
Chapter 1

Sampling and Counting

1.1 Introduction

The classical Monte Carlo method is an approach to estimating quantities that are hard
to compute exactly. The quantity z of interest is expressed as the expectation z = E(Z)
of a random variable (r.v.) Z over a probability space Ω, µ. It is assumed that some
efficient procedure for sampling from Ω, µ is available. By taking the mean of some
sufficiently large set of independent samples of Z, one may obtain an approximation
to z. For example, suppose

S =
{

(x, y) ∈ [0, 1]2 : pi(x, y) ≤ 0, for all i
}

is some region of the unit square defined by a system of polynomial inequalities pi(x, y) ≤
0. Let Z be the r.v. defined by the following experiment or trial: choose a point (x, y)
uniformly at random (u.a.r.) from [0, 1]2; let Z = 1 if pi(x, y) ≤ 0 for all i, and Z = 0
otherwise. Then the area a of S is equal to E(Z), and an estimate of a may be obtained
from the sample mean of a sufficiently long sequence of trials. In this example, the use
of the Monte Carlo method is perhaps avoidable, at the expense of a more complex
algorithm; for more essential uses, see, for example, Knuth’s proposal for estimating
the size of a tree by taking a random path from the root to a leaf, or Rasmussen’s for
estimating the permanent of a 0,1-matrix.

The main focus of this book is the Markov chain Monte Carlo (MCMC) method which is
a development of the foregoing approach, which is sometimes applicable when Z cannot
be sampled “directly”. Z will often be the cardinality of some combinatorially defined set
S. We design a Markov Chain M with state space Ω (often S itself) whose steady state
distribution is µ. Efficient sampling now rests on the rapid convergence of the chain
to its steady state. These ideas will be made more explicit in Chapter 2 but for the
moment we focus on the relationship between near uniform generation and approximate
counting.
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2 CHAPTER 1. SAMPLING AND COUNTING

As a first example of the approach, we consider the problem of estimating the number
of independent sets of a graph G with small maximum degree ∆. In Section 1.2 we show
how sampling independent sets of G, generated independently and almost uniformly, can
be used to obtain an estimate for their number . This step of the MCMC programme—
how samples are used—is often (though not always) rather routine.

We then consider the reverse process i.e. we show how good estimates of the number of
independent sets can be used to generate a near uniform sample. This illustrates a sort
of equivalence between the problems of generation and counting. Section 1.4 discusses
a formal framework within which this can be made precise.

1.2 Approximate counting, uniform sampling and

their relationship

1.2.1 An example – Independent Sets

What do we mean precisely by (efficient) approximate counting and uniform sampling?

let N = N(G) denote the number of independent sets of G. A randomised approximation
scheme for N is a randomised algorithm that takes as input a graph G and an error
bound ε > 0, and produces as output a number Y (a random variable) such that

Pr
(
(1− ε)N ≤ Y ≤ (1 + ε)N

)
≥ 3

4
. (1.1)

A randomised approximation scheme is said to be fully polynomial if it runs in time
polynomial in n (the input length) and ε−1. We shall abbreviate the rather unwieldy
phrase “fully polynomial randomised approximation scheme” to FPRAS.

There is no significance in the constant 3
4

appearing in the definition, beyond its lying
strictly between 1

2
and 1. Any success probability greater than 1

2
may be boosted to 1−δ

for any desired δ > 0 by performing a small number of trials and taking the median
of the results; the number of trials required is O(ln δ−1). Indeed let Y1, Y2, . . . , Ym be
independent samples satisfying (1.1). Suppose that Ỹ is the median of Y1, Y2, . . . , Ym.
Then

Pr(Ỹ ≥ (1 + ε)N) ≤ Pr(|{i : Yi ≥ (1 + ε)N}| ≥ m/2) ≤ e−m/12

using the Chernoff bounds. Similarly

Pr(Ỹ ≥ (1− ε)N) ≤ e−m/8.

Putting m = ⌈12 ln(2/δ)⌉ we get

Pr
(
(1− ε)N ≤ Ỹ ≤ (1 + ε)N

)
≥ 1− δ. (1.2)
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For any two probability distributions π and π′ on a countable set Ω , define the total
variation distance between π and π′ to be

Dtv(π, π′) := max
A⊆Ω

|π(A)− π′(A)| = 1

2

∑

x∈Ω

|π(x)− π′(x)|. (1.3)

In our example Ω = Ω(G) will be the set of independent sets of graph G and π(I) = 1
|Ω|

for each I ∈ Ω i.e. π is the uniform distribution over Ω. We will let π′ be the distribution
of the output of some randomised algorithm that generates a random independent subset
of G.

A good sampler for Ω is a randomised algorithm that takes as input a graph G and a
tolerance δ > 0, and produces an independent set I (a random variable) such that the
probability distribution of I is within variation distance δ of the uniform distribution on
Ω. An almost uniform sampler is said to be fully polynomial if it runs in time polynomial
in n (the input length) and log δ−1.

From good sampling to approximate counting

Theorem 1.2.1 Suppose we have a good sampler for the independent sets of a graph,
which works for graphs G with maximum degree bounded by ∆ and suppose that the
sampler has time complexity T (n, δ), where n is the number of vertices in G, and δ the
allowed deviation from uniformity in the sampling distribution. Then we may construct
an FPRAS for the number of independent sets of a graph, which works for graphs G
with maximum degree bounded by ∆, and which has time complexity

O

(
m2

ε2
T
(
n,

ε

6m

))
,

where m is the number of edges in G, and ε the specified error bound.

Proof Let G = Gm > Gm−1 > · · · > G1 > G0 = (V, ∅) be any sequence of graphs
in which each graph Gi−1 is obtained from the previous graph Gi by removing a single
edge. We may express the quantity we wish to estimate as a product of ratios:

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)|

× |Ω(Gm−1)|
|Ω(Gm−2)|

× · · · × |Ω(G1)|
|Ω(G0)|

× |Ω(G0)|, (1.4)

where, it will be observed, |Ω(G0)| = 2n. Our strategy is to estimate the ratio

̺i =
|Ω(Gi)|
|Ω(Gi−1)|

for each i in the range 1 ≤ i ≤ m, and by substituting these quantities into identity (1.4),
obtain an estimate for the number of independent sets of G:

|Ω(G)| = 2n̺1 . . . ̺m. (1.5)
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To estimate the ratio ̺i we use the almost uniform sampler to obtain a sufficiently large
sample of independent sets from Ω(Gi−1) and compute the proportion of samples that
lie in Ω(Gi).

The following lemma gives the basic probabilistic inequality we need.

Lemma 1.2.1 For i = 1, 2, . . . ,m let 0 ≤ Zi ≤ 1 be independent random variables on
the probability space (Ωi, πi) where E(Zi) = µi and µmin = mini µi > 0.

For i = 1, 2, . . . ,m let Ẑi denote the same random variable on the probability space
(Ωi, π̂i) where

dTV (πi, π̂i) ≤ δ =
ε

3m
µmin.

For i = 1, 2, . . . ,m let µ̂i = E(Ẑi) and let Ẑ
(1)
i , . . . , Ẑ

(s)
i be a sequence of

s = ⌈17mµ−2
minε

−2⌉

independent copies of the random variable Ẑi and let Z̄i = s−1
∑s

j=1 Ẑ
(j)
i be their mean.

Let

W =
Z̄1Z̄2 · · · Z̄m

µ1µ2 · · ·µm
.

Then, for ǫ sufficiently small,

Pr(|W − 1| ≥ ε) ≤ 1

4
.

Proof Note first that for i = 1, 2, . . . ,m,

|µ̂i − µi| ≤ δ and Var(Ẑi) ≤ 1. (1.6)

Let

W̄ =
Z̄1Z̄2 · · · Z̄m

µ̂1µ̂2 · · · µ̂m

.

Now E(W̄ ) = 1 and (1.6) implies

(
1− δ

µmin

)m

≤ W

W̄
≤
(

1 +
δ

µmin

)m

.

So, ∣∣∣∣
W

W̄
− 1

∣∣∣∣ ≤
2ǫ

5
. (1.7)



1.2. APPROXIMATE COUNTING, UNIFORM SAMPLING AND THEIR RELATIONSHIP5

Furthermore

Var(W̄ ) = E

(
m∏

i=1

Z̄2
i

µ̂2
i

)
− 1 (1.8)

=
m∏

i=1

(
1 +

Var(Z̄i)

µ̂2
i

)
− 1

=
m∏

i=1

(
1 +

Var(Ẑi)

sµ̂2
i

)
− 1

≤
m∏

i=1

(
1 +

1

sµ̂2
i

)
− 1

≤
(

1 +
ǫ2

17m

)m

− 1

≤ ǫ2

16
. (1.9)

Thus by (1.7) and (1.9),

Pr(|W − 1| ≥ ǫ) ≤ Pr(|W̄ − 1| ≥ ǫ
2
) ≤ 4

ǫ2
Var(W̄ ) ≤ 1

4
.

2

Suppose that the graphs Gi and Gi−1 differ in the edge {u, v}, which is present in Gi but
absent from Gi−1. Clearly, Ω(Gi) ⊆ Ω(Gi−1). Any independent set in Ω(Gi−1) \ Ω(Gi)
contains u and v, and may be perturbed to an independent set in Gi by deleting vertex u.
(To resolve ambiguity, let u be the smaller of the two vertices.) On the other hand, each
independent set in Gi can be obtained in at most one way as the result of such a
perturbation; hence |Ω(Gi−1) \ Ω(Gi)| ≤ |Ω(Gi)| and

1

2
≤ ̺i ≤ 1. (1.10)

To avoid trivialities, assume 0 < ε ≤ 1 and m ≥ 1. Let Zi ∈ {0, 1} denote the random
variable which results from choosing a random independent set from Gi−1 and returning
one if the resulting independent set is also independent in Gi and zero otherwise. Note
that µi = E(Zi) = ̺i for i = 1, 2, . . . ,m. Let Ẑi denote the random variable which results
from running the postulated almost uniform sampler on the graph Gi−1 and returning
one if the resulting independent set is also independent in Gi and zero otherwise. We
take δ = ǫ

6m
(in the sampler) and s = ⌈68mǫ−2⌉. Let Z

(1)
i , . . . , Z

(s)
i be a sequence of s

independent copies of the random variable Ẑi. As our estimator for |Ω(G)|, we use the
random variable Y = 2n Z1Z2 . . . Zm. Applying Lemma 1.2.1 we see immediately that

Pr

(∣∣∣∣
Y

|Ω(G)| − 1

∣∣∣∣ ≥ ǫ

)
≤ 1

4
.
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We use s = O(mǫ−2) samples to estimate each ̺i and the time bound claimed in the
theorem follows. 2

From approximate counting to good sampling

Theorem 1.2.2 Suppose that we have an FPRAS approxcount(G, ǫ, δ) for the num-
ber of independent sets of a graph G = (V,E) with maximum degree ∆ and suppose that
approxcount(G, ǫ, δ) has time complexity T (n, ǫ, δ) where n = |V |, ǫ is the required
maximum relative error and δ is the allowed probability of failure. Then we can construct
a good sampler Ugen(G, δ) for the independent sets of G with maximum degree ∆ which
has expected time complexity

O

(
T

(
n,O

(
1

n

)
, O

(
δ

n

)))
. (1.11)

Proof We will call our sampling procedure Ugen(G, δ): let

δ1 =
δ

2n+ 1
and ǫ1 =

log 2

3n
.

Ugen(G, δ)
begin

N = approxcount(G, ǫ1, δ1)
Repeat until I = Ugenx(G, ǫ1,

1
4N

) 6= ⊥
Output I.

end

The precedure Ugenx has an extra parameter φ which is needed to control the rate of
some rejection sampling. We define Ugenx recursively.

Ugenx(G, ǫ1, φ)
begin

If φ > 1 then output I = ⊥ – failure.

If V = ∅ then I =

{
∅ probability φ
⊥ probability 1− φ

else begin
v = maxV and X is the set of neighbours of v in G.
G1 = G− v −X and G2 = G− v
N1 = approxcount(G1, ǫ1, δ1) and N2 = approxcount(G2, ǫ1, δ1)

Output I =




v + Ugenx

(
G1, ǫ1, φ

N1+N2

N1

)
probability N1

N1+N2

Ugenx

(
G2, ǫ1, φ

N1+N2

N2

)
probability N2

N1+N2
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end
end

For I ∈ Ω let pI denote the probability that Ugenx(G, ǫ1, φ) generates I, conditional
on all calls to approxcount being successful. Then we will see that φ ≤ pI and at
the bottom of the recursion, φ will have become φ/pi and so I will be output with
(conditional) probability pI × φ/pI = φ i.e. the conditional output is uniform.

Lemma 1.2.2 (a) The probability that approxcount gives a bad estimate during the
execution of Ugen is at most (2n+ 1)δ1.

(b If approxcount gives no bad estimates then φ ≤ 1 throughout the execution of
Ugen.

(c) If approxcount gives no bad estimates then the probability Ugen outputs ⊥ is at
most 2/3.

(d) If approxcount gives no bad estimates then the output I is such that for any
independent set I0 of G we have Pr(I = I0) = φ.

(e) Let π̂ be the distribution of the output I of ugen and let π denote the uniform
distribution on Ω. Then Dtv(π, p̂) ≤ δ.

Proof (a) This is clear from the fact that we call approxcount at most 2n + 1
times during the execution of Ugen.

(b) If there is no bad estimate from approxcount then we claim by induction on the
depth of recursion d that whenever we invoke Ugenx on a graph H, say, then we find

the current value of φ, φd ≤ (1+ǫ1)d

4(1−ǫ1)d+1|Ω(H)| . This is trivially true for d = 0 and assuming
say that we recurse on H1 we have in this call

φd+1 ≤
(1 + ǫ1)

d

4(1− ǫ1)d+1|Ω(H)|
N1 +N2

N1
≤ (1 + ǫ1)

d

4(1− ǫ1)d+1|Ω(H)| ×
(1 + ǫ1)|Ω(H)|
(1− ǫ1)|Ω(H1)|

=
(1 + ǫ1)

d+1

4(1− ǫ1)d+2|Ω(H1)|
as required.

Thus throughout the execution of Ugen we have φ ≤ (1+ǫ1)n

4(1−ǫ1)n+1 < enǫ1/2 < 1.

(c) We prove by induction on |V | that Pr(I = ⊥) ≤ 1− φ|Ω(G)|. This is clearly true if
V = ∅. Otherwise

Pr(I = ⊥) ≤
N1

N1 +N2

(1− φN1 +N2

N1

|Ω(G1)|) +
N2

N1 +N2

(1− φN1 +N2

N2

|Ω(G2)|)

= 1− φ|Ω(G)|.
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Thus Pr(I = ⊥) ≤ 2/3 as required.

(d) This is clearly true if V = ∅. If V 6= ∅ and v = maxV ∈ I0 then, by induction

Pr(I = I0) =
N1

N1 +N2

φ
N1 +N2

N1

= φ

and similarly Pr(I = I0) = φ if v /∈ I0.
(e) Let E denote the event that some output of approxcount is bad in the iteration
that produces output. Then for A ⊆ Ω,

π̂(A)− π(A) ≤ Pr(I ∈ A | Ē) + Pr(E)− π(A)

≤ |A||Ω| + δ − |A||Ω|
≤ δ.

2

We have therefore shown that by running Ugenx for constant expected number of times,
we will with probability at least 1− δ output a randomly chosen independent set. The
expected running time of Ugen is clearly as given in (1.11) which is small enough to
make it a good sampler.

Having dealt with a specific example we see how to put the above ideas into a formal
framework. Before doing this we enumerate some basic facts about Markov Chains.

1.3 Markov Chains

Throughout N = {0, 1, 2, . . .}, N+ = N \ {0}, Q+ = {q ∈ Q : q > 0}, and [n] =
{1, 2, . . . , n} for n ∈ N+.

A Markov chain M on the finite state space Ω, with transition matrix P is a sequence
of random variables Xt, t = 0, 1, 2, . . . , which satisfy

Pr(Xt = σ | Xt−1 = ω,Xt−2, . . . , X0) = P (ω, σ) (t = 1, 2, . . .),

We sometimes write P ω
σ . The value of Xt is referred to as the state of M at time t.

Consider the digraph DM = (Ω, A) where A = {(σ, ω) ∈ Ω×Ω : P (σ, ω) > 0}. We will
by and large be concerned with chains that satisfy the following assumptions:

M1 The digraph DM is strongly connected.

M2 gcd{|C| : C is a directed cycle of DM} = 1
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Under these assumptions,M is ergodic and therefore has a unique stationary distribution
π i.e.

lim
t→∞

Pr(Xt = ω | X0 = σ) = π(ω) (1.12)

i.e. the limit does not depend on the starting state X0. Furthermore, π is the unique
left eigen-vector of P with eigenvalue 1 i.e. satisfying

P Tπ = π. (1.13)

Another useful fact is that if τσ denotes the expected number of steps between successive
visits to state σ then

τσ =
1

π(σ)
. (1.14)

In most cases of interest, M is reversible, i.e.

