — WO(L))2) =
i€Rt1
j€Ciy1

— |Rt+1\|Ct+1|dt2+1 =

WO (R 1, Ciiq)?
- ( t+1; t+l) <_62||AH[2:

[Rt41| [Cetal




IWED2 — WO = WO - DO 2 — w2 =

ST (WO ]) — dier)? — WO(L))2) =

i€Rt1
j€Ciy1
— |Re41/|CpadEy =
WO(Ry 11, Ciy1)? < _2|AlR
[Rt+1][Cra
Conclusion : 3DW, ... D) s < ¢ 2 such that

IW®)[|5 < ev/mn||A|le



Refinements

Suppose that we can only compute R 1, C;,; such that
IWO(Ri11, Cii1)| > pl WO where p < 1.
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Conclusion : We can compute D), ... D) s < p=2¢72 such
that

IW®)[|5 < ev/mn||A|le




Suppose that ||W®)||5 > ¢,/mn||A||r and we have computed
Ri11, Ci41 such that WO(R, Cii1)| > pey/mn||A||g.




Suppose that ||W®)||5 > ¢,/mn||A||r and we have computed
Ri11, Ci41 such that WO(R, Cii1)| > pey/mn||A||g.

If [Re41| < m/2 then either (i) [W(R, Cy11)| > 3pey/mnl|A||r
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Suppose that |W )||5 > ey/mn||A||r and we have computed
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Suppose that |W )||5 > ey/mn||A||r and we have computed
R+1, Cepa such that [WO(R, Cya)| > pev/mn||A||e.

If [Re41| < m/2 then either (i) [W(R, Cy11)| > 3pey/mnl|A||r
or (i) [W(R \ Rey1, Cepa)| > Fpev/mn||Alle

Conclusion : We can compute DM, ... D) s < 4p=2¢2 such
that
IWE) |5 < ev/mn||A||e

and such that |Rj| > m/2 and |Ci| > n/2.

Then

S

S
Y IRi[CdZ < [IAIE = ) df < 4]|A|lx.
=1 t=1



MAX-CUT




G = (V,E) is a graph with n x n adjacency A and
A = D(l)+D(2)+"'+D(S)+W.
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G = (V,E) is a graph with n x n adjacency A and
A = D(l)+D(2)+"'+D(S)+W.

DM = CUT(Ry, Cy, ), |di| <2, s =0O(1/€?) and ||W]||g < en?

If (S,S) is a cut in G then the weight of this cut satisfies
IA(S,S) — (DU + D@ ... 4 DO))(S,S)| < en?.

S
DM(S,S) Zdtftgt
t=1
where
fi = |S ﬂRt| and Ot = ‘é ﬂCt\



So we look for S to (approximately) minimize > ¢_; difig:.
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So we look for S to (approximately) minimize > ¢_; difig:.

Let v = en and

Then

S
Z ‘ftgtdt — ]?tgtdt‘ < 6érvns < 6en2.
t=1

So we can look for S to (approximately) minimize > 7_; dif; 0.
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enumerate all possiblities and see if there is a cut with
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There are < (2/¢)?S choices for the sequence (f;, g;) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P =Vq,Vo,...,V is the coarsest partition of V (with at most
228 parts in it) such that each Ry, C; is the union of sets in P.

We check (f;, §;) by solving the LP relaxation of the integer

program
0 < xp < |P| VP P
fi < pr < fi+v 1<t<s
PCR,
g < Z(\P|*XP) < Gitv
PCC

and doing some adjusting. (xp = |S N P|).



There are < (2/¢)?S choices for the sequence (f;, g;) and so we
enumerate all possiblities and see if there is a cut with
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P =Vq,Vo,...,V is the coarsest partition of V (with at most
228 parts in it) such that each Ry, C; is the union of sets in P.

The partition P has the property that for disjoint S, T C V we
have

e(S,T) =Y 3 dijIsil|Tyl| < 2(|Wlin < 2en?
i€[k]jelk]

where di; = e(Vi, V))/(IVil Vj]).




There are < (2/¢)?S choices for the sequence (f;, g;) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P =Vq,Vo,...,V is the coarsest partition of V (with at most
228 parts in it) such that each Ry, C; is the union of sets in P.

