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General Topic

The edges of graph G are coloured, under some suitable
restrictions. The aim is to study the following question.

Does G contain a Rainbow copy of graph H.

A rainbow copy of H is one in which every edge has a distinct
colour.

This is Anti-Ramsey in some sense.




Erdds, Simonovits, Sés (1973).

They introduced the following problem: Given a graph H let
f(n,H) be the maximum number of colours that you can use on
the edges of K, without creating a rainbow copy of H.

Letd +1=min{x(H —e): e E(H)}.

() (o-3)




Lower Bound.
Suppose d + 1 = x(H;) and

mo = ext(n,Hy) ~ <2) (1 — %)

be the maximum number of edges in an H;-free subgraph of
Kn.

Use mg edges of a distinct colour to create a copy of an
extremal graph for H; and then fill in the rest of K, with a single
colour.




Upper Bound

Take 2 copies of H; and let e = (X1, Y1) in one copy and let
e = (X2,Y2) in the other copy. Form G by identifying x; with x,
and y; with ys,.

X(G) = x(H1) and so my = ext(n,G) ~ (5) (1 — 3) as well.

Note that f(n,H) < ext(n, G).




b-bounded colourings.

An edge colouring is b-bounded if no colour is used more than

b times.
Define

1 Every b-bounded colouring of G contains a
AR(G,H,b) = rainbow copy of H

0 Otherwise

This function has been studied by a number of authors:




G — Kn,H — Km:
Let a(n,b) = min{m : AR(Kn, Kn,b) = 1}.




G — Kn,H — Km:
Let a(n,b) = min{m : AR(Kn, Kn,b) = 1}.

a(3,b)=b+2

Colour edge (i,]), i <] of Kpy1 with colour j. This gives a
b-bounded colouring of Ky 1 without a rainbow triangle.




G — Kn,H — Km:
Let a(n,b) = min{m : AR(Kn, Kn,b) = 1}.

a(3,b)=b+2

Colour edge (i,]), i <] of Kpy1 with colour j. This gives a
b-bounded colouring of Ky 1 without a rainbow triangle.

Given an b-bounded colouring of Ky, that does not have a
rainbow triangle. Let C be the largest (in number of vertices),
connected subgraph spanned by edges of the same colour.
C has at most b + 1 vertices. Thus there exists v ¢ C.

The edges from v to C must all have the same colour,
contradicting the definition of C.



In general it is only known that

Q(bn?/Inn) < a(n,b) < O(bn?).

Lefmann, Rodl, Wysocka (1996).
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C.,Cy,...,Cpy be the colour classes of an edge colouring of
Km where |Ci| =b; <bfori=1,2,...,M.




In general it is only known that

Q(bn?/Inn) < a(n,b) < O(bn?).
Lefmann, Rodl, Wysocka (1996).
Simple proof of upper bound: Let m = 10bn? and let

C.,Cy,...,Cpy be the colour classes of an edge colouring of
Km where |Ci| =b; <bfori=1,2,...,M.

Let p = 2n/m and choose a random subset of S by putting
each vertex of K,y into S with probability p. Let 4; be the event
that S contains two edges of colour i.




M
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Here we have used >_M, b? <b > M., b < m?b/2.
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Pr (ﬂfﬂ S| = n) > (1—0(1))e~2n°/m _g=n/4 5 .
i=1



Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine
the existence of a rainbow copy of anything.
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Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine
the existence of a rainbow copy of anything.

One significant exception is that of checking for a rainbow
spanning tree — Matroid Intersection Problem

NP-hard to determine whether or not there is a rainbow rooted
arborescence in an edge coloured digraph — bad news for the
Greedoid Intersection Problem.




Hamilton Cycles




Hamilton Cycles

Complete Graph: Albert, Frieze, Reed (1995) (Correction by
Rue)

Every n/64-bounded edge colouring of K,, contains a rainbow
Hamilton cycle.

Proof: Choose a random Hamilton cycle and apply the
(lop-sided local lemma).




Theorem

Cooper, Frieze (1995)
Ifm =n(logn + (2k — 1)loglogn + cy)/2 and A = e¢, then

0 . Ch — —00
lim Pr(Gnm € ARy) = Kpe A ¢one (D)
n—oo ’
1 Ch — O
= lim Pr(Gnm € By),
n—oo

ARy = {G : any k-bounded colouring of G
contains a rainbow Hamilton cycle

Bk = {G : G has at most k — 1 vertices of degree less than 2k}.
Proof: Throw away edges where a colour is used more than
once and show that the remaining graph is Hamiltonian.