Q(ω, σ) = π(ω)P (ω, σ) = π(σ)P (σ, ω) (∀ω, σ ∈ Ω). (1.15)

The central role of reversible chains in applications rests on the fact that π can be
deduced from (1.15). If µ : Ω −→ R satisfies (1.15), then it determines π up to normal-
ization. Indeed, if (1.15) holds and

∑
ω∈Ω π(ω) = 1 then

∑

ω∈Ω

π(ω)P (ω, σ) =
∑

ω∈Ω

π(σ)P (σ, ω) = π(σ)

which proves that π is a left eigenvector with eigenvalue 1.

In fact, we often design the chain to satisfy (1.15). Without reversibility, there is no
apparent method of determining π, other than to explicitly construct the transition
matrix, an exponential time (and space) computation in our setting.

As a canonical example of a reversible chain we have a random walk on a graph. A
random walk on the undirected graph G = (V,E) is a Markov chain with state space V
associated with a particle that moves from vertex to vertex according to the following
rule: the probability of a transition from vertex i, of degree di, to vertex j is 1

di
if

{i, j} ∈ E, and 0 otherwise. Its stationary distribution is given by

π(v) =
dv

2|E| v ∈ V. (1.16)

To see this note that Q(v, w) = Q(w, v) if v, w are not adjacent and otherwise

Q(v, w) =
1

2|E| = Q(w, v),

verifying the detailed balance equations (1.15).

Note that if G is a regular graph then the steady state is uniform over V .
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If G is bipartite then the walk as described is not ergodic. This is because all cycles are
of even length. This is usually handled by adding dv loops to vertex v for each vertex v.
(Each loop counts as a single exit from v.) The net effect of this is to make the particle
stay put with probability 1

2
at each step. The steady state is unaffected. The chain is

now lazy.

A chain is lazy if P (ω, ω) ≥ 1
2

for all ω ∈ Ω.

If p0(ω) = Pr(X0 = ω), then pt(σ) =
∑

ω p0(ω)P t(ω, σ) is the distribution at time t. As
a measure of convergence, the natural choice in this context is variation distance.

The mixing time of the chain is then

τ(ε) = max
p0

min
t
{Dtv(pt, π) ≤ ε},

and it is easy to show that the maximum occurs when X0 = ω0, with probability one, for
some state ω0. This is because Dtv(pt, π) is a convex function of p0 and so the maximum
of Dtv(pt, π) occurs at an extreme point of the set of probabilities p0.

We now provide a simple lemma which indicates that variation distance Dtv(pt, π) goes

to zero exponentially. We define several related quantities: p
(i)
t denotes the t-fold distri-I think this should be

moved to the next
chapter

bution, conditional on X0 = i.

di(t) = Dtv(p
(i)
t , π), d(t) = max

i
di(t), d̄(t) = max

i,j
Dtv(p

(i)
t , p

(j)
t ).

Lemma 1.3.1 For all s, t ≥ 0,

(a) d̄(s+ t) ≤ d̄(s)d̄(t).

(b) d(s+ t) ≤ 2d(s)d(t).

(c) d(s) ≤ 2d̄(s).

(d) d(s) ≤ d(t) for s ≤ t.

Proof We will use the characterisation of variation distance as

Dtv(µ1, µ2) = min Pr(X1 6= X2) (1.17)

where the minimum is taken over pairs of random variables X1, X2 such that Xi has
distribution µi, i = 1, 2.

Fix states i1, i2 and times s, t and let Y 1, Y 2 denote the chains started at i1, i2 respec-
tively. By (1.17) we can construct a joint distribution for (Y 1

s , Y
2
s ) such that

Pr(Y 1
s 6= Y 2

s ) = Dtv(p(i1)
s , p(i2)

s ) ≤ d̄(s).
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Now for each pair j1, j2 we can use (1.17) to construct a joint distribution for (Y 1
s+t, Y

2
s+t)

such that
Pr(Y 1

s+t 6= Y 2
s+t | Y 1

s = j1, Y
2
s = j2) = Dtv(p

(j1)
t , p

(j2)
t ).

The RHS is 0 if j1 = j2 and otherwise at most d̄(t). So, unconditionally,

Pr(Y 1
s+t 6= Y 2

s+t) ≤ d̄(s)d̄(t)

and (1.17) establishes part (a) of the lemma.

For part (b), the same argument, with Y 2 now being the stationary chain shows

d(s+ t) ≤ d(s)d̄(t) (1.18)

and so (b) will follow from (c), which follows from the triangular inequality for variation
distance. Finally note that (d) follows from (1.18). 2

We will for the most part use carefully defined Markov chains as our good samplers.
As an example, we now define a simple chain with state space Ω equal to the collection
of independent sets of a graph G. The chain is ergodic and its steady state is uniform
over Ω. So, running the chain for sufficiently long will produce a near uniformly chosen
independent set, see (1.12). Unfortunately, this chain does not have a small enough
mixing time for this to qualify as a good sampler, unless ∆(G) ≤ 4.

We define the chain as follows: suppose Xt = I. Then we choose a vertex v of G
uniformly at random. If v ∈ I then we put Xt+1 = I \ {v}. If v /∈ I and I ∪ {v} is an
indepedent set then we put Xt+1 = I ∪ {v}. Otherwise we let Xt+1 = Xt = I. Thus the
transition matrix can be described as follows: n = |V | and I, J are independent sets of
G.

P (I, J) =

{
1
n
|I∆J | = 1

0 otherwise

Here I∆J denotes the symmetric difference (I \ J) ∪ (J \ I).

The chain satisfies M1 and M2: In DM every vertex can reach and is reachable from ∅,
implying M1 holds. Also, DM contains loops unless G has no edges. In both cases M2
holds trivially.

Note finally that P (I, J) = P (J, I) and so (1.15) holds with π(I) = 1
|Ω| . Thus the chain

is reversible and the steady state is uniform.

1.4 A formal computational framework

The sample spaces we have in mind are sets of combinatorial objects. However, in or-
der to discuss the computational complexity of generation, it is necessary to consider a
sequence of instances of increasing size. We therefore work within the following formal
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framework. The models of computation are the Turing Machine (TM) for deterministic
computations and the Probabilistic Turing Machine (PTM) for randomized computa-
tions. (A PTM is a TM with a source of uniform and independent random bits.) We
must confine ourselves to some class of distributions which are “easily described”, from
a computational viewpoint, in large instances. We identify this below with a class of
unnormalized measures which we call “weight functions”.

Let Σ be a fixed alphabet of at least two symbols, and W : Σ∗ × Σ∗ −→ N be such
that, for some polynomial b, W (σ, ω) = 0 unless |ω| ≤ b(|σ|). Moreover W (σ, ω) must
be computable in time polynomial in |σ| whenever W (σ, ω) > 0. (If the TM for W may
ignore part of its input, this implies that W is always computable in polynomial time.)
Let us call W a weight function. Here σ may be thought of as an encoding of an instance
of some combinatorial problem, and the ω of interest are encodings of the structures we
wish to generate.

Let Ωσ = {ω : W (σ, ω) > 0}. Then the sequence of discrete probability spaces deter-
mined by W is (Ωσ, πσ), where πσ is the density

πσ(ω) = W (σ, ω)/Z(σ), with Z(σ) =
∑

ω′∈Ωσ

W (σ, ω′)

being the corresponding normalising function. It is easy to see that the class of normal-
ising functions so defined is essentially Valiant’s class #P. The definition implies that,
for some fixed c ∈ N, |Ωσ| ≤ Z(σ) ≤ 2|σ|c . If Z(σ) = 0, then Ωσ = ∅ and πσ is the
unique (improper) measure on Ωσ.

In our definition, two distinct weight functions may define the same sequence of spaces.
Therefore let us say weight functions W1,W2 are equivalent if there exists κ : Σ∗ −→ Q+

so that W2(σ, ω) = κ(σ)W1(σ, ω) (∀σ, ω ∈ Σ∗). Then there is a bijection between
sequences of probability spaces (Ωσ, πσ) and equivalence classes of weight functions.

Thus, if we write W̃ for the equivalence class containing W , we may identify it with the
sequence (Ωσ, πσ).

We insist that sample spaces are discrete, and weight functions are integer valued. Com-
putationally, discrete spaces are essential. If we wish to work with continuous spaces,
then approximations must be made to some predetermined number of bits. The same
is true if we are interested in real-valued densities (as in some statistical applications).
However, the effect of such approximations can be absorbed into the variation distance
of the sampling procedure. The reader may still wonder why we require W to have
codomain N rather than Q, which would seem more natural. This is because we use un-
normalised measures, and we wish to avoid the following technical difficulty. In a large
sample space it is possible to specify polynomial size rationals for the unnormalised mea-
sure which result in exponential size rationals for the probabilities. An example is the
set [2n], with the measure assigning probability proportional to 1/i to i ∈ [2n]. In such
spaces there is no possibility of exact sampling in sub-exponential expected time, and
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we must accept approximations. We prefer not to deal with these anomalous spaces, but
to insist that these approximations be made explicit. Thus, in this example we could
use weights ⌊K/i⌋ for some suitably large integer K.

A fully polynomial approximate sampler (which we shorten to good sampler) for (Ωσ, πσ)
is a PTM which, on inputs σ and ε ∈ Q+ (0 < ε ≤ 1), outputs ω ∈ Σ∗, according to
a measure µσ satisfying Dtv(µσ, πσ) ≤ ε, in time bounded by a bivariate polynomial in
|σ| , log ε−1. We allow ω /∈ Ωσ. If Ωσ = ∅, the algorithm does not terminate within its
time bound. However, this can be detected, and we may construct a polynomial time
algorithm which terminates either with a random ω or a proof that Ωσ is empty.

Our real interest here is in combinatorial Markov chains, which we define as follows. Let
M : Σ∗ × Σ∗ × Σ∗ −→ N and define

Rσ = {(ω, ω′) : M(σ, ω, ω′) > 0} , Ωσ = {ω : ∃w′ with (ω, ω′) ∈ Rσ} .

Let M have the following properties.

(a) There is a polynomial b such that |ω| , |ω′| ≤ b(|σ|) if M(σ, ω, ω′) > 0, and M is
computable in time polynomial in |σ| whenever M(σ, ω, ω′) > 0.

(b) There exist constants K(σ) ∈ N+, of polynomial size, such that

∑

ω′∈Σ∗

M(σ, ω, ω′) = K(σ) (∀ω ∈ Ωσ).

(c) The transitive closure of Rσ is Ωσ × Ωσ, and for some ω, (ω, ω) ∈ Rσ.

(d) Writing Mω(σ, ω′) = M(σ, ω, ω′) (ω ∈ Σ∗), it follows from (a) that Mω is a weight

function. We require that there is a good sampler for M̃ω (∀ω).

We call M a density matrix, and associate with it a sequence of Markov chains Mσ =
(Ωσ, Pσ), with transition matrices

Pσ(ω1, ω2) = M(σ, ω1, ω2)/K(σ) (ω1, ω2 ∈ Ωσ).

Properties (a) and (c) ensure that Mσ is finite and ergodic. Property (d) ensures that
we can efficiently simulateMσ to a close approximation for any given number of steps.
Property (b) ensures that polynomial powers of the transition matrix cannot generate
rationals of superpolynomial size, and hence the state probabilities at any polynomial
time cannot be rationals of superpolynomial size. We include this property since we do
not wish to preclude exact generation using Markov chains. In any case, this condition
can always be satisfied to any desired approximation, and is usually satisfied naturally.
There is little loss in restricting K(σ) to be a power of 2. If any such K(σ) exist, it
is easy to show that there is a chain with the same stationary distribution and K a
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power of 2, simply by increasing the “self-loop” probability on all states. Since we are
interested in the stationary distribution, we can use this slightly slower chain. Thus we
may insist on K being a power of 2 where convenient.

Density matricesM1,M2 are equivalent if there exists κ : Σ∗ −→ Q+ such thatM2(σ, ω, ω
′) =

κ(σ)M1(σ, ω, ω
′) for all σ, ω, ω′ ∈ Σ∗. We can identify the equivalence class M̃ with the

sequenceMσ. We say thatMσ is a rapidly mixing Markov chain if its mixing time τσ(ε)
is bounded by a polynomial in |σ| , log ε−1.

If Mσ is a Markov chain sequence, let πσ denote the stationary distribution of Mσ.
Then, if W is a weight function,Mσ is a Monte Carlo Markov chain (MCMC) for W̃ if

both W̃ , Mσ determine the same sequence of probability spaces (Ωσ, πσ). (This slight
overloading of the MCMC abbreviation should not cause confusion.) The usual way to
establish this is by reversibility, i.e. if W (σ, ω)M(σ, ω, ω′) = W (σ, ω′)M(σ, ω′, ω) for all

σ ∈ Σ∗ and ω, ω′ ∈ Ωσ. Clearly we have a good sampler for W̃ ifMσ is a rapidly mixing
Markov chain.

One of the main applications of sampling is to approximate integration. In our setting
this means estimating Z(σ) to some specified relative error. In the important case where
W is a characteristic function, we call the approximate integration problem approximate
counting. Specifically, a fully polynomial randomized approximation scheme (fpras) for
Z(σ) is a PTM which on input σ, ǫ outputs Ẑ so that

Pr(1/(1 + ǫ) ≤ Ẑ/Z ≤ 1 + ǫ) ≥ 3
4
,

and which runs in time polynomial in |σ| and 1/ǫ.

The success probability can be increased to 1 − δ by taking the median of O(log δ)
samples, see (1.2).

Let size : Σ∗ −→ N be such that size(σ) is polynomially bounded in |σ|, and if size(σ′) <
size(σ) then |σ′| is polynomially bounded in |σ|. If size(σ) = 0, we call the problem a
base problem. For the class of base problems, we assume the existence of a good sampler
and a fpras for Z(σ).

For all σ, let Ξ(σ) be a polynomial time computable set such that

(a) size(ξ) < size(σ) (∀ξ ∈ Ξ).

(b) There exist polynomial time computable constants kξ(σ) ∈ Q+ and injections
φξ(σ) : Ωξ −→ Ωσ (∀ξ ∈ Ξ), such that

kξW (ξ, ω) ≤W (σ, φξ(ω)) (∀ω ∈ Ωξ).

Both φξ(ω) and φξ
−1(ω) must be computable in polynomial time, given ω ∈ Ωξ

and ω ∈ Ωσ, respectively.
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(c) For some ζ ∈ Ξ, Z(σ)/ (kζ(σ)Z(ζ)) is polynomially bounded in |σ|.

If W̃ satisfies these conditions, we call the problem self-contractible. Summing over ω ∈
Ωξ and using the injectivity of φξ shows that (b) implies kξZ(ξ) ≤ Z(σ) ∀ξ ∈ Ξ. Now,

suppose we have a good sampler for W̃ . Then we may estimate kξZ(ξ)/Z(σ) by rejection
sampling. We sample ω fromW (σ, ·), and accept with probability kξW (ξ, φ−1(ω))/W (σ, ω)
if φ−1(ω) 6= ∅. The overall acceptance probability is

∑

w∈φ(Ωξ)

kξW (ξ, φ−1(ω))

W (σ, ω)

W (σ, ω)

Z(σ)
=
kξZ(ξ)

Z(σ)
.

Moreover, from (c) there is some ζ ∈ Ξ such that we can estimate this ratio to sufficient
relative accuracy in polynomial time. Since size(ζ) < size(σ), we may repeat this process
with ζ replacing σ. Then, letting σ0 = σ, σ1 = ζ, . . . , we may iterate until size(σr) = 0.
Now |σi| is polynomially bounded in |σ| for all i = 0, 1, . . . , r. For σr we can approximate
Z(σr) in polynomial time. Then we may multiply estimates together to approximate

Z(σr)
r∏

i=1

Z(σi−1)

kσi
(σi−1)Z(σi)

=
Z(σ)∏r

i=1 kσi
(σi−1)

to the required relative error, and hence Z(σ). A converse result may be obtained under
rather stronger conditions. Suppose that the base problems are such that Z(σ) may be
determined exactly and Ω(σ) can be sampled perfectly. Suppose that (b) and (c) are
strengthened to

(b)′ There exist polynomial time computable constants kξ(σ) ∈ Q+ and injections
φξ(σ) : Ωξ −→ Ωσ (∀ξ ∈ Ξ), such that

kξW (ξ, ω) = W (σ, φξ(ω)) (∀ω ∈ Ωξ).

Both φξ(ω) (ω ∈ Ωξ) and φξ
−1(ω) (ω ∈ Ωσ) must be computable in polynomial

time.

(c)′ The sets φξ(Ωξ) form a partition of Ωσ.