The partition P has the property that for disjoint S, T C V we
have

(S, T)— > S dijISilITil| < 2/|W]|g < 2en?
ielk] je[k]

where d;; = e(Vi, V))/(|Vi] [Vj]).-

We could replace P with an ordinary regular partition. The
constants as a function of ¢ get worse.



Quadratic Assignment

ivj’pvq

subject to Zziyk = szvj =1
k k

Zij = 0, 1.Vi,j.




A set of n items V have to be assigned to a set of n locations
X, one per location. z; , = 1: Place item i in position p = 7 (i)

T(i,i") < 1is the amount of traffic between item i and i’.
D(x,x’) is the distance between location x and x’.

If item i is assigned to location 7 (i) for i € [n] the total cost c(r)
is defined by

ZZTII (i)

i=1li'=

The problem is to minimise c () over all bijections 7 : V — X.




Metric QAP.

Metric space X with metric D.

@ diam(X)=1i.e. maxxy D(x,y) = 1.

@ For all € > 0 there exists a partition X = X; UX, U --- U Xy,
¢ = ((e), such that diam(X;) < e.
We call this an ¢ — refinement of X.

So there is a ¢ x ¢ matrix D such that if x € X; and x’" € X/
then

ID(x,x’) = B(j.}")] < 2e.
This partition must be computable in time polynomial in n
and 1/e.

We call this the metric QAP.



We decompose
T=T1+To+--+Ts+W

where ||W/||g < en?.
For bijection 7 : V — X we have

=33 T ) (i), 7(3)) + A

k=1ij=1

We compute an O(e3)-refinement of X and let Si(”) =77 1(X).

> > T(i.i)b(a(i). (i) =

k=1ij=1

ZZdHRkﬂS I\CkﬂS(’T)|D(| i)+ Ao,
k=1i,j=1



Computing a decomposition.
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Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a “small” additive error.

Alon and Naor gave an approximation algorithm with
multiplicative error!




Let

Allo1 = max AL )XY
[[A][oo—1 ML . (i, 3)xy;




Let

So

Alloos1 = max Al ])XY;.
IAll-1 = max, 3 ZAG by

STAGIDXY =D Aig— Y A Y+ Z Aij.
i - -1

x,_—l x,—
yj=1 yj=-1 Yi= Yi=

A[loo—1 < 4/|A[|o.




Let

Alloos1 = max Al ])XY;.
IAll-1 = max, 3 ZAG by

STAGIDXY =D Aig— Y A Y+ Z Aij.
i - -1

x,_—l x,—
yj=1 yj=-1 Yi= Yi=

So
[|A]|oom1 < 4||A]lD.

A similar argument gives
AllD < [[Allso—1-



Grothendieck’s Identity

u,Vv are unit vectors in a Hilbert space H. z is chosen uniformly
fromB = {x : ||x|| = 1}.

%E[sign(u -z)sign(v - z)] = arcsin(u.v).




Let (u;", v;") define

La =max> AU -V (= [[Allee1)

Uj 7Vj i J
9.

where (uj,v;) lie in R™" and |Ju;|| = ||v;|| = 1.




Let (u;", v;") define

La=max » A(i,)ui-vi (= [|Allo-1)
Y] IJ

where (u;,v;) lie in R™" and |Ju;|| = ||v;|| = 1.

(u, vj*) are computable via Semi-Definite Programming.




Let ¢ = sinh™1(1) = In(1 + v/2).

i c2k+1

sin(cu;” - vi*) = (_1)k7(ui* ,V.*)Zk-&-l
. k;) (2k + 1)! j

= i(_l)kﬂ(u%)@)@k-‘rl) . (V_*)®(2k+1)
| i
= (2k +1)!
= S(uf) - T(v)").




Here

. 0 c2k+1
S(uf) = Z \/ 2K + 1)! s
% G c2k+1 )e 2k+1)
TM) = Z\/ 2k + 1)! ()

and

3 3 ,,2 2 2
(U1, Uz, ug, ug)®® = (u3, u2up, uZug, ufus, ugupusg, . . ).




Here

. i c2k+1
S(uf) = Z \/ 2K + 1)! B2+
* - ck+l Je(2k+D)
TV = Z\/ 2k + 1)! ()

and

3)

3,2 2 2
(U1, Uz, ug, ug)®® = (u3, u2up, uZug, ufus, ugupusg, . . ).

Note that ¢ has been chosen so that [|S(uf")|[ = [|T (v;")[| = 1.