Random Graphs: Bohman,Frieze,Pikurhko,Smyth (2006)

We try to estimate

for various b, H.




Simplest non-trivial case

Letp = 3%. Then
0 Ch — 0
lim Pr(AR(Gnp,K3,2)) = {1-e /2% ¢, ¢
n—oo
1 Ch — 0

= lim Pr(Gpp contains no Ky).

n—oo




Assume that ¢, = ¢ and condition on there being no copy of K4.
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Assume that ¢, = ¢ and condition on there being no copy of K4.

Let 'y be the graph with a vertex for every copy of H = K3 and
an edge joining vertices Hq, H, if the triangles H;, H, share an
edge.

We argue that except for a very few cycles, which can easily be
handled, I'y is a forest.




The next simplest example is

Theorem
Letp = nfﬁ Then,

lim Pr(AR(Gnp,K3,2)) =

n—oo

1-—e €120 ¢c<1//2
1 c>V2

Pr(AR(Gn p, K3, 3))




The case ¢ < 1/\/5 is similar (but more complex) to the
previous case.




The case ¢ < 1/\/5 is similar (but more complex) to the
previous case.

Suppose that ¢ > v/2. Whp G, has (1 + 0o(1))cn®/2/2 edges,
(1 + 0(1))c®n®/2/6 triangles and o(n%/?) copies of Kj.

Suppose that we have a 3-bounded colouring and A; is the set
of colours that are used i times and a; = |A;j| fori = 1,2, 3.
Thus,

ay + 2a, + 3az = (1+0(1))cn®?/2.

Suppose that there are no rainbow triangles. Then each
triangle T contains a pair of edges of the same colour ¢(T).




For colour x let t(x) be the number of triangles T such that
c(T)=x.

Sot(x) =0forx € A, t(x) < 1forx € Ay and t(x) < 2 for
X € Az, unless x is used to colour an edge of a copy of Ky.

These latter colourings are relatively rare and so we have
ay + 2a3 > (14 o(1))c®n®/?/6.
and since
ay + 2a, + 3az = (1 +o(1))en®/2/2
we have
c3
4

orc < V2.

<

N O



Now lets consider general H.

We let

ey —1
My =
H Vy — 2
and
mg = max my.
H/CH
VH/Z?)

Theorem

Suppose that H is connected and not a tree and that b is
sufficiently large. Then there exist c; = ¢;(b,H) and
¢ = Co(b, H) such that if p = cn~'/™ then

0 c<

lim Pr(AR(Gnp,H,b)) = .
N—o00 (AR(Gnp ) {1 c>c




Assuming that my = my,, when p = cn~/™ the expected
number of copies of H sitting on a fixed edge of G, is
O(cer1),




Assuming that my = my,, when p = cn~/™ the expected
number of copies of H sitting on a fixed edge of G, is
O(cer1),

Small ¢
Thinking in terms of branching processes and the size of the
components of Iy, if ¢ is small then these components will be

small (polylog(n)).

It will be possible to order the vertices of a component vy, vy, ...
so that each v; has at most Cy neighbours in vy, vo, ..., Vi_1.

So if b > Cy then we can avoid rainbow copies of H.




Large c
Assume that my = m}, > my. forall H C H.
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Large c
Assume that my = m}, > my. forall H C H.

Xy denotes number of copies of H.
E(Xp) ~ Kpyc®n2=1/mi o0
and whp Xy ~ E(Xy).
Copy H; of H is isolated if it does not share more than one

edge with any other copy of H.
Whp almost all copies of H are isolated.

In a b-bounded colouring, the number of isolated copies of H
that are not rainbow is at most

[E(Gnp)lb < 2bcn? /M <« Xy.



Trees

Whp Gnp, p > n~*/(k=1) contains a copy of every tree with k
vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and
integer b, the value of

s(b, T) = min{k : 3 tree T, with k vertices such that
AR(T1,T,b) = 1}.




Trees

Whp Gnp, p > n~*/(k=1) contains a copy of every tree with k
vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and
integer b, the value of

s(b, T) = min{k : 3 tree T, with k vertices such that
AR(T1,T,b) = 1}.

For example if T = P, a path of length | then

1+ (b+1)Y b =2k

S(b,P|): K i _ .
242X .b | =2k +1



s(3,Ps) = 26

B, Bs

Break edges into 9 bundles, 8 of size 3 and one of size 1.

Hall’s Theorem shows that for any 3-bounded colouring, there
is a set of distinct (colour) representatives for the bundles.

Using this one gets a rainbow Ps.