Let us call such a problem self-partitionable. Clearly (b)′ implies (b). Also, from (b)′

and (c)′, since

∑

ξ∈Ξ

kξZ(ξ) =
∑

ξ∈Ξ

∑

ω∈Ωξ

kξW (ξ, ω) =
∑

ξ∈Ξ

∑

ω∈Ωξ

W (σ, φξ(ω))

=
∑

ω∈Ωσ

W (σ, ω) = Z(σ), (1.19)
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and the polynomial size of Ξ now implies (c). We sketch the generation procedure,
skipping details. Suppose we can estimate Z(σ) by Ẑ(σ) within relative error ǫ to high
enough probability. We branch to ξ ∈ Ξ with probability kξẐ(ξ)/(1 + ǫ)Ẑ(σ). If the
total of these probabilities over Ξ(σ) is more than 1 we “fail”, i.e. we abandon this whole
sampling “trial”. If the total is less than 1, as we would expect, then we fail with the
(small) unassigned probability. Otherwise we repeat, getting σ = σ0, σ1, . . . , σr until we
reach a base case, and then we generate ω′ from W (σr, .). Then ω is determined from
ωi−1 = φσi

(ωi) (i = 1, . . . , r), with ω0 = ω, ωr = ω′. Then under the assumption that
our approximations Ẑ(σi) are always within bounds, the probability that ω is generated
is

kσ1Ẑ(σ1)

(1 + ǫ)Ẑ(σ0)

kσ2Ẑ(σ2)

(1 + ǫ)Ẑ(σ1)
· · · kσrZ(σr)

(1 + ǫ)Ẑ(σr−1)

W (σr, ωr)

Z(σr)
=

W (σ, ω)

(1 + ǫ)rẐ(σ)
,

after an easy induction. This is equivalent to the desired weight function. Provided
that ǫ is sufficiently small, the failure probability and the variation distance can be kept
small on a single trial. Then we may output an arbitrary ω if we fail after some large
enough number of trials. Hence the overall variation distance is small. The running
time of the algorithm will depend polyonomially on the logarithm of the error ǫ, since
it is linked to the failure probability of the approximation algorithm. It follows that for
self-partitionable problems, approximate integration and good sampling are equivalent.
It is easy to see that self-reducible problems are self-partitionable, but the converse is
not necessarily true. An example is the volume approximation problem.

We can show that approximate integration implies good sampling under rather weaker
conditions than self-partitionability. We do not develop this here, however, since we
have no example of a problem satisfying these conditions which is not self-partitionable.
In any case, the usual direction in applications is to go from sampling to integration.



Chapter 2

Bounding the Mixing Time

2.1 Spectral Gap

Let P be the transition matrix of an ergodic, reversible Markov chain on state space
Ω, Let π be its stationary distribution. Let N = |Ω| and assume w.l.o.g. that Ω =
{0, 1, . . . , N − 1}. Let the eigenvalues of P be 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1. They
are all real valued. Let λmax = max{|λi| : i > 0}. The fact that λmax < 1 is a classical
result of the theory of non-negative matrices. The spectral gap 1− λmax determines the
mixing rate of the chain in an essential way. The larger it is, the more rapidly does the
chain mix. For U ⊆ Ω let

∆U(t) = max
i,j∈U

{ |P t(i, j)− π(j)|
π(j)

}
.

Theorem 2.1.1 For all U ⊆ Ω and t ≥ 0,

∆U ≤
λt

max

min
i∈U

π(i)
.

Proof Let D1/2 be the diagonal Ω×Ω matrix with diagonal entries
√
π(ω), ω ∈ Ω

and let D−1/2 be its inverse. Then the reversibility of of the chain (1.15) implies that
the matrix S = D1/2PD−1/2 is symmetric. It has the same eigenvalues as P and its
symmetry means that these are all real. We can select an orthonormal basis of column
vectors e(i), i ∈ Ω for RΩ consisting of left eigenvectors of S where e(i) has associated
eigenvalue λi and e(0) = πTD−1/2. S has the spectral decomposition

S =
N−1∑

i=0

λie
(i)e(i)T

=
N−1∑

i=0

λiE
(i),

17
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where E(i) = e(i)e(i)T
. Note that E(i)E(j) = 0 for i 6= j and E(i)2 = E(i). It follows that

for any t = 0, 1, 2, . . . , St =
∑N−1

i=0 λt
iE

(i). Hence

P t = D−1/2StD1/2 =
N−1∑

i=0

λt
i(D

−1/2e(i)))(e(i)T

D1/2)

= 1Nπ
T +

N−1∑

i=1

λt
i(D

−1/2e(i)))(e(i)T

D1/2),

where 1N is the N -vector all of whose components are 1. In component form, we get
with the help of the Cauchy-Schwartz inequality:

|P t(j, k)− πk| =
∣∣∣∣∣

√
πk

πj

N−1∑

i=1

λt
ie

(i)
j e

(i)
k

∣∣∣∣∣

≤
√
πk

πj

λt
max

(
N−1∑

i=0

e
(i)
j

2

)1/2(N−1∑

i=0

e
(i)
k

2

)1/2

=

√
πk

πj

λt
max. (2.1)

The theorem follows by substitution of the above inequality in the definition of ∆U . 2

In terms of mixing time we have

Corollary 2.1.1

τ(ε) ≤
⌈

log επmin

log λmax

⌉
.

Proof For A ⊆ Ω we have

pt(A)− π(A) ≤ λt
max

πmin

π(A) ≤ λt
max

πmin

.

2

As an example we consider random walk Wn on the unit hypercube. Here the graph
is the n-cube Qn = (Xn = {0, 1}n, En) where x, y ∈ Xn are adjacent in Qn if their
Hamming distance is one i.e. if |{i ∈ [n] : xi 6= yi}| = 1. We add n self loops to each
vertex to make the chain lazy.

If G is a d-regular graph without loops and AG is its adjacency matrix then the proba-
bility transition matrix PG of a random walk on G satisfies PG = d−1AG.

For graphs Gi = (Vi, Ei), i = 1, 2 we can define their product G = G1 × G2 = (V,E)
where V = V1 × V2 and E = {((v1, v2), (w1, w2)) : v1 = w1 and (v2, w2) ∈ E2 or v2 =
w2 and (v1, w1) ∈ E1}. Then

Qn = K2 ×K2 × · · · ×K2 (n fold product). (2.2)
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Theorem 2.1.2 If µi, i = 1, 2, . . . ,m and νi, i = 1, 2, . . . , n are the eigenvalues of ma-
trices AG1 , AG2 respectively, then the eigenvalues of AG are {µi + νj : 1 ≤ i ≤ m, 1 ≤
j ≤ n}.

Proof AG can be obtained from AG1 by replacing each 1 by the |V2| identity matrix
I2, the off-diagonal 0’s by the |V2| × |V2| matrix of 0’s and replacing each diagonal entry
by AG2 . So if pG(λ) = det(λI − AG) then

pG(λ) = det pG1(λI2 − AG2).

This follows from the following: Suppose the mn × mn matrix A is decomposed into
an m × m matrix of n × n blocks Ai,j . Suppose also that the Ai,j commute among
themselves. Then

detA = det

(
∑

σ

(−1)sign(σ)

m∏

i=1

Ai,σ(i)

)
,

i.e. one can produce an m×m matrix by a “determinant” calculation and then take its
determinant. Needs a proof

So

pG(λ) = det
n∏

i=1

(λI2 − AG2 − µiI2) =
n∏

i=1

pG2(λ− µi) =
n∏

i=1

n∏

j=1

(λ− µi − νj).

2

The eigenvalues of K2 are {1,−1} and applying (2.2) we see that the eigenvalues of Qn

are {0,±1,±2, . . . ,±n} (ignoring multiplicities). To get the eigenvalues for our random
walk we (i) divide by n and then (ii) replace each eigenvalue λ by 1+λ

2
to account for

adding loops. Thus the second eigenvalue of the walk is 1− 1
2n

.

Applying Corollary 2.1.1 we obtain τ(ε) ≤ log(ε−1) + O(n2). This is a poor estimate,
due to our use of the Cauchy-Schwartz inequality in the proof of Theorem 2.1.1. We get
an easier and better estimate by using coupling.

2.1.1 Decomposition Theorem

2.2 Conductance

The conductance Φ of M is defined by

Φ = min{ΦS : S ⊆ Ω, 0 < π(S) ≤ 1/2}
where if Q(ω, σ) = π(ω)P (ω, σ) and S̄ = Ω \ S,

ΦS = π(S)−1Q(S, S̄).
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Thus ΦS is the steady state probability of moving from S to S̄ in one step of the chain,
conditional on being in S.

Clearly Φ ≤ 1
2

if M is lazy.

Note that

ΦSπ(S) = Q(S, S̄) = Q(S̄, S) = ΦS̄π(S̄). (2.3)

Indeed,

Q(S, S̄) = Q(Ω, S̄)−Q(S̄, S̄) = π(S̄)−Q(S̄, S̄) = Q(S̄, S).

Let πmin = min {π(ω) : ω ∈ Ω} > 0 and πmax = max {π(ω) : ω ∈ Ω}.

2.2.1 Reversible Chains

In this section we show how conductance gives us an estimate of the spectral gap of a
reversible chain.

Lemma 2.2.1 If M is lazy and ergodic then all eigenvalues are positive.

Proof Q = 2P−I ≥ 0 is stochastic and has eigenvalues µi = 2λi−1, i = 0, 1, . . . N−
1. The result follows from µi > −1, i = 0, 1, . . . N − 1. 2

For y ∈ RN let

E(y, y) =
∑

i<j

πiPi,j(yi − yj)
2.

Lemma 2.2.2 If M is reversible then

1− λ1 = min
πT y=0

E(y, y)∑
i πiy2

i

.

Proof Let D,S, e(0) be as in Section 2.1. Then by the Rayleigh principle,

λ1 = max
πT D−1/2x=0

xTD1/2PD−1/2x

xTx
.

Thus

1− λ1 = min
πT D−1/2x=0

xTD1/2(I − P )D−1/2x

xTx

= min
πT y=0

yTD(I − P )y

yTDy
. (2.4)
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Now

yTD(I − P )y = −
∑

i6=j

yiyjπiPi,j +
∑

i

πi(1− Pi,i)y
2
i

= −
∑

i6=j

yiyjπiPi,j +
∑

i6=j

πiPi,j

y2
i + y2

j

2

=
∑

i<j

πiPi,j(yi − yj)
2

= E(y, y),

and the lemma follows from (2.4). 2

Theorem 2.2.1 If M is a reversible chain then

1− λ1 ≥
Φ2

2
.

Proof Assume now that πTy = 0, y1 ≥ y2 ≥ · · · ≥ yN and that

π1 + π2 + · · ·+ πr−1 ≤
1

2
< π1 + π2 + · · ·+ πr.

Let zi = yi − yr for i = 1, 2, . . . , n. Then

z1 ≥ z2 ≥ · · · ≥ zr = 0 ≥ zr+1 ≥ · · · ≥ zN ,

and

E(y, y)∑
i πiy2

i

=
E(z, z)

−y2
r +

∑
i πiz2

i

≥ E(z, z)∑
i πiz2

i

. (2.5)

=

(∑
i<j πiPi,j(zi − zj)

2
)(∑

i<j πiPi,j(|zi|+ |zj|)2
)

(
∑

i πiz2
i )
(∑

i<j πiPi,j(|zi|+ |zj|)2
)

=
A

B
, say.

Now,

A ≥
(
∑

i<j

πiPi,j|zi − zj|(|zi|+ |zj|)
)2

by Cauchy-Schwartz

≥
(
∑

i<j

πiPi,j

j−1∑

k=i

|z2
k+1 − z2

k|
)2

. (2.6)
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We verify (2.6) later. Also,
∑

i<j

πiPi,j(|zi|+ |zj|)2 ≤ 2
∑

i<j

πiPi,j(z
2
i + z2

j ) ≤ 2
∑

i

πiz
2
i .

So,

E(y, y)∑
i πiy2

i

≥ A

B
≥

(∑
i<j πiPi,j

∑j−1
k=i |z2

k+1 − z2
k|
)2

2 (
∑

i πiz2
i )

2
.

Now let Sk = {1, 2, . . . , k} and Ck = {(i, j) : i ≤ k < j}. Then

∑

i<j

πiPi,j

j−1∑

k=i

|z2
k+1 − z2

k| =
N−1∑

k=1

|z2
k+1 − z2

k|
∑

(i,j)∈Ck

πiPi,j

≥ Φ

(
r−1∑

k=1

(z2
k − z2

k+1)π(Sk) +

N−1∑

k=r

(z2
k+1 − z2

k)(1− π(Sk))

)

= Φ

(
N−1∑

k=1

(z2
k − z2

k+1)π(Sk) + (z2
N − z2

r )

)

= Φ

(
N∑

k=1

πkz
2
k

)

since zr = 0.

Thus if πTy = 0 then
E(y, y)∑

i πiy2
i

≥ Φ2

2

and Theorem 2.2.1 follows.

Proof of (2.6)

We show that if i < j then

|zi − zj|(|zi|+ zj|) ≥
j−1∑

k=i

|z2
k+1 − z2

k|. (2.7)

If r 6∈ {i, i+1, . . . , j} i.e. if zi, zj have the same sign then LHS(2.7)=RHS(2.7)=|z2
i −z2

j |.
Otherwise LHS(2.7)=(|zi|+ |zj|)2 and RHS(2.7)=z2

i + z2
j . 2

In terms of mixing time we obtain from Corollary 2.1.1,

Corollary 2.2.1 If M is a lazy ergodic chain then

τ(ε) ≤
⌈

2| log επmin|
Φ2

⌉
.
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Proof Lemma 2.2.1 implies that λ1 = λmax and then

1

log λ−1
max

≤ 1

log(1− Φ2/2)−1
≤ 2

Φ2
.

2

Now consider the conductance of a random walk on a graph G = (V,E). For S, T ⊆ V
let E(S, T ) = {(v, w) ∈ E : v ∈ S,w ∈ T} and e(S, T ) = |E(S, T ). Then, by definition,

ΦS =

∑

(v,w)∈E(S,S̄)

dv

2|E|
1

dv

∑

v∈S

dv

2|E|

=
e(S, S̄)∑

v∈S

dv

.

In particular when G is an r-regular graph

Φ = r−1 min
|S|≤1

2
|V |

e(S, S̄)

|S| . (2.8)

The minimand above is referred to as the expansion of G. This graphs with good
expansion (expander graphs) have large conductance and random walks on them mix
rapidly.

As an example consider the n-cube Qn. For S ⊆ Xn let in(S) denote the number of
edges of Qn which are wholly contained in S.

Lemma 2.2.3 If ∅ 6= S ⊆ Xn then in(S) ≤ 1
2
|S| log2 |S|.

Proof We prove this by induction on n. It is trivial for n = 1. For n > 1 let
Si = {x ∈ S : xn = i} for i = 1, 2. Then

in(S) ≤ in(S0) + in(S1) + min{|S0|, |S1|}

since the term min{|S0|, |S1|} bounds the number of edges which are contained in S and
join S0, S1. The lemma follows from the inequality

x log2 x+ y log2 y + 2y ≤ (x+ y) log2(x+ y)

for all x ≥ y ≥ 0. The proof is left as a simple exercise in calculus. 2

By summing the degrees at each vertex of S we see that

e(S, S̄) + 2in(S) = n|S|.

By the above lemma we have

e(S, S̄) ≥ n|S| − 1
2
|S| log2 |S| ≥ |S|
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assuming |S| ≤ 2n−1. It follows from (2.8) that Φ ≥ 1
n
. Adding the self-loops to delay the

walk will halve the conductance – the denominator
∑

v∈S dv doubles without changing
the numerator in the definition of ΦS. This gives us the estimate of 1

8n2 for the spectral
gap, which is off by a factor of n – see Section 2.1.

We finish this section by proving a sort of converse to Theorem 2.2.1.

Theorem 2.2.2 If M is a reversible chain then

1− λ1 ≤ 2Φ

Proof We use Lemma 2.2.2. Let S be a set of states which minimises ΦS and define
y by yj = 1

π(S)
if j ∈ S and yj = − 1

π(S̄)
if j ∈ S̄. It is easy to check that πTy = 0. Then

E(y, y) =

(
1

π(S)
+

1

π(S̄)

)2

Q(S, S̄) and
∑

πiy
2
i =

1

π(S)
+

1

π(S̄)
.

Thus

1− λmax ≤ ΦSπ(S)

(
1

π(S)
+

1

π(S̄)

)
≤ 2ΦS = 2Φ.

2

2.2.2 General Chains

Theorem 2.2.3 Suppose that M is lazy and

πmax ≤
Φ2

20
.

Then

|pt(ω)− π(ω)| ≤ π
−1/2
min

(
1− 1

2
Φ2
)t
.

Proof For 0 ≤ x ≤ 1 let

ht(x) = max

{
∑

ω∈Ω

(pt(ω)− π(ω))ξ(ω) : ξ ∈ [0, 1]Ω,
∑

ω∈Ω

ξ(ω)π(ω) = x

}
.

By putting ξ = 1ω∈S in the above definition we see that

pt(S)− π(S) ≤ ht(π(S))

for all S ⊆ Ω.
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So, in particular pt(ω) − π(ω) ≤ ht(π(ω)) (x = π(ω)) and π(ω) − pt(ω) ≤ ht(1− π(ω))
(x = 1− π(ω)) and so

|pt(ω)− π(ω)| ≤ min {ht(π(ω)), ht(1− π(ω))} . (2.9)

Order the elements Ω = {ω1, ω2, . . . , ωN} so that

pt(ω1)

π(ω1)
≥ pt(ω2)

π(ω2)
≥ · · · ≥ pt(ωN)

π(ωN )
,

and let θk =
∑k

i=1 π(ωi). Find the index k such that θk−1 ≤ x < θk. Then

ht(x) =
k−1∑

i=1

(pt(ωi)− π(ωi)) +
x− θk−1

π(ωk)
(pt(ωk)− π(ωk)).

This is because putting

ξ(ωi) =





1 i < k
x−θk−1

π(ωk)
i = k

0 i > k

yields an optimal basic feasible solution to the linear program in the definition of ht(x).