La = D A Y
i

= ¢ 1) Ajjarcsin(S(ur) - T(v)))
i
— Cflg iZj:Ai,jE[Sign(S(Ufk) -2)sign(T (vj") - )]




i

¢t Ajjaresin(S(u) - T(v)"))
i

c*lg 3" AElsign(S(up) - 2) sign(T (v") - 2)]
i

We embed the S(u;"), T(v;") in R™*" and choose z randomly
and put x; = sign(T (u;" - z), y; = sign(T (v") - 2)).

By choosing many z we get a good estimate of ||A||._1.

One can recover a good solution (x;, y;) by first deciding
whether x; = 1 or x; = —1 etcetera.



i
= ¢ 1) Ajjarcsin(S(u) - T(v)"))

b

B Sl ZA,JE[Slgn S(u") - z) sign(T (v}") - 2)]

One can extend the idea to approximate the cut-norm, with the
same guarantee.
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In Frieze, Kannan we gave a randomised algorithm for
computing a weak partition using only 2°(<™*) time.

Subsequently, Alon,Fernandez de la Vega,Kannan, Karpinski,
Yuster show how to compute such a partition using only O(¢~4)
probes.

(A similar but weaker result was obtained by Anderson,
Engebretson).

See also Borgs, Chayes, Lovasz, S6s, Vesztergombi.

Above also applies to Multi-Dimensional Arrays.




A multi-dimensional version

Max-r-CSP is the following problem: We are given m Boolean
functions f; defined on Y; = (y1,Y2,...,Yyr) where
{Y1,¥2,---,¥r} € {Xg,X2,...,Xn} and the aim to choose a
setting for the variables xq, X5, . .., X, that makes as many of the
functions f; as possible, true.
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A multi-dimensional version

Max-r-CSP is the following problem: We are given m Boolean
functions f; defined on Y; = (y1,Y2,...,Yyr) where
{Y1,¥2,---,¥r} € {Xg,X2,...,Xn} and the aim to choose a
setting for the variables xq, X5, . .., X, that makes as many of the
functions f; as possible, true.

For each z € {0,1}" and (i1, iz, ...,ir) € [n]" we define
A® iy ip, .. i) = | {j: Yj =Xi,...,x, and fi(z1,...,2) =T}

Problem becomes to maximize, over X1, Xo, ..., Xn,

> AB(igip, i) (—1) ﬁ(xit +2z;—1).
z t=1

ilviz ----- ir



For this it is useful to have a decomposition for r-dimensional
matrices: An r-dimensional matrix A on X; x X, ... X; isa map

A X1XX2"-XXr—>R.

IfSi C Xjfori=1,2,...r,and d is a real number the matrix M
satisfying

B d foreeSl><82~~><Sr
M(e) = { 0 otherwise

is called a cut matrix and is denoted

M= CUT(Sl,Sz,...Sr;d).




B is the (2-dimensional) matrix with rows indexed by
Y1 =Xy x---xXp, f =[r/2] and columns indexed by
Y2:X|¢+1 X oo X Xp.
For

[ (Xl,...,Xf) EYl

j = (Xf+1,...,Xr) €Yy

let

B(i,J) = A(X1, X2, -, Xr).




Applying a decompositon algorithm we obtain
B = D(l) +D(2)+"'+D(SO)+W
where for 1 <t < sg,

D® = CUT(Ry, Cy, dy),

and ||W/||g is “small”.




Each R; defines an f-dimensional 0-1 matrix R(Y) where
RO (xq,...,x) = Liff (xq,...,%) € Ri. C) is defined similarly.
Assume inductively that we can further decompose

RO — ptl) ... 4 plts) L yw)
ct) = Dt,1+..-4Dt,§ + WO

Here




Each R; defines an f-dimensional 0-1 matrix R(Y) where
RO (xq,...,x) = Liff (xq,...,%) € Ri. C) is defined similarly.
Assume inductively that we can further decompose

RO — ptl) ... 4 plts) L yw)
ct) = Dt,1+..-4Dt,§ + WO

Here

DY = CUT(Ryut.---,Reussdiu)
If)tao = CUT(Rt,G,f+17"'7Rt,ﬁ,r7dt,l])

It follows that we can write

A= Z CUT(Rtu1,---»ReueRegpsas -+ Rear deua) + Wa,

t,u,0

where ||Wq||g is “small”.



THANK YOU