It follows that ht(x) is a concave piece-wise linear function on the interval [0, 1] with
breakpoints at 0 = θ0 < θ1 < · · · < θN = 1. Trivially, ht(0) = ht(1) = 0 and 0 ≤ ht(x) ≤
1 for all t and x.

Now let

C = max

{
h0(x)

min
{√

x,
√

1− x
} : 0 < x < 1

}
.

If a, b, c, d ≥ 0 then the function f(ξ) = (a + bξ)/
√
c+ dξ is monotone on [0, 1] and so

the value of x defining C must occur at one of the breakpoints of ht. It follows easily
that

C ≤ max
S⊆Ω

|π0(S)− π(S)|
min

{√
π(S),

√
1− π(S)

}

= max
S⊆Ω

π(S)≤1/2

|π0(S)− π(S)|√
π(S)

(2.10)

≤ 1√
πmin

.

(The second equation comes from considering Ω \ S when π(S) ≥ 1/2.)

We now prove that for t ≥ 1 and x ∈ {θ0, θ1, . . . , θN},

ht(x) ≤ 1
2
(ht−1(x− 2Φ min{x, 1− x}) + ht−1(x+ 2Φ min{x, 1− x})) (2.11)
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Fix k and let ui =
∑

j≤k pi,j where pi,j = P (ωi, ωj). Clearly

1 ≥ ui ≥ pi,i ≥ 1
2

(i ≤ k) and 0 ≤ ui ≤ 1− pi,i ≤ 1
2

(i > k).

Now

π(ωj) =
N∑

i=1

π(ωi)pi,j and
N∑

i=1

pt−1(ωi)pi,j = pt(ωj)

and so if x = θk

ht(x) =

k∑

j=1

(pt(ωj)− π(ωj)) =

k∑

j=1

N∑

i=1

pi,j(pt−1(ωi)− π(ωi))

=
N∑

i=1

(pt−1(ωi)− π(ωi))ui.

(2.12)

Moreover, 0 ≤ ui ≤ 1 and

N∑

i=1

π(ωi)ui =
N∑

i=1

k∑

j=1

π(ωi)pi,j =
k∑

j=1

N∑

i=1

π(ωi)pi,j =
k∑

j=1

π(ωj) = x. (2.13)

Now let

u′i =

{
2ui − 1 i ≤ k
0 i > k

and u′′i =

{
1 i ≤ k
2ui i > k

Then 0 ≤ u′i, u
′′
i ≤ 1 and u′i + u′′i = 2ui. Let x′ =

∑N
i=1 π(ωi)u

′
i and x′′ =

∑N
i=1 π(ωi)u

′′
i .

Then (2.13) implies x′ + x′′ = 2x and so by (2.12)

ht(x) = 1
2

N∑

i=1

(pt−1(ωi)− π(ωi))u
′
i + 1

2

N∑

i=1

(pt−1(ωi)− π(ωi))u
′′
i

≤ 1
2
ht−1(x

′) + 1
2
ht−1(x

′′).

Furthermore,

x− x′ =
N∑

i=1

π(ωi)(ui − u′i) =
k∑

i=1

π(ωi)(1− ui) +
N∑

i=k+1

π(ωi)ui

=
k∑

i=1

π(ωi)

(
1−

k∑

j=1

pi,j

)
+

N∑

i=k+1

π(ωi)
k∑

j=1

pi,j

=
k∑

i=1

N∑

j=k+1

π(ωi)pi,j +
N∑

i=k+1

π(ωi)
k∑

j=1

pi,j

≥ 2Φ min{x, 1− x},
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using (2.3) and the definition of Φ. So, x′ ≤ x − 2Φ min{x, 1 − x} and similarly x′′ ≥
x+ 2Φ min{x, 1− x}. (2.11) now follows from the concavity of ht−1.

Now consider an x, k such that θk−1 < x < θk <
1
2
. Let x = αθk−1 + (1− α)θk. Then

ht(x) = αht(θk−1) + (1− α)ht(θk)

≤ 1
2
(α(ht−1(θk−1(1− 2Φ)) + ht−1(θk−1(1 + 2Φ)))

+ (1− α)(ht−1(θk(1− 2Φ)) + ht−1(θk(1 + 2Φ))))

= 1
2
(α(ht−1(θk−1(1− 2Φ))) + (1− α)(ht−1(θk(1− 2Φ))))

+ 1
2
(α(ht−1(θk−1(1 + 2Φ))) + (1− α)(ht−1(θk(1 + 2Φ))))

≤ 1
2
(ht−1(x(1− 2Φ)) + ht−1(x(1 + 2Φ)))

from the concavity of ht−1. Thus (2.11) holds for such an x. A similar argument shows
that (2.11) holds for an x, k such that 1

2
< θk−1 < x < θk. So let ℓ be such that

θℓ−1 ≤ 1
2
< θℓ and suppose θℓ−1 < x < θℓ. For such x we can only prove

ht(x) ≤ 1
2
(ht−1(x− xγxΦ) + ht−1(x+ xγxΦ)) (2.14)

where γx ≥ 2− 4πmax.

ht(x) = αht(θℓ−1) + (1− α)ht(θℓ)

≤ 1
2
(α(ht−1(θℓ−1(1− 2Φ)) + ht−1(θℓ−1(1 + 2Φ)))

+ (1− α)((ht−1(θℓ − 2Φ(1− θℓ))) + ht−1(θℓ + 2Φ(1− θℓ))))

≤ 1
2
(ht−1(x− 2Φ(x− (1− α)(2θℓ − 1))) + ht−1(x+ 2Φ(x− (1− α)(2θℓ − 1)))

Thus (2.14) holds with

γx = 2− (1− α)(2θℓ − 1)

x

≥ 2− 2θℓ − 1

θℓ−1

≥ 2− 4(θℓ − θℓ−1)

and (2.14) follows.

Combining (2.11) and (2.14) we get that for 0 ≤ x ≤ 1

ht(x) ≤ 1
2
(ht−1(x− γxΦ min{x, 1− x}) + ht−1(x+ γxΦ min{x, 1− x})) (2.15)

We now prove inductively that

ht(x) ≤ C min
{√

x,
√

1− x
}(

1− Φ2

2

)t

. (2.16)
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For t = 0 (2.16) follows trivially from the definition of C. Let t ≥ 1 and suppose for
example 0 ≤ x ≤ 1

2
. Then (2.15) implies

ht(x) ≤ 1
2
C
(
1− 1

2
Φ2
)t−1

(√
x− γxΦx+

√
x+ γxΦx

)

= C
(
1− 1

2
Φ2
)t−1√

x
(√

1− γxΦ +
√

1 + γxΦ
)
/2.

The last factor can be estimated by

1
2
(
√

1− γxΦ +
√

1 + γxΦ) = 1
2

( ∞∑

r=0

(−1)r

(
1
2

r

)
(γxΦ)r +

∞∑

r=0

(
1
2

r

)
(γxΦ)r

)

=
∞∑

r=0

(
1
2

2r

)
(γxΦ)r = 1− 1

8
(γxΦ)2 − 5

128
(γxΦ)4 − ·

≤ 1− 1
2
Φ2.

This completes the induction for x ≤ 1
2
. For x > 1

2
we put x = 1 − y and define

ĥt(y) = ht(1− y). Then (2.15) gives

ĥt(y) ≤ 1
2
(ĥt−1(y − γxΦy) + ĥt−1(y + γxΦy))

from which we obtain

ĥt(y) ≤ C
√
y
(
1− 1

2
Φ2
)t

as before. 2

Suppose now that we define the following “distance” M between measures π̂ and π on
space Ω.

M(π̂, π) = max
∅6=A⊆Ω

|π̂(A)− π(A)|√
π(A)

. (2.17)

Corollary 2.2.1 Let a lazy ergodic Markov chain with steady state π be started with
distribution π0 and let πt denote the distribution after t steps. If πmax ≤ Φ2

20
then

M(πt, π) ≤M(π0, π)
(
1− 1

2
Φ2
)t
.

Proof Fix S ⊆ Ω. It follows from (2.10) and (2.16) that

|πt(S)− π(S)| ≤
√
π(S)M(π0, π)

(
1− Φ2

2

)t

.

2
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2.2.3 Path Congestion

Supose that for each pair (x, y) ∈ Ω×Ω we have a canonical path γxy from x to y in the
digraph DM = (Ω, A) (defined in Section 1.3). Let

ρ̄ = max
e∈A

1

Q(e)

∑

γxy�e

π(x)π(y)|γxy|

where if e = (σ, τ) then Q(e) = π(σ)P (σ, τ) and |γxy| is the number of arcs in γxy.

Theorem 2.2.4 Assume that M is reversible. Then

1− λ1 ≥
1

ρ̄
.

Proof We use Lemma 2.2.2. Assume
∑

i πiyi = 0. Then

2
N∑

i=1

πiy
2
i =

N∑

i=1

N∑

j=1

πiπj(yi − yj)
2

=
N∑

i=1

N∑

j=1

πiπj


∑

e∈γij

(ye+ − ye−)




2

where edge e = (e−, e+)

≤
N∑

i=1

N∑

j=1

πiπj|γij |
∑

e∈γij

(ye+ − ye−)2

by Cauchy-Schwartz

=
∑

e∈A

(ye+ − ye−)2
∑

γxy�e

πxπy|γxy|

≤
∑

e∈A

(ye+ − ye−)2Q(e)ρ̄

= 2ρ̄E(y, y).

2

This theorem often gives stronger bounds on the spectral gap than Theorem 2.2.1. We
apply it now to our example of a random walk Wn on the cube.

Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) be arbitrary members of Xn. The
canonical path γxy from x to y is composed of n edges, 0 to n−1, where edge i is simply

(
(y0, . . . , yi−1, xi, xi+1, . . . xn−1), (y0, . . . , yi−1, yi, xi+1, . . . xn−1)

)
,
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i.e., we change the ith component from xi to yi. Note that some of the edges may be
loops (if xi = yi). To compute ¯̺, fix attention on a particular (oriented) edge

t = (w,w′) =
(
(w0, . . . , wi, . . . wn−1), (w0, . . . , w

′
i, . . . wn−1)

)
,

and consider the number of canonical paths γxy that include t. The number of possible
choices for x is 2i, as the final n− i positions are determined by xj = wj , for j ≥ i; and
by a similar argument the number of possible choices for y is 2n−i−1. Thus the total
number of canonical paths using a particular edge t is 2n−1; furthermore, Q(w,w′) =
π(w)P (w,w′) ≥ 2−n(2n)−1, and the length of every canonical path is exactly n. Plugging
all these bounds into the definition of ρ̄ yields ρ̄ ≤ n2. Thus, by Theorem 2.2.4, the
mixing time of Wn is τ(ε) ≤ n2(n ln q + ln ε−1).

2.2.4 Comparison Theorems

2.2.5 Decomposition Theorem

2.3 Coupling

A coupling C(M) for M is a stochastic process (Xt, Yt) on Ω× Ω such that each of Xt,
Yt is marginally a copy of M,

Pr(Xt = σ1 | Xt−1 = ω1) = P (ω1, σ1),
Pr(Yt = σ2 | Yt−1 = ω2) = P (ω2, σ2),

(∀t > 0). (2.18)

The following simple but powerful inequality then follows easily from these definitions.

Lemma 2.3.1 (Coupling Lemma) Let Xt, Yt be a coupling for M such that Y0 has
the stationary distribution π. Then, if Xt has distribution pt,

Dtv(pt, π) ≤ Pr(Xt 6= Yt). (2.19)

Proof Suppose At ⊆ Ω maximizes in (1.3). Then, since Yt has distribution π,

Dtv(pt, π) = Pr(Xt ∈ At)−Pr(Yt ∈ At)

≤ Pr(Xt ∈ At, Yt /∈ At)

≤ Pr(Xt 6= Yt).

2

It is important to remember that the Markov chain Yt is simply a proof construct, and
Xt the chain we actually observe. We also require that Xt = Yt implies Xt+1 = Yt+1,
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since this makes the right side of (2.19) nonincreasing. Then the earliest epoch T at
which XT = YT is called coalescence, making T a random variable. A successful coupling
is such that limt−→∞ Pr(Xt 6= Yt) = 0. Clearly we are only interested in successful
couplings.

As an example consider our random walk on the cube Qn. We can define a coupling as
follows: Given (Xt, Yt) we

(a) Choose i uniformly at random from [n].

(b) Put Xt+1,j = Xt,j and Yt+1,j = Yt,j for j 6= i.

(c) If Xt,i = Yt,i then

Xt+1,i = Yt+1,i =




Xt,i prob 1

2

1−Xt,i prob 1
2

(d) otherwise

(Xt+1,i, Yt+1,i) =





(Xt,i, 1− Yt,i) prob 1
2

(1−Xt,i, Yt,i) prob 1
2

It should hopefully be clear that this is a coupling i.e. the marginals are correct and
Xt = Yt implies Xt+1 = Yt+1.

Now let It = {j : i is chosen in (a) of steps 1, 2, . . . , t. Then It = [n] implies that
Xτ = Yτ for τ ≥ t. So

Pr(Xt 6= Yt) ≤ Pr(It 6= [n])

= Pr(Īt 6= ∅)
≤ E(|Īt|)
= n

(
1− 1

n

)t
.

So if t = n(log n+ log ǫ−1) we have dTV (pt, π) ≤ ǫ.

A coupling is a Markovian coupling if the process C(M) is a Markov chain on Ω × Ω.
There always exists a maximal coupling, which gives equality in (2.19). This maximal
coupling is in general non-Markovian, and is seemingly not constructible without know-
ing pt (t = 1, 2, . . .). But coupling has little algorithmic value if we already know pt.
More generally, it seems difficult to prove mixing properties of non-Markovian couplings
in our setting. Therefore we restrict attention to Markovian couplings, at the (probable)
cost of sacrificing equality in (2.19).

Let C(M) be a Markovian coupling, with Q its transition matrix, i.e. the probability of
a joint transition from (ω1, ω2) to (σ1, σ2) is Qω1ω2

σ1σ2
. The precise conditions required of
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Q are then

Qω ω
σ1σ2
6= 0 implies σ1 = σ2 (∀ω ∈ Ω), (2.20)

∑

σ2∈Ω

Qω1ω2
σ1σ2

= P ω1
σ1

(∀ω2 ∈ Ω),
∑

σ1∈Ω

Qω1ω2
σ1σ2

= P ω2
σ2

(∀ω1 ∈ Ω). (2.21)

Here (2.20) implies equality after coalescence, and (2.21) implies the marginals are copies
of M. Our goal is to design Q so that Pr(Xt 6= Yt) quickly becomes small. We need
only specify Q to satisfy (2.21) for ω1 6= ω2. The other entries are completely determined
by (2.20) and (2.21).

In general, to prove rapid mixing using coupling, it is usual to map C(M) to a process
on N by defining a function ψ : Ω × Ω −→ N such that ψ(ω1, ω2) = 0 implies ω1 = ω2.
We call this a proximity function. Then Pr(Xt 6= Yt) ≤ E(ψ(Xt, Yt)), by Markov’s
inequality, and we need only show that E(ψ(Xt, Yt)) converges quickly to zero.

2.4 Path coupling

A major difficulty with coupling is that we are obliged to specify it, and show improve-
ment in the proximity function, for every pair of states. The idea of path coupling, where
applicable, can be a major saving in this respect. We describe the approach below.

As a simple example of this approach consider a Markov chain where Ω ⊆ Sm for some
set S and positive integer m. Suppose also that if ω, σ ∈ Ω and h(ω, σ) = d (Hamming
distance) then there exists a sequence ω = x0, x1, . . . , xd = σ of members of Ω such that
(i) {x0, x1, . . . , xd} ⊆ Ω, (ii) h(xi, xi+1) = 1, i = 0, 1, . . . , d− 1 and (iii) P (xi, xi+1) > 0.

Now suppose we define a coupling of the chains (Xt, Yt) only for the case where h(Xt, Yt) =
1. Suppose then that

E(h(Xt+1, Yt+1) | h(Xt, Yt) = 1) ≤ β (2.22)

for some β < 1. Then

E(h(Xt+1, Yt+1)) ≤ βh(Xt, Yt), (2.23)

in all cases. It then follows that

dTV (pt, π) ≤ Pr(Xt 6= Yt) ≤ nβt.

Equation (2.23) is shown by choosing a sequence Xt = Z0, Z1, . . . , Zd = Yt, d = h(Xt, Yt)
Z0, Z1, . . . , Zd satisfy (i),(ii),(iii) above. Then we can couple Zi and Zi+1, 1 ≤ i < d
so that Xt+1 = Z ′

0, Z
′
1, . . . , Z

′
d = Yt+1 and (i) Pr(Z ′

i = σ | Zi = ω) = P (ω, σ) and (ii)
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E(h(Z ′
i, Z

′
i+1)) ≤ β. Therefore

E(h(Xt+1, Yt+1)) ≤
d∑

i=1

E(h(Z ′
i, Z

′
i+1)) ≤ βd

and (2.23) follows.

As an example, let G = (V,E) be a graph with maximum degree ∆ and let k ≥ 2∆ + 1
be an integer. Let Ωk be the set of proper k- vertex colourings of G i.e. {c : V → [k]}
such that (v, w) ∈ E implies c(v) 6= c(w). We describe a chain which provides a good
sampler for the uniform distribution over Ωk. We let Ω = V k be all k-colourings,
including improper ones and describe a chain on Ω for which only proper colourings
have a positive steady state probability.

To describe a general step of the chain asume Xt ∈ Ω. Then

Step 1 Choose w uniformly from V and x uniformly from [k].

Step 2 Let Xt+1(v) = Xt(v) for v ∈ V \ {w}.

Step 3 If no neighbour of w in G has colour x then put Xt+1(w) = x, otherwise put
Xt+1(w) = x.

Note that P (ω, σ) = P (σ, ω) = 1
nk

for two proper colourings which can be obtained from
each other by a single move of the chain. It follows from (1.15) that the steady state is
uniform over Ωk.

We first describe a coupling which is extremely simple but needs k > 3∆ in order for
(2.22) to be satisfied. Let h(Xt, Yt) = 1 and let v0 be the unique vertex of V such that
Xt(v) 6= Yt(v). In our coupling we choose w, x as in Step 1 and try to colour w with x
in both chains.

We claim that

E(h(Xt+1, Yt+1) ≤ 1− 1

n

(
1− ∆

k

)
+

∆

n

2

k
= 1− k − 3∆

kn
. (2.24)

and so we can take β ≤ 1− 1
kn

in (2.23) if k > 3∆.

The term 1
n

(
1− ∆

k

)
in (2.24) lower bounds the probability that w = v0 and that x is

not used in the neighbourhood of v0. In which case we will have Xt+1 = Yt+1. Next
let cX 6= cY be the colours of v0 in Xt, Yt respectively. The term ∆

n
2
k

in (2.24) is an
upper bound for the probability that w is in the neighbourhood of v0 and x ∈ {cX , cY }
and in which case we might have h(Xt+1, Yt+1) = 2. In all other cases we find that
h(Xt+1, Yt+1) = h(Xt, Yt) = 1.
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A better coupling gives the desired result. We proceed as above except for the case
where w is a neighbour of v0 and x ∈ {cX , cY }. In this case with probability 1

2
we try

to colour w with cX in Xt and colour w with cY in Yt, and fail in both cases. With
probability 1

2
we try to colour w with cY in Xt and colour w with cX in Yt, in which case

the hamming distance may increase by one. Thus for this coupling we have

E(h(Xt+1, Yt+1) ≤ 1− 1

n

(
1− ∆

k

)
+

1

2

∆

n

2

k
= 1− k − 2∆

kn

and we can take β ≤ 1− 1
kn

in (2.23) if k > 2∆.

We now give a more general framework for the definition of path coupling. Recall
that a quasi-metric satisfies the conditions for a metric except possibly the symmetry
condition. Any metric is a quasi-metric, but a simple example of a quasi-metric which
is not a metric is directed edge distance in a digraph.

Suppose we have a relation S ⊆ Ω × Ω such that S has transitive closure Ω × Ω, and
suppose that we have a proximity function defined for all pairs in S, i.e. ψ : S −→ N.
Then we may lift ψ to a quasi-metric φ(ω, ω′) on Ω as follows. For each pair (ω, ω′) ∈
Ω× Ω, consider the set P(ω, ω′) of all sequences

ω = ω1, ω2, . . . , ωr−1, ωr = ω′ with (ωi, ωi+1) ∈ S (i = 1, . . . , r − 1). (2.25)

Then we set

φ(ω, ω′) = min
P(ω,ω′)

r−1∑

i=1

ψ(ωi, ωi+1). (2.26)

It is easy to prove that φ is a quasi-metric. We call a sequence minimizing (2.26)
geodesic. We now show that, without any real loss, we may define the (Markovian)
coupling only on pairs in S. Such a coupling is a called a path coupling. We give a
detailed development below. Clearly S = Ω × Ω is always a relation whose transitive
closure is Ω×Ω, but path coupling is only useful when we can define a suitable S which
is “much smaller” than Ω× Ω. A relation of particular interest is Rσ from Section 1.4,
but this is not always the best choice.

As in Section 2.3, we use σ (or σi) to denote a state obtained by performing a single
transition of the chain from the state ω (or ωi). Let P ω

σ denote the probability of
a transition from state ω to state σ in the Markov chain, and let Qωω′

σσ′ denote the
probability of a joint transition from (ω, ω′) to (σ, σ′), where (ω, ω′) ∈ S, as specified by
the path coupling. Since this coupling has the correct marginals, we have

∑

σ′∈Ω

Qωω′

σσ′ = P ω
σ ,

∑

σ∈Ω

Qωω′

σσ′ = P ω′

σ′ (∀(ω, ω′) ∈ S). (2.27)

We extend this to all pairs (ω, ω′) ∈ Ω × Ω, as follows. For each pair, fix a sequence
(ω1, ω2, . . . , ωr) ∈ P(ω, ω′). We do not assume the sequence is geodesic here, or indeed
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the existence of any proximity function, but this is our eventual purpose. The implied
global coupling Q̄ω1ωr

σ1σr
is then defined along this sequence by successively conditioning

on the previous choice. Using (2.27), this can be written explicitly as

Q̄ω1ωr
σ1σr

=
∑

σ2∈Ω

∑

σ3∈Ω

· · ·
∑

σr−1∈Ω

Qω1ω2
σ1σ2

Qω2ω3
σ2σ3

P ω2
σ2

. . .
Qωr−1ωr

σr−1σr

P
ωr−1
σr−1

. (2.28)

Summing (2.28) over σr or σ1, and again applying (2.27), causes the right side to suc-
cessively simplify, giving

∑

σr∈Ω

Q̄ω1ωr
σ1σr

= P ω1
σ1

(∀ωr ∈ Ω),
∑

σ1∈Ω

Q̄ω1ωr
σ1σr

= P ωr
σr

(∀ω1 ∈ Ω). (2.29)

Hence the global coupling satisfies (2.21), as we would anticipate from the properties of
conditional probabilities.

Now suppose the global coupling is determined by geodesic sequences. We bound the
expected value of φ(σ1, σr). This is

E(φ(σ1, σr)) =
∑

σ1

· · ·
∑

σr

φ(σ1, σr)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

≤
∑

σ1

· · ·
∑

σr

r−1∑

i=1

φ(σi, σi+1)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

=
r−1∑

i=1

∑

σ1

· · ·
∑

σr

φ(σi, σi+1)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

=
r−1∑

i=1

∑

σi

∑

σi+1

φ(σi, σi+1)Q
ωiωi+1
σiσi+1

, (2.30)

where we have used the triangle inequality for a quasi-metric and the same observation
as that leading from (2.28) to (2.29).

Suppose we can find β ≤ 1, such that, for all (ω, ω′) ∈ S,

E(φ(σ, σ′)) =
∑

σ

∑

σ′

φ(σ, σ′)Qωω′

σσ′ ≤ β φ(ω, ω′). (2.31)

Then, from (2.30), (2.31) and (2.26) we have

E(φ(σ1, σr)) ≤
r−1∑

i=1

β φ(ωi, ωi+1) = β
r−1∑

i=1

φ(ωi, ωi+1) = β φ(ω1, ωr). (2.32)

Thus we can show (2.31) for every pair, merely by showing that this holds for all pairs
in S. To apply path coupling to a particular problem, we must find a relation S and
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proximity function ψ so that this is possible. In particular we need φ(ω, ω′) for (ω, ω′) ∈
S to be easily deducible from ψ.

Suppose that Ω has diameter D, i.e. φ(ω, ω′) ≤ D for all ω, ω′ ∈ Ω. Then, Pr(Xt 6=
Yt) ≤ βtD and so if β < 1 we have, since log β−1 ≥ 1− β,

Dtv(pt, π) ≤ ε for t ≥ log(Dε−1)/(1− β). (2.33)

This bound is polynomial even when D is exponential in the problem size. It is also
possible to prove a bound when β = 1, provided we know the quasi-metric cannot “get
stuck”. Specifically, we need an α > 0 (inversely polynomial in the problem size) such
that, in the above notation,

Pr(φ(σ, σ′) 6= φ(ω, ω′)) ≥ α (∀ω, ω′ ∈ Ω). (2.34)

Observe that it is not sufficient simply to establish (2.34) for pairs in S. However, the
structure of the path coupling can usually help in proving it. In this case, we can show
that

Dtv(pt, π) ≤ ε for t ≥ ⌈eD2/α⌉⌈ln(ε−1)⌉. (2.35)

This is most easily shown using a martingale argument. Here we needD to be polynomial
in the problem size.

Consider a sequence (ω0, ω
′
0), (ω1, ω

′
1) . . . , (ωt, ω

′
t) and define the random time T ω,ω′

=
min {t : φ(ωt, ω

′
t) = 0}, assuming that ω0 = ω, ω′

0 = ω′. We prove that

E(T ω,ω′

) ≤ D2/α. (2.36)

Let
Z(t) = φ(ωt, ω

′
t)

2 − 2Dφ(ωt, ω
′
t)− αt

and let
δ(t) = φ(ωt+1, ω

′
t+1)− φ(ωt, ω

′
t).

Then

E(Z(t+ 1) | Z(0), Z(1), . . . , Z(t))− Z(t) =

2(φ(ωt, ω
′
t)−D)E(δ(t) | ωt, ω

′
t) + (E(δ(t)2 | ωt, ω

′
t)− α) ≥ 0.

Hence Z(t) is a submartingale. The stopping time T ω,ω′

has finite expectation and
|Z(t + 1) − Z(t)| ≤ D2. We can therefore apply the Optional Stopping Theorem for
submartingales to obtain

E(Z(T ω,ω′

)) ≥ Z(0).

This implies
−αE(T ω,ω′

) ≥ δ(0)2 − 2Dδ(0)

and (2.36) follows.
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So for any ω, ω′

Pr(T ω,ω′ ≥ eD2/α) ≤ e−1

and by considering k consecutive time intervals of length k we obtain

Pr(T ω,ω′ ≥ keD2/α) ≤ e−k

and (2.35) follows.

2.5 Hitting Time Lemmas

For a finite Markov chainM let Pri,Ei denote probability and expectation, given that
X0 = i.

For a set A ⊆ Ω let
TA = min {t ≥ 0 : Xt ∈ A} .

Then for i 6= j the hitting time
Hi,j = Ei(Tj)

is the expected number of steps needed to get from state i to state j.

The commute time
Ci,j = Hi,j +Hj,i.

Lemma 2.5.1 Assume X0 = i and S is a stopping time with XS = i. Let j be an
arbitrary state. Then

Ei(number of visits to state j before time S) = πjEi(S).

Proof Consider the renewal process whose inter-renewal time is distributed as S.
The reward-renewal theorem states that the asymptotic proportion of time spent in state
j is given by

Ei(number of visits to j before time S)/Ei(S).

This also equal to πj, by the ergodic theorem. 2

Lemma 2.5.2
Ej(number of visits to j before Ti) = πjCi,j.

Proof Let S be the time of the first return to i after the first visit to j. Apply
Lemma 2.5.1. 2

The cover time C(M) ofM is maxi Ci(M) where Ci(M) = Ei(maxj Tj) is the expected
time to visit all states starting at i.
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Let MG denote a random walk on the connected graph G = (V,E). Here |V | = n and
|E| = m.

Lemma 2.5.3 For Markov chain MG and e = {u, v} ∈ E, Cu,v ≤ 2m.

Proof The random walk on G induces a Markov chain on A = {(x, y) : {x, y}}
the set of oriented edges obtainable by replacing each edge {x, y} ∈ E by a pair of
oppositely oriented edges. It is can be easily checked that the all 1’s vector satisfies
(1.13) and hence the steady state of the induced walk is uniform. It follows from (1.14)
the expected time between traversals of (v, u) is 1

2m
. So conditional on entering u from

v the expected time to visit v and subsequently visit u is at most 1
2m

. Conditioning on
initially traversing (v, u) is irrelevant to the time to subsequently visit v and then u and
the lemma follows. 2

We can use this to obtain a bound on the cover time of MG.

Lemma 2.5.4
C(MG) ≤ 2m(n− 1).

Proof Let T be any spanning tree of G and let v0, v1, . . . , v2n−2 = v0 be a traversal
of G which crosses each edge of T in each direction. Now consider the expected time for
the random walk, started at v0, to make journeys from v0 to v1, then from v1 onto v2

and so on until v0, v1, . . . , v2n−2 have been visited. This journey visits every vertex of G
and so its expected length is an upper bound on the cover time, from v0. Thus

Cv0(MG) ≤
2n−3∑

i=0

Hvi,vi+1
=

∑

{u,v}∈T

Cu,v.

The result now follows from Lemma 2.5.3. 2

2.6 Optimal Stopping Rules

Lovász and Winkler, see for example [?] have been studying optimal stopping rules. We
need a little of that theory here. For us a stopping rule is a function ρ : Ω∗ :→ [0, 1] where
Ω∗ = {(X0, X1, . . . , Xt) : t ≥ 0} is the set of possible sequences of states generated by
our Markov chain. ρ(X0, X1, . . . , Xt) is the probability that we stop the chain at time
t. If X0 is chosen with probability distribution σ and τ is the distribution of the state
where we stop then we say that ρ is a stopping rule from σ to τ and write ρ ∈ SR(σ, τ).
We are naturally mainly interested in the case where τ = π.

For a stopping rule ρ let Tρ be the random number of steps taken until we stop. Let

H(σ, τ) = inf {E(Tρ) : ρ ∈ SR(σ, τ)}
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denote the minimum expected number of steps in a stopping rule from σ to τ . If σ is
concentrated on a single state s then we write H(s, τ).

For a stopping rule ρ and j ∈ Ω let xj = xj(ρ) be the expected number of exits from i
before stopping i.e. the expected number of times that the chain leaves i.

Lemma 2.6.1 If ρ ∈ SR(σ, τ) then

xj + τj =
∑

i∈Ω

xiP (i, j) + σj.

Proof Let T = Tρ and consider the identity

T−1∑

t=0

1Xt=j + 1T<∞,XT =j = 1X0=j +
T∑

t=1

1Xt=j

where both sides count the number of times that Xt = j.

Taking expectations we have

xj + τj = σj +
T∑

t=1

Pr(Xt = j) = σj +
T−1∑

t=0

∑

i∈Ω

Pr(Xt = i)P (i, j)

= σj +
∑

i∈Ω

T−1∑

t=0

1Xt=iP (i, j) = σj +
∑

i∈Ω

xiP (i, j).

2

Corollary 2.6.1 Let ρ1, ρ2 ∈ SR(σ, τ). Then for all i ∈ Ω

xi(ρ1)− xi(ρ2) = Dπi

where D = E(Tρ1 − Tρ2).

Proof It follows from Lemma 2.6.1 that ξ = x(ρ1)− x(ρ2) satisfies

ξj =
∑

i∈Ω

ξiP (i, j).

Therefore ξ = Aπ for some A ≥ 0. Now for k = 1, 2

Tρk
=
∑

j∈Ω

xj(ρk)

and the result follows. 2

A state j is a halting state for rule ρ if xj(ρ) = 0. This implies that if the chain ever
enters state j then it stops. Using Corollary 2.6.1 we can prove the following remarkable
theorem:
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Theorem 2.6.1 A stopping rule ρ ∈ SR(σ, τ) has a minimum mean expected stopping
time iff there is a halting state.

Proof If there exists j such that xj = 0 then Corollary 2.6.1 implies that for
ρ′ ∈ SR(σ, τ)

E(Tρ′ − Tρ) =
xj(ρ

′)

πj
≥ 0

implying that E(Tρ) is minimal. It only remains to show that there exists a stopping
rule in SR(σ, τ) which has at least one halting state.

The rule we define has a particular format. We define a nested sequence of sets Si =
{vi, vi+1, . . . , vn} where Ω = {v1, v2, . . . , vn}. For each i we will define q(i) by

q
(i)
j = Pr(vj is the first vertex of Si visited).

In particular q(1) = σ. We choose S1, S2, . . . , Sn so that we can write

τ = α1q
(1) + α2q

(2) + · · ·+ αnq
(n) (2.37)

where α ≥ 0 and α1 + α2 + · · ·+ αn = 1. Our stopping rule ρ is then:

(i) Choose i with probability αi.

(ii) Choose X0 with probability σ and then run the chain until Si is reached and then
stop.

It should be clear that ρ ∈ SR(σ, τ). If S1, S2, . . . , Sn can be constructed so that (2.37)
holds then we are done: vn is a halting state.

Assume inductively that we have found S1, S2, . . . , Si and α1, α2, . . . , αi−1 ≥ 0 such that

τ (i−1) = τ − (α1q
(1) + α2q

(2) + · · ·+ αi−1q
(i−1)) ≥ 0 (2.38)

and
α1 + α2 + · · ·+ αi−1 ≤ 1.

Putting S1 = Ω does this for i = 1 and then for general i let

αi = min
j∈Si

τ
(i)
j

q
(i)
j

and let vi be a state of Si which achieves the minimum. Clearly αi ≥ 0 and

τ (i) = τ (i−1) − αiq
(i) ≥ 0 (2.39)
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from the definition of αi.

Furthermore
i∑

j=1

αj =
i∑

j=1

αj

n∑

k=1

q
(j)
k ≤

n∑

k=1

τk = 1 (2.40)

completing the induction.

Finally note that when i = n the construction yields equality in (2.39) and then (2.37)
holds and we obtain equality in (2.40). 2

We now relate optimal stopping rules and mixing time. Let

Tmix = max
s∈Ω

H(s, π).

Theorem 2.6.2
τ(ǫ) ≤ 8Tmix log2(1/ǫ).

Proof Let s ∈ Ω and let ρ be an optimal stopping rule from s to π. Consider a modi-
fication: Follow ρ until it stops after T = Tρ steps and then generate ξ ∈ {0, 1, . . . , t− 1}
uniformly and independently of the previous walk, and then walk ξ more steps. Let the
walk be v1, v2, . . . , vT+ξ. Then let η = T + ξ (mod t) and note that η is uniformly
distributed over {0, 1, . . . , t− 1}. Then for i ∈ Ω

Pr(vη = i) ≥ Pr(vT+ξ = i)−Pr(vT+ξ = i, vη 6= i) ≥ πi −Pr(vT+ξ = i, T + ξ ≥ t)

since vT+ξ is in the stationary distribution and T + ξ < t implies η = T + ξ.

Hence, for every A ⊆ Ω,

π(A)−Pr(vη ∈ A) ≤ Pr(vT+ξ ∈ A, T + ξ ≥ t) ≤ Pr(T + ξ ≥ t).

Now for any fixed value of T , Pr(T + ξ ≥ t) ≤ T
t

and so

Pr(T + ξ ≥ t) ≤ E(T )

t
=
H(s, π)

t

and

π(A)−Pr(vη ∈ A) ≤ H(s, π)

t
.

It follows from Lemma 1.3.1(d) that

d(t) ≤ Tmix

t

and so

d(4Tmix) ≤ 1

4
.
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Applying Lemma 1.3.1(b) we see that

d(8Tmix log2 ǫ
−1) ≤ ǫ.

2

We can now prove a refinement of the usual conductance bound on the mixing time
(Corollary 2.2.1) due to Kannan and Lovász [?]. Thus for 0 ≤ x ≤ 1

2
let

Φ(x) = min
S⊆Ω

π(S)≤x

Q(S, S̄)

π(S)π(S̄)

and let Φ(x) = Φ(1
2
) for 1

2
< x ≤ 1. Note that Φ(x) ≤ 2.

Theorem 2.6.3 If 0 ≤ ξ ≤ 1 then

Tmix ≤
30

ξ2
+ 30

∫ 1

x=πξ

dx

xΦ(x)2

where πξ = inf {y : ∃S such that π(S) ≤ y and Φ(S) < ξ}.

Proof Let s ∈ Ω and ρ be an optimal stopping rule from s to π. Let yi = xi/πi, i =
1, 2, . . . , n be the scaled exit frequencies of ρ. Now order the states so that y1 ≤ y2 ≤
· · · ≤ yn. We first claim that with this ordering

y1 = 0 and n = s. (2.41)

The first assertion comes from Theorem 2.6.1. For the second we use Lemma 2.6.1 and
write, for j ∈ Ω, ∑

i∈Ω

πiP (i, j)yi − πjyj = πj − 1j=s.

Putting j = n we obtain

πn − 1n=s ≤
∑

i∈Ω

πiP (i, n)yn − πnyn = 0

and (2.41) follows.

Now fix 1 ≤ k < m ≤ n and let A = {1, 2, . . . , k} , B = {k + 1, k + 2, . . . ,m− 1} and
C = {m,m+ 1, . . . , n}. We show next that

ym − yk ≤
π(A)

Q(C,A)
. (2.42)

We start with the identity

k∑

i=1

n∑

j=k+1

yjQ(j, i)−
k∑

i=1

n∑

j=k+1

yiQ(i, j) = π(A). (2.43)
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The left hand side counts the expected number of steps from V \A to A less the expected
number of steps from A to V \A, when following an optimal rule. Since we do not start
in A (s = n) and stop in A with probability π(A), (2.43) follows.

Now we estimate the left hand side of (2.43) as follows:

k∑

i=1

n∑

j=k+1

yjQ(j, i) ≥
k∑

i=1

n∑

j=m+1

ymQ(j, i) +
k∑

i=1

m−1∑

j=k+1

ykQ(j, i)

= ymQ(C,A) + ykQ(B,A)

and

k∑

i=1

n∑

j=k+1

yiQ(i, j) ≤
k∑

i=1

n∑

j=k+1

ykQ(i, j) = ykQ(A,B ∪ C) = ykQ(B ∪ C,A).

Substituting into (2.43) we get

ymQ(C,A) + ykQ(B,A)− ykQ(B ∪ C,A) = (ym − yk)Q(C,A) ≤ π(A)

which proves (2.42).

We now observe that since y1 = 0,

H(s, π) =
n∑

i=1

πiyi =
n−1∑

j=1

(yj+1 − yj)π>j (2.44)

where π>j =
∑n

r=j+1 πj.

We now define a sequence 1 = m0 < m1 < · · ·mk < mk+1 so that if Ti = {1, 2, . . . ,mi},
T̄i = Ω \ Ti and ai = π(Ti) then

ai+1 − πmi+1
< ai

(
1 +

Φ(ai)

4

)
≤ ai+1 (2.45)

and

ak ≤
1

2
< ak+1. (2.46)

This definition can be justified as follows: Given mi with ai ≤ 1
2

we let mi+1 be the

first integer such that (2.45) holds. Since an = 1 and ai

(
1 + Φ(ai)

4

)
≤ 3

2
ai, such an mi+1

exists. k exists for the same reason.

We bound a portion of the sum in the right hand side of (2.44) by

mi+1−1∑

j=mi

(yj+1 − yj)π>j ≤ (1− ai)(ymi+1
− ymi

) ≤ ai(1− ai)

Q(T̄i+1 ∪ {mi+1} , Ti)
(2.47)



44 CHAPTER 2. BOUNDING THE MIXING TIME

where the second inequality follows from (2.43). Now,

Q(T̄i+1 ∪ {mi+1} , Ti) = Q(Ti, T̄i)−Q(T̄i \ (T̄i+1 ∪ {mi+1} , Ti)) ≥
Q(Ti, T̄i)− π(T̄i \ (T̄i+1 ∪ {mi+1})) ≥

Φ(ai)ai(1− ai)− ai+1 + πmi+1
+ ai > Φ(ai)ai(1− ai)/2.

Hence we obtain from (2.47) that

mi+1−1∑

j=mi

(yj+1 − yj)π>j ≤
2

Φ(ai)
. (2.48)

Now define i0 by Φ(ai) ≥ ξ iff i ≤ i0. It follows from (2.45) that

i0 ≤
ln 2

ln
(
1 + ξ

4

) ≤ 5

ξ
.

So from (2.48) we see that

mi0+1−1∑

j=1

(yj+1 − yj)π>j ≤
i0∑

i=1

2

Φ(ai)
≤ 10

ξ2
. (2.49)

In general we have

∫ ai+1

ai

dx

xΦ(x)2
≥ 1

Φ(ai)2

∫ ai+1

ai

dx

x
=

1

Φ(ai)2
ln(ai+1/ai)

≥ 1

Φ(ai)2
ln

(
1 +

Φ(ai)

4

)
≥ 1

5Φ(ai)
(2.50)

since Φ(ai) ≤ 2.

So from (2.48), (2.49) and (2.50) we have

mk+1−1∑

j=1

(yj+1 − yj)π>j ≤
10

ξ2
+ 10

∫ 1

πξ

dx

xΦ(x)2
. (2.51)

The estimate for the other half of the sum on the right hand sise of (2.44) is similar. We
define a sequence n0 = n > n1 > · · · > nr and sets Si = {ni, ni + 1, . . . , n} , S̄i = Ω \ Si

and bi = π(Si) for i = 1, 2, . . . , r + 1 such that

bi+1 − πni+1
< bi

(
1 +

Φ(bi)

4

)
≤ bi+1

and

br ≤
1

2
< br+1.
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As before we consider the partial sum

ni−1∑

j=ni+1

(yj+1 − yj)π>j ≤ (bi+1 − πni+1
)(yni

− yni+1
) ≤ (bi+1 − πni+1

)(1− bi+1 + πni+1
)

Q(Si, S̄i+1 ∪ {ni+1})

where the second inequality follows from (2.42).

Now

Q(Si, S̄i+1 ∪ {ni+1}) = Q(S̄i+1 ∪ {ni+1} , Si) =

Q(S̄i, Si)−Q(S̄i \ (S̄i+1 ∪ {ni+1}), Si) ≥ Q(S̄i, Si)− π(S̄i+1 \ S̄i) + πni+1
≥

Φ(bi)bi(1− bi)− bi+1 + πni+1
+ bi > Φ(bi)bi(1− bi)/2.

Hence
ni−1∑

j=ni+1

(yj+1 − yj)π>j ≤
2(bi+1 − πni+1

)

bi

1

Φ(bi)
≤ 4

Φ(bi)

since bi+1 − πni+1
≤ bi

(
1 + Φ(bi)

4

)
≤ 2bi. So as before we get

n−1∑

j=nr+1

(yj+1 − yj)π>j ≤
20

ξ2
+ 20

∫ 1

πξ

dx

xΦ(x)2

and combined with (2.49) and (2.44) we have the theorem. 2

Of paticular interest to us is the case where for some A = A(n) < B = B(n), Φ(x)
satisfies

Φ(x) ≥ min

{
A log

1

x(1− x)
, B

}
(2.52)

for x ≤ 1/2.

Theorem 2.6.4 If (2.52) holds then the mixing time

τ(ǫ) ≤ cA−2

for some absolute constant c > 0.

Proof It follows from (2.52) that for ξ ≤ B we have πξ ≥ e−ξ/A. (πξ < e−ξ/A implies
that ∃S : x = π(S) < e−ξ/A and Φ(x) < ξ, which implies that min{A log 1

x(1−x)
, B} < ξ,

contradiction). Define x0 by A log 1
x0(1−x0)

= B. Then for ξ ≤ B we have by Theorems
2.6.2 and 2.6.3 that

τ(ǫ) = O

(
1

ξ2
+

1

B2

∫ x0

e−ξ/A

dx

x
+

1

A2

∫ 1/2

x0

dx

x(log x)2
+

1

A2(log 4)2

∫ 1

1/2

dx

x

)

= O

(
1

ξ2
+

1

B2

(
log x0 +

ξ

A

)
+

1

A2

(
1

log x0

+
1

log 2

)
+

1

A2

)

= O(A−2)
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where we use log x0 = Θ(B/A) and take ξ = (AB2/2)1/3 and absorb terms of order
(AB)−1 or B−2. 2

2.7 Coupling from the Past



Chapter 3

Matchings and related structures

A problem that has played a historically important role in the development both of
complexity theory and algorithm design is that of evaluating the permanent function.
The permanent of an n× n integer matrix A = (aij : 0 ≤ i, j ≤ n− 1) is defined by

perA =
∑

π

n−1∏

i=0

ai,π(i) ,

where the sum is over all permutations π of [n] = {0, . . . , n − 1}. Evaluating the
permanent of a 0,1-matrix is complete for the class #P; thus, we cannot expect to find
an algorithm that solves the problem exactly in polynomial time. Interest has therefore
centred on finding computationally feasible approximation algorithms. In contrast, as
is well known, the superficially related determinant of an n×n matrix can be evaluated
in O(n3) arithmetic operations using Gaussian elimination.

A matching in a graph G = (V,E) is any subset A ⊆ E of edges that are pairwise
vertex disjoint. A matching is said to be perfect if it covers every vertex; clearly a
perfect matching, which can exist only if |V | is even, has size |V |/2. Specialised to the
case when A is a 0,1-matrix, perA is equal to the number of perfect matchings in the
bipartite graph G = (V1, V2, E), where V1 = V2 = [n], and (i, j) ∈ E iff aij = 1.

In the light of the above connection, a promising approach to computing an approxima-
tion of the permanent of A, at least when A is a 0,1-matrix, is through sampling perfect
matchings in the related bipartite graph G. We shall immediately generalise the situa-
tion to that of sampling a (weighted) matching in a general graph. In the next section
we attack that sampling problem through Markov chain simulation; then in subsequent
sections we shall apply the methods we develop there to related problems, including the
approximation of the permanent.

47
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3.1 Weighted matchings (the monomer-dimer model)

Let G be a graph, not necessarily bipartite, with an even number 2n = |V | of vertices.
The assumption that the number of vertices in G is even is inessential and is made for
notational convenience. To each matching M , a weight w(M) = λ|M | is assigned, where
λ is a positive real parameter. The generating (or partition) function of matchings in G
is

Z(λ) ≡ ZG(λ) =
∑

M

w(M) =
n∑

k=0

mkλ
k, (3.1)

where mk ≡ mk(G) is the number of k-matchings in G. In statistical physics, a matching
is termed a “monomer-dimer configuration”: the edges in M are the “dimers” and the
unmatched (uncovered) vertices are “monomers”. Thus mk(G) counts the number of
monomer-dimer configurations with k dimers. The weight parameter λ reflects the
contribution of a dimer to the energy of the system.

Our main goal in this section is the development of an algorithm for approximating ZG

at an arbitrary point λ ≥ 0. The running time of the algorithm is poly(n, ǫ,max{λ, 1}),
where ǫ, as usual, controls the relative error that will be tolerated in the output. Thus
the algorithm will meet the specification of an FPRAS for ZG, provided λ is specified
in unary notation. Our approach is to simulate a suitable Markov chain Mmatch(λ),
parameterised on the the graph G and edge weight λ. The state space, Ω, is the set of
all matchings in G, and the transitions are constructed so that the chain is ergodic with
stationary distribution πλ given by

πλ(M) =
λ|M |

Z(λ)
. (3.2)

(Since G is fixed from now on, we drop the subscript from Z.) In other words, the
stationary probability of each matching (monomer-dimer configuration) is proportional
to its weight in the partition function (3.1). The Markov chain Mmatch(λ), if simu-
lated for sufficiently many steps, provides a method of sampling matchings from the
distribution πλ.

It is not hard to construct a Markov chainMmatch(λ) with the right asymptotic proper-
ties. Consider the chain in which transitions from any matching M are made according
to the following rule:

1. with probability 1
2

let M ′ = M ; otherwise,
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2. select an edge e = {u, v} ∈ E u.a.r. and set

M ′ =





M − e if e ∈M ;
M + e if both u and v are unmatched in M ;
M + e− e′ if exactly one of u and v is matched in M

and e′ is the matching edge;
M otherwise;

3. go to M ′ with probability min{1, πλ(M ′)/πλ(M)}.

It is helpful to view this chain as follows. There is an underlying graph defined on the
set of matchings Ω in which the neighbours of matching M are all matchings M ′ that
differ from M via one of the following local perturbations: an edge is removed from M
(a ↓-transition); an edge is added to M (a ↑-transition); or a new edge is exchanged
with an edge in M (a ↔-transition). Transitions from M are made by first selecting a
neighbour M ′ u.a.r., and then actually making, or accepting the transition with proba-
bility max{1, πλ(M ′)/πλ(M)}. Note that the ratio appearing in this expression is easy
to compute: it is just λ−1, λ or 1 respectively, according to the type of the transition.

As the reader may easily verify, this acceptance probability is constructed so that the
transition probabilities P (M,M ′) satisfy the detailed balance condition

Q(M,M ′) = πλ(M)P (M,M ′) = πλ(M ′)P (M ′,M), for all M,M ′ ∈ Ω,

i.e., Mmatch(λ) is reversible. This fact, together with the observation that Mmatch(λ)
is irreducible (i.e., all states communicate, for example via the empty matching) and
aperiodic (by step 1, the self-loop probabilities P (M,M) are all non-zero), ensures that
Mmatch(λ) is ergodic with stationary distribution πλ, as required. The device of perform-
ing random walk on a connected graph with acceptance probabilities of this form is well
known in Monte Carlo physics under the name of the “Metropolis process”. Clearly, it
can be used to achieve any desired stationary distribution π for which the ratio π(u)/π(v)
for neighbours u, v can be computed easily. It is also the standard mechanism used in
combinatorial optimisation by simulated annealing.

Having constructed a family of Markov chains with stationary distribution πλ, our next
task is to explain how samples from this distribution can be used to obtain a reliable sta-
tistical estimate of Z(λ) at a specified point λ = λ̂ ≥ 0. Our strategy is to express Z(λ̂)
as the product

Z(λ̂) =
Z(λr)

Z(λr−1)
× Z(λr−1)

Z(λr−2)
× · · · Z(λ2)

Z(λ1)
× Z(λ1)

Z(λ0)
× Z(λ0), (3.3)

where 0 = λ0 < λ1 < λ2 < · · · < λr−1 < λr = λ̂ is a suitably chosen sequence of values.
Note that Z(λ0) = Z(0) = 1. We will then estimate each factor Z(λi)/Z(λi−1) in this
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product by sampling from the distribution πλi
. This approach is analogous to that used

in the context of independent sets in the proof of Theorem 1.2.1; refer in particular to
equation (1.4). For reasons that will become clear shortly, we will use the sequence of
values λ1 = (2|E|)−1 and λi = (1 + 1

n
)i−1λ1 for 1 ≤ i < r. The length r of the sequence

is taken to be minimal such that (1 + 1
n
)r−1λ1 ≥ λ̂, so we have the bound

r ≤
⌈
2n
(
ln λ̂+ ln(2|E|)

)⌉
+ 1. (3.4)

To estimate the ratio Z(λi)/Z(λi−1), we will express it, or rather its reciprocal, as
the expectation of a suitable random variable. Specifically, define the random variable

Zi(M) =
(λi−1

λi

)|M |
, where M is a matching chosen from the distribution πλi

. Then we
have

E(Zi) =
∑

M

(
λi−1

λi

)|M |
λ
|M |
i

Z(λi)
=

1

Z(λi)

∑

M

λ
|M |
i−1 =

Z(λi−1)

Z(λi)
.

Thus the ratio ρi = Z(λi−1)/Z(λi) can be estimated by sampling matchings from the
distribution πλi

and computing the sample mean of Zi. Following (3.3), our estimator

of Z(λ̂) will be the product of the reciprocals of these estimated ratios. Summarising
this discussion, our algorithm can be written down as follows:

Step 1 Compute the sequence λ1 = (2|E|)−1 and λi =
(
1 + 1

n

)i−1
λ1 for 1 ≤ i < r,

where r is the least integer such that
(
1 + 1

n

)r−1
λ1 ≥ λ̂. Set λ0 = 0 and λr = λ̂.

Step 2 For each value λ = λ1, λ2, . . . , λr in turn, compute an estimate Xi of the ratio ρi

as follows:

• by performing S independent simulations of the Markov chain
Mmatch(λi), each of length Ti, obtain an independent sample of size S
from (close to) the distribution πλi

;

• let Xi be the sample mean of the quantity
(λi−1

λi

)|M |
.

Step 3 Output the product Y =
∏r

i=1X
−1
i .

Figure 3.1: Algorithm MatchSample

To complete the description of the algorithm, we need to specify the sample size S in
Step 2, and the number of simulation steps Ti required for each sample. Our goal is to
show that, with suitable values for these quantities, Algorithm MatchSample is an
FPRAS for Z(λ).

The issue of the sample size S is straightforward. Now e−1 ≤ Zi ≤ 1 and so using
Lemma 1.2.1 of Chapter 1 we see
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Proposition 3.1.1 In Algorithm MatchSample, suppose the sample size S in Step 2
is S = ⌈17e2ǫ−2r⌉, and that the simulation length Ti is large enough that the variation
distance of Mmatch(λi) from its stationary distribution πλi

is at most ǫ/(3er). Then the
output random variable Y satisfies

Pr
(
(1− ǫ)Z(λ̂) ≤ Y ≤ (1 + ǫ)Z(λ̂)

)
≥ 3

4
.

Since r is a relatively small quantity (essentially linear in n: see (3.4)), this result means
that a modest sample size at each stage suffices to ensure a good final estimate Y ,
provided of course that the samples come from a distribution that is close enough to πλi

.

It is in determining the number of simulation steps, Ti, required to achieve this that the
meat of the analysis lies: of course, this is tantamount to investigating the mixing time
of the Markov chain Mmatch(λi). Our main task in this section will be to show:

Proposition 3.1.2 The mixing time of the Markov chain Mmatch(λ) satisfies

τX(ǫ) ≤ 4|E|nλ′
(
n(lnn+ lnλ′) + ln ǫ−1

)
,

where λ′ = max{λ, 1}.

The proof of this result will make use of the full power of the machinery introduced in
Section 2.2.3 of Chapter 2. Note that Proposition 3.1.2 is a very strong statement: it says
that we can sample from (close to) the complex distribution πλ over the exponentially
large space of matchings in G, by performing a Markov chain simulation of length only
a low-degree polynomial in the size of G.1

According to Proposition 3.1.1, we require a variation distance of ǫ/(3er), so Proposi-
tion 3.1.2 tells us that it suffices to take

Ti =
⌈
4|E|nλ′i

(
n(lnn+ lnλ′i) + ln(3er/ǫ)

)⌉
. (3.5)

This concludes our specification of the Algorithm MatchSample.

Before proceeding to prove the above statements, let us convince ourselves that to-
gether they imply that Algorithm MatchSample is an FPRAS for Z(λ). First of all,
Proposition 3.1.1 ensures that the output of Algorithm MatchSample satisfies the
requirements of an FPRAS for Z. It remains only to verify that the running time is
bounded by a polynomial in n, λ̂′ and ǫ−1. Evidently the running time is dominated
by the number of Markov chain simulations steps, which is

∑r
i=1 STi; since Ti increases

with i, this is at most rSTr. Substituting the upper bound for r from (3.4), and values

1Incidentally, we should point out that Proposition 3.1.2 immediately tells us that we can sample
monomer-dimer configurations from the canonical distribution πλ, in time polynomial in n and λ′. This
is in itself an interesting result, and allows estimation of the expectation of many quantities associated
with monomer-dimer configurations.
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for S from Proposition 3.1.1 and Tr from (3.5), we see that the overall running time of
Algorithm MatchSample is bounded by2

O
(
n4|E|λ̂′(lnnλ̂′)3ǫ−2

)
,

which grows only polynomially with n, λ̂′ and ǫ−1. We have therefore proved

Theorem 3.1.1 Algorithm MatchSample is an FPRAS for the partition function of
an arbitrary monomer-dimer system.

We turn now to the question of proving Proposition 3.1.2. Our strategy will be to
carefully choose a collection of canonical paths Γ = {γXY : X,Y ∈ Ω} in the Markov
chain Mmatch(λ) for which the “bottleneck” measure ρ̄(Γ) of Section 2.2.3 is small.
We can then appeal to Theorem 2.2.4 and Corollary 2.1.1 to bound the mixing time.
Specifically, we shall show that our paths satisfy

ρ̄(Γ) ≤ 4|E|nλ′. (3.6)

Since the number of matchings in G is certainly bounded above by (2n)!, the station-
ary probability πλ(X) of any matching X is bounded below by πλ(X) ≥ 1/(2n)!λ′n.
Using (3.6) and the fact that lnn! ≤ n lnn, the bound on the mixing time in Proposi-
tion 3.1.2 can now be read off from Theorem 2.2.4 and Corollary 2.1.1.

It remains for us to find a set of canonical paths Γ satisfying (3.6). For a pair of match-
ings X,Y in G, we define the canonical path γXY as follows. Consider the symmetric
difference X⊕Y . A moment’s reflection should convince the reader that this consists of
a disjoint collection of paths in G (some of which may be closed cycles), each of which
has edges that belong alternately to X and to Y . Now suppose that we have fixed some
arbitrary ordering on all simple paths in G, and designated in each of them a so-called
“start vertex”, which is arbitrary if the path is a closed cycle but must be an endpoint
otherwise. This ordering induces a unique ordering P1, P2, . . . , Pm on the paths appear-
ing in X ⊕ Y . The canonical path from X to Y involves “unwinding” each of the Pi in
turn as follows. There are two cases to consider:

1. Pi is not a cycle. Let Pi consist of the sequence (v0, v1, . . . , vl) of vertices, with v0

the start vertex. If (v0, v1) ∈ Y , perform a sequence of ↔-transitions replacing
(v2j+1, v2j+2) by (v2j, v2j+1) for j = 0, 1, . . ., and finish with a single ↑-transition
if l is odd. If on the other hand (v0, v1) ∈ X, begin with a ↓-transition removing
(v0, v1) and proceed as before for the reduced path (v1, . . . , vl).

2In deriving the O-expression, we have assumed w.l.o.g. that Tr = O
(
|E|n2λ̂′ lnnλ̂′

)
. This follows

from (3.5) with the additional assumption that ln ǫ−1 = O(n lnn). This latter assumption is justified
since the problem can always be solved exactly by exhaustive enumeration in time O(n(2n)!), which is
O(ǫ−2) if ln ǫ−1 exceeds the above bound.
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P1 PiX: Pi−1 · · ·Pi+1

t

Start vertex of (closed) path Pi

M : · · · · · ·

M ′:

Y :

· · ·

· · · · · ·

· · ·

...

...

Pm· · ·

Figure 3.2: A transition t in the canonical path from X to Y

2. Pi is a cycle. Let Pi consist of the sequence (v0, v1, . . . , v2l+1) of vertices, where
l ≥ 1, v0 is the start vertex, and (v2j, v2j+1) ∈ X for 0 ≤ j ≤ l, the remaining
edges belonging to Y . Then the unwinding begins with a ↓-transition to remove
(v0, v1). We are left with an open path O with endpoints v0, v1, one of which must
be the start vertex of O. Suppose vk, k ∈ {0, 1}, is not the start vertex. Then we
unwind O as in (i) above but treating vk as the start vertex. This trick serves to
distinguish paths from cycles, as will prove convenient shortly.

This concludes our definition of the family of canonical paths Γ. Figure 3.2 will help
the reader picture a typical transition t on a canonical path from X to Y . The path Pi

(which happens to be a cycle) is the one currently being unwound; the paths P1, . . . , Pi−1

to the left have already been processed, while the ones Pi+1, . . . , Pm are yet to be dealt
with.

We now proceed to bound the “bottleneck” measure ρ̄(Γ) for these paths. Let ǫ be
an arbitrary edge in the Markov chain, i.e., a transition from M to M ′ 6= M , and let
cp(ǫ) = {(X,Y ) : γXY ∋ ǫ} denote the set of all canonical paths that use ǫ. (We use
the notation ǫ in place of e here to avoid confusion with edges of G.) We will obtain
a bound on the total weight of all paths that pass through ǫ by defining an injective
mapping ηǫ : cp(ǫ)→ Ω. What we would like to do is to set ηǫ(X,Y ) = X⊕Y ⊕(M∪M ′);
the intuition for this is that ηǫ(X,Y ) should agree with X on paths that have already
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Figure 3.3: The corresponding encoding ηt(X,Y )

been unwound, and with Y on paths that have not yet been unwound. However, there is
a minor complication concerning the path that we are currently processing: in order to
ensure that ηǫ(X,Y ) is indeed a matching, we may — as we shall see — have to remove
from it the edge of X adjacent to the start vertex of the path currently being unwound:
we shall call this edge eXY t. This leads us to the following definition of the mapping ηǫ:

ηǫ(X,Y ) =




X ⊕ Y ⊕ (M ∪M ′)− eXY t, if ǫ is a ↔-transition

and the current path is a cycle;
X ⊕ Y ⊕ (M ∪M ′), otherwise.

Figure 3.5 illustrates the encoding ηt(X,Y ) that would result from the transition t on
the canonical path sketched in Figure 3.2.

Let us check that ηǫ(X,Y ) is always a matching. To see this, consider the set of edges
A = X⊕Y ⊕(M∪M ′), and suppose that some vertex, u say, has degree two in A. (Since
A ⊆ X ∪ Y , no vertex degree can exceed two.) Then A contains edges {u, v1}, {u, v2}
for distinct vertices v1, v2, and since A ⊆ X ∪ Y , one of these edges must belong to X
and the other to Y . Hence both edges belong to X ⊕ Y , which means that neither can
belong to M ∪M ′. Following the form of M ∪M ′ along the canonical path, however, it
is clear that there can be at most one such vertex u; moreover, this happens precisely
when the current path is a cycle, u is its start vertex, and ǫ is a ↔-transition. Our
definition of ηǫ removes one of the edges adjacent to u in this case, so all vertices in
ηǫ(X,Y ) have degree at most one, i.e., ηǫ(X,Y ) is indeed a matching.

We now have to check that ηǫ is injective. It is immediate from the definition of ηǫ that
the symmetric difference X ⊕ Y can be recovered from ηǫ(X,Y ) using the relation

X ⊕ Y =




ηǫ(X,Y )⊕ (M ∪M ′) + eXY t, if ǫ is a ↔-transition

and the current path is a cycle;
ηǫ(X,Y )⊕ (M ∪M ′), otherwise.

Note that, once we have formed the set ηǫ(X,Y )⊕(M ∪M ′), it will be apparent whether
the current path is a cycle from the sense of unwinding. (Note that eXY t is the unique
edge that forms a cycle when added to the path.) Given X ⊕ Y , we can at once
infer the sequence of paths P1, P2, . . . , Pm that have to be unwound along the canonical
path from X to Y , and the transition t tells us which of these, Pi say, is the path
currently being unwound. The partition of X⊕Y into X and Y is now straightforward:
X has the same parity as ηǫ(X,Y ) on paths P1, . . . , Pi−1, and the same parity as M on
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paths Pi+1, . . . , Pm. Finally, the reconstruction of X and Y is completed by noting that
X ∩ Y = M − (X ⊕ Y ), which is immediate from the definition of the paths. Hence X
and Y can be uniquely recovered from ηǫ(X,Y ), so ηǫ is injective.

We are almost done. What we now require in addition is that ηǫ be “weight-preserving,”
in the sense that Q(ǫ)πλ(ηǫ(X,Y )) ≈ πλ(X)πλ(Y ). More precisely, we will show in a
moment that

πλ(X)πλ(Y ) ≤ 2|E|λ′2Q(ǫ)πλ(ηǫ(X,Y )). (3.7)

First, let us see why we need a bound of this form in order to estimate ρ̄. We have

1

Q(ǫ)

∑

γXY ∋ǫ

πλ(X)πλ(Y )|γXY | ≤ 2|E|λ′2
∑

γXY ∋ǫ

πλ(ηǫ(X,Y )) |γXY |

≤ 4|E|nλ′2
∑

γXY ∋ǫ

πλ(ηǫ(X,Y ))

≤ 4|E|nλ′2 , (3.8)

where the second inequality follows from the fact that the length of any canonical path
is bounded by 2n, and the last inequality from the facts that ηǫ is injective and πλ is a
probability distribution.

It remains for us to prove inequality (3.7). Before we do so, it is helpful to notice that
Q(ǫ) = (2|E|)−1 min{πλ(M), πλ(M ′)}, as may easily be verified from the definition of
Mmatch(λ). We now distinguish four cases:

1. ǫ is a ↓-transition. Suppose M ′ = M−e. Then ηǫ(X,Y ) = X⊕Y ⊕M , so, viewed
as multisets, M ∪ ηǫ(X,Y ) and X ∪ Y are identical. Hence we have

πλ(X)πλ(Y ) = πλ(M)πλ(ηǫ(X,Y ))

=
2|E|Q(ǫ)

min{πλ(M), πλ(M ′)} × πλ(M)πλ(ηǫ(X,Y ))

= 2|E|Q(ǫ) max{1, πλ(M)/πλ(M ′)}πλ(ηǫ(X,Y ))

≤ 2|E|λ′Q(ǫ)πλ(ηǫ(X,Y )),

from which (3.7) follows.

2. ǫ is a ↑-transition. This is handled by a symmetrical argument to (i) above, with
the roles of M and M ′ interchanged.

3. ǫ is a ↔-transition and the current path is a cycle. Suppose M ′ = M + e− e′, and
consider the multiset M ∪ ηǫ(X,Y ). Then ηǫ(X,Y ) = X ⊕ Y ⊕ (M + e)− eXY t, so
the multiset M ∪ ηǫ(X,Y ) differs from X ∪ Y only in that e and eXY t are missing
from it. Thus we have

πλ(X)πλ(Y ) ≤ λ′
2
πλ(M)πλ(ηǫ(X,Y ))

= 2|E|λ′2Q(ǫ)πλ(ηǫ(X,Y )),
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since in this case πλ(M) = πλ(M ′), and so Q(ǫ) = (2|E|)−1πλ(M). Thus (3.7) is
again satisfied.

4. ǫ is a ↔-transition and the current path is not a cycle. This is identical with (iii)
above, except that the edge eXY t does not appear in the analysis. Accordingly,
the bound is

πλ(X)πλ(Y ) ≤ 2|E|λ′Q(ǫ)πλ(ηǫ(X,Y )).

This concludes our proof of (3.7). We may now deduce from (3.8), that ρ̄(Γ) ≤ 4|E|nλ′2.
However, one additional observation will allow us to improve the bound to ρ̄(Γ) ≤
4|E|nλ′, which is what we claimed in (3.6). Looking at the above case analysis we see
that, in all cases except case (iii), (3.7), and hence (3.8), actually hold with λ′2 replaced
by λ′. But in case (iii) we can argue that ηǫ(X,Y ) must have such a restricted form that∑

γXY ∋ǫ πλ(ηǫ(X,Y )) is bounded above by λ′−1. Using this fact in the final inequality
in (3.8), we get the improved upper bound of 4|E|nλ′ in this case, and hence in all cases.
This will complete our verification of the bound (3.6) on ρ̄(Γ).

To justify the above claim, note that ηǫ(X,Y ) has at least two unmatched vertices,
namely the start vertex of the current cycle and the vertex that is common to both e
and e′. Moreover, in ηǫ(X,Y )⊕M these vertices are linked by an alternating path that
starts and ends with an edge of M . So we may associate with each matching ηǫ(X,Y )
another matching, say η′ǫ(X,Y ), obtained by augmenting ηǫ(X,Y ) along this path. But
this operation is uniquely reversible, so all matchings η′ǫ(X,Y ) created in this way are
distinct. Moreover, πλ(ηǫ(X,Y )) = λπλ(ηǫ(X,Y )). Hence we have

∑
πλ(ηǫ(X,Y )) =

λ−1
∑
πλ(η′ǫ(X,Y )) ≤ λ−1, so

∑
πλ(ηǫ(X,Y )) ≤ λ′−1 as claimed.

3.2 Perfect Matchings

The question of whether there exists an FPRAS for the permanent of an arbitrary
0,1-matrix has recently been positivley resolved by Jerrum, Sinclair and Vigoda [?].
Thus there is an FPRAS for the number of perfect matchings in an arbitrary bipartite
graph. Their result does not seem to carry over for arbitrary graphs and so we first
concentrate on seeing how to use the methods and results of the previous section to
construct an FPRAS that covers many cases, even a majority in some sense. To state
the result precisely, we will use the perfect matching formulation. Let G = (V,E) be
a graph with |V | = 2n. A special role will be played in the result by the number
of near-perfect matchings in G, i.e., matchings with exactly two unmatched vertices.
Following the notation of the previous section, let us write mk = mk(G) for the number
of k-matchings in G. Then the number of perfect matchings is mn, and the number of
near-perfect matchings is mn−1.
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Theorem 3.2.1 There exists a randomized approximation scheme for the number of
perfect matchings mn whose running time is polynomial in n, ǫ−1 and the ratio mn−1/mn.

Note that this algorithm is not in general an FPRAS, since there exist 2n-vertex graphsG
for which the ratio mn−1/mn is exponential in n. However, it turns out that these
examples are atypical in the sense that the probability that a randomly selected G on
2n vertices violates the inequality mn−1/mn ≤ 4n tends to 0 as n → ∞. Thus the
above algorithm constitutes an FPRAS for almost all graphs; moreover, the condition
that the ratio mn−1/mn be bounded by a specified polynomial in n can be tested for an
arbitrary graph in polynomial time. It is also known that every sufficiently dense graph
(specifically, those in which every vertex has degree at least 1

2
n) satisfies mn−1/mn =

O(n2). Moreover, it has been shown ratio mn−1/mn is guaranteed to be small for a wide
class of homogeneous graphs G, including the important case of geometric lattice graphs
in any number of dimensions.

Our approximation algorithm for the number of perfect matchings follows quite painlessly
from our results about the matchings problem derived in the previous section. Note that
mn is precisely the leading coefficient of the partition function ZG(λ) of the monomer-
dimer system associated with G (see (3.1)). In the previous section, we saw how to
sample matchings in G from the distribution

πλ(M) =
λ|M |

ZG(λ)
=

λ|M |
∑n

k=0mkλk
(3.9)

for any desired λ > 0, in time polynomial in n and λ′ = max{λ, 1}, by Monte Carlo
simulation of the Markov chain Mmatch(λ). We also saw how this fact can be used to
compute ZG(λ) to good accuracy in time polynomial in n and λ′. Suppose then that

we have computed a good estimate ẐG(λ) of ZG(λ). Then we can get a good estimator
for mn by sampling matchings from the distribution πλ and computing the proportion,
X, of the sample that are perfect matchings; since EX = mnλ

n/ZG(λ), our estimator is

Y = Xλ−nẐG(λ).

The sample size required to ensure a good estimate depends on the variance of a single
sample, or more precisely on the quantity (EX)−1. Clearly, by making λ large enough,
we can make this quantity, and hence the sample size, small: this corresponds to placing
very large weight on the perfect matchings, so that their proportion can be estimated
well by random sampling. How large does λ have to be? This analysis is eased by a
beautiful fact. A sequence a1, a2, . . . , an of positive reals is log-concave if ak−1ak+1 ≤ a2

k

for k = 1, 2, . . . , n− 1.

Lemma 3.2.1 The sequence m0,m1, . . . ,mn is log-concave.

Proof Let Mk = Mk(G) be the set of k-matchings of G. Thus mk = |Mk(G)|.
We need to show that mk−1mk+1 ≤ m2

k and so we can assume that mk+1 > 0. Let
A = Mk+1 ×Mk−1 and B = Mk ×Mk.
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If M,M ′ are matchings then we know that M ⊕M consists of paths and cycles. Let
a path of M ⊕M be an M -path if it contains more M -edges than M ′-edges and an
M ′ path if the reverse is true. For any pair (M,M ′) ∈ A the number of M paths
exceeds the number of M ′ paths by exactly two. We partition A into disjoint classes
Ar, r = 1, 2, . . . , k where

Ar = {(M,M ′) ∈ A : M ⊕M ′ contains r + 1 M − paths and r − 1 M ′ − paths}.

Similarly the sets

Br = {(M,M ′) ∈ B : M ⊕M ′ contains r M − paths and r M ′ − paths}.

partition B. The lemma will follow from the fact that |Ar| ≤ |Br| for each r > 0.

Let us call a pair (L,L′) ∈ Br reachable from (M,M ′) ∈ Ar iff L⊕L′ = M⊕M ′ and L =
M ⊕P for some M -path P of M ⊕M ′. Clearly the number of elements of Br reachable
from a given (M,M ′) ∈ Ar is r + 1. Conversely, any given element of Br is reachable
from precisely r elements of Ar. Hence if |Ar| > 0 we have |Br|/|Ar| = (r+ 1)/r > 1. 2

As a consequence, it follows that that mk/mn ≤ (mn−1/mn)n−k. This means that, if we
take λ ≥ mn−1/mn, we get

EX =
mnλ

n

ZG(λ)
=

mnλ
n

∑n
k=0mkλk

≥ 1

n+ 1
, (3.10)

which implies that the sample size required grows only linearly with n. Thus it is
enough to take λ about as large as the ratio mn−1/mn. Of course we do not have a
priori knowledge of this ratio and so we run the algorithm with λ = 2, 4, 8, . . . until we
find that at least 1/n proportion of the matchings produced are perfect. Since the time
required to generate a single sample grows linearly with λ (see Proposition 3.1.2), the
running time of the overall algorithm is polynomial in n, ǫ−1 and the ratio mn−1/mn, as
claimed.

We conclude thsi section by mentioning some extensions. First of all, it is not hard to
see, again using the log-concavity property, that the above technique can be extended to
approximate the entire sequence (mk), or equivalently all the coefficients of the monomer-
dimer partition function. The running time per coefficient is no worse than for mn.

A Special Case: Vertex Transitive graphs

In this section we discuss a class of graphs for which we can prove that mn−1/mn is
polynomially bounded. A graph G is vertex transitive if for every pair of vertices u, v
there is an automorphism g of G such that g(u) = v. As an example consider the
discrete torus Td,L in d dimensions. Here we take V = {0, 1, . . . , L− 1} for some L > 0
and two vertices x, y are adjacent if there exists an index j such that xi = yi, i 6= j and
|xj − yj| = 1 mod L.
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Theorem 3.2.2 In any vertex transitive graph G, the number of near-perfect matchings
in G exceeds the number of perfect matchings by a factor at most n3.

Proof Let G be any graph with transitive automorphism group. Denote by M
the set of all perfect matchings in G, by N (u, v) the set of near-perfect matchings that
leave vertices u and v uncovered, and by N =

⋃
u,vN (u, v) the set of all near-perfect

matchings. Let µ = |M|, ν = maxu,v |N (u, v)|, and select vertices u0 and v0 satisfying
|N (u0, v0)| = ν. We assume, contrary to the statement of the theorem, that µ < ν/2n,
and obtain a contradiction.

Let u, v be any pair of non-adjacent vertices. We show that there exists a vertex u′

with dist(u′, v) < dist(u, v) satisfying |N (u′, v)| ≥ |N (u, v)| − ν/2n. By induction on
distance (starting with the base case |N (u0, v0)| = ν) it follows that there exists a pair
of adjacent vertices (u, v) satisfying |N (u, v)| ≥ ν/2 and hence that µ = |M| ≥ ν/2,
contradicting our initial assumption.

So suppose u and v are non-adjacent, and let u′ be any vertex adjacent to u satisfying
dist(u′, v) < dist(u, v). Let g be any automorphism of G mapping u0 to u′ and let v′ be
the image of v0 under g. If v′ = v we are done, since then |N (u′, v)| = |N (u0, v0)| = ν.
So assume the contrary. Define a mapping

f : N (u, v)×N (u′, v′)→M×N (v, v′) ∪N (u, v′)×N (u′, v)

as follows. Let N ∈ N (u, v) be a “red” and N ′ ∈ N (u′, v′) a “blue” near-perfect
matching. N ⊕ N ′ consists of two alternating paths together with a number of cycles.
We distinguish two cases.

1. There is a blue-blue path from u to v and red-red path from u′ to v′, or there is
a blue-red path from u to v′ and a red-blue path from u′ to v. In this case add
a red edge {u, u′} and exchange the colours along the (u′, v′) or (u′, v) path, as
appropriate. This operation yields a perfect matching in M, and a near-perfect
matching in N (v, v′).

2. There is a blue-red path from u to u′ and a blue-red path from v to v′. In this case,
exchange the colours along the (u, u′) path to yield a blue near-perfect matching
in N (u, v′) and a red near-perfect matching in N (u′, v).

The operations described above are reversible, so the mapping f is injective. Thus

|N (u, v)| × |N (u′, v′)| ≤ |M| × |N (v, v′)|+ |N (u, v′)| × |N (u′, v)|.

Since |N (u′, v′)| = |N (u0, v0)| = ν and |M| = µ < ν/2n by assumption, the required
inequality |N (u′, v)| ≥ |N (u, v)| − ν/2n follows. 2
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3.3 The Permanent

Let G = (V1, V2, E) be a bipartite graph on n + n vertices. Let Mk = Mk(G) be
the set of k-matchings of G. There is a rapidly mixing Markov chain on state space
Ω =Mn−1∪Mn similar to that described in Section 3.1 that has a uniform steady state
distribution. Of course if mn−1/mn is too large then it will tend to only generate near-
perfect matchings within a reasonable time limit. The idea from [?] is to modify this
chain so that the steady state is still uniform over perfect matchings and the near-perfect
matchings have sufficiently smaller weight.

Theorem 3.3.1 There exists a fully-polynomial randomized approximation scheme for
the permanent of an arbitrary n× n 0-1 matrix A.

It will actually prove technically convenient to introduce edge weights also. Thus for
each edge (y, z) ∈ E, we introduce a positive weight λ(y, z), which we call its activity.
We extend the notion of activities to matchings M (of any cardinality) by λ(M) =∏

(i,j)∈M λ(i, j). Similarly, for a set of matchings S we define λ(S) =
∑

M∈S λ(M).
For our purposes, the advantage of edge weights is that they allow us to work with
the complete graph Kn,n on n + n vertices, rather than with an arbitrary graph G =
(V1, V2, E): we can do this by setting λ(e) = 1 for e ∈ E, and λ(e) ≤ 1/n! for e /∈ E.
This ensures that the “bogus” matchings have little effect, as will be described shortly.

Let M denote the set of perfect matchings of Kn,n and for u ∈ V1 and v ∈ V2 we let
M(u, v) denote the set of near perfect matchings of Kn,n that leave only u, v isolated.
We are now ready to specify the desired stationary distribution of our Markov chain.
This will be the distribution π over Ω defined by π(M) ∝ Λ(M), where

Λ(M) =

{
λ(M)w(u, v) if M ∈M(u, v) for some u, v;

λ(M) if M ∈M,

and w : V1 × V2 → R+ is the weight function for holes to be specified shortly.

To construct a Markov chain having π as its stationary distribution, we use the original
chain of [Bro86, JS89] augmented with a Metropolis acceptance rule for the transitions.
Thus transitions from a matching M are defined as follows:

1. Choose an edge e = (u, v) uniformly at random.

2. (i) If M ∈ M and e ∈M , let M ′ = M \ {e} ∈ M(u, v);

(ii) if M ∈M(u, v), let M ′ = M ∪ {e} ∈ M;

(iii) if M ∈ M(u, z) where z 6= v and (y, v) ∈ M , let M ′ = M ∪ {e} \ {(y, v)} ∈
M(y, z);
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(iv) if M ∈ M(y, v) where y 6= u and (u, z) ∈ M , let M ′ = M ∪ {e} \ {(u, z)} ∈
M(y, z).

3. With probability min{1,Λ(M ′)/Λ(M)} go to M ′; otherwise, stay at M .

The Metropolis rule in the final step ensures that this Markov chain is reversible with
π(M) ∝ Λ(M) as its stationary distribution. Finally, to make the chain lazy we add a
self-loop probability of 1/2 to every state; i.e., on every step, with probability 1/2 we
make a transition as above and otherwise do nothing.

Next we need to specify the weight function w. Ideally we would like to take w = w∗,
where

w∗(u, v) =
λ(M)

λ(M(u, v))
(3.11)

for each pair of holes u, v.

We will not be able to determine w∗ exactly but will content ourselves with weights w
satisfying

w∗(y, z)/2 ≤ w(y, z) ≤ 2w∗(y, z), (3.12)

with very high probability.

The main technical result of this paper is the following theorem, which says that, pro-
vided the weight function w satisfies condition (3.12), the Markov chain is rapidly mixing.
We present the theorem as it applies to an arbitrary bipartite graph, hence let m = |E|.
Since we are working with Kn,n, for our purposes m = n2.

Theorem 3.3.2 Assuming the weight function w satisfies inequality (3.12) for all (y, z) ∈
V1 × V2, then the mixing time of the Markov chain MC is bounded above by τ(δ) =
O(m6n8(n log n+ log δ−1)), provided the initial state is a perfect matching of maximum
activity.

Initially we have to take λ(e) = 1 for all e ∈ V1×V2 and w(u, v) = n for all u ∈ V1, v ∈ V2.
This a natural way of starting with parameters for which (3.12) holds. By a sequence of
iterations to be described we are able to maintain (3.12) and at the same time reduce
λ(e) to at most 1/n! for all e /∈ E.

At this point we see that ifM′ denotes the perfect matchings of G andM′′ denotes the
perfect matchings of Kn,n which are not in G then since Λ(M′) = |M′|, Λ(M′′) ≤ 1
and Λ(M(u, v)) ≤ 2Λ(M) for all u, v, we see that

Λ(M′)

Λ(Ω)
≥ |M

′| − 1

2(n2 + 1)
. (3.13)

It follows from this and Theorem 3.3.2 that we can in polynomial time generate a near
uniform perfect matching of G. We repeat this process a number of times until we find
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an edge e1 = (u1, v1) whiich is in at least a fraction 1/(2n2) of the matchings inM′. We
then estimate this proportion to within accuracy ǫ/(2n) with probability at least δ/n.
Let us call our estimate ρ1. We then apply the same strategy to G − {u1, v1} and so
on to obtain estimated proportions ρ1, ρ2, . . . , ρn. Our final estimate of the number of
perfect matchings in G is then ρ−1

1 ρ−1
2 · · · ρ−1

n .

Now let us see how to go about reducing λ(e) for e /∈ E. Assuming that (3.12) holds we
get sufficient samples from our chain so that we can estimate all of the w∗(y, z) to within
a factor 4/3 say. Let these estimates be denoted by w′(y, z). If now there is an edge e /∈ E
such that λ(e) > 1/n! then we replace λ(e) by 3λ(e)/4. The effect of this is to change
any value of w∗ by at most 4/3. If we replace our old w values by the corresponding w′

values then (3.12) will still hold, since now w′(y, z)/w∗(y, z) ∈ [9/16, 16/9] for all y, z
and we repeat our attempts at reducing the λ’s where necessary. Thus to prove Theorem
3.3.1, it is sufficient to prove Theorem 3.3.2.

3.3.1 Proof of Theorem 3.3.2

Theorem 3.3.3 For an ergodic, reversible Markov chain with self-loop probabilities
P (y, y) ≥ 1/2 for all states y, and any initial state x ∈ Ω,

τx(δ) ≤ 2

Φ2

(
ln π(x)−1 + ln δ−1

)
.

We bound the conductance by defining canonical paths γI,F from all I ∈ Ω to all F ∈M.
By upper bounding the maximum number of paths through any particular transition we
will obtain a lower bound on the conductance. Using the fact that perfect matchings are
likely under the stationary distribution, it will be sufficient to only consider a portion of
particular canonical paths. Denote the set of all canonical paths by Γ = {γI,F : (I, F ) ∈
Ω ×M}. Certain transitions on a canonical path will be deemed chargeable. For each
transition t denote by

cp(t) = {(I, F ) : γI,F contains t as a chargeable transition}.

The canonical paths are defined by superimposing I and F . If I ∈ M, then I ⊕ F
consists of a collection of alternating cycles. We assume that the cycles are ordered in
some canonical fashion; for example, having ordered the vertices, we may take as the
first cycle the one that contains the least vertex in the order, as the second cycle the
one that contains the least vertex amongst those remaining, and so on. Furthermore we
assume that each cycle has a distinguished start vertex (e.g., the least in the order).

The canonical path γI,F from I ∈M to F is obtained by unwinding these cycles in the
canonical order. A cycle v0 ∼ v1 ∼ . . . ∼ v2k = v0, where we assume w.l.o.g. that the
edge (v0, v1) belongs to I, is unwound by: (i) removing the edge (v0, v1), (ii) successively,
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Figure 3.4: Unwinding a cycle with k = 4.

for each 1 ≤ i ≤ k− 1, exchanging the edge (v2i, v2i+1) with (v2i−1, v2i), and (iii) adding
the edge (v2k−1, v2k). (Refer to figure 3.4.) All transitions on the path γI,F are deemed
chargeable. A canonical path joining two perfect matchings, as just described, will be
termed “type A.”

If I ∈M(y, z) for some (y, z) ∈ V1×V2, then I⊕F consists of a collection of alternating
cycles together with a single alternating path from y to z. The canonical path γI,F

from I to F is obtained by unwinding the path and then unwinding the cycles in some
canonical order. In this case, only the transitions involved in the unwinding of the path
are deemed chargeable. The alternating path y = v0 ∼ . . . ∼ v2k+1 = z is unwound by:
(i) successively, for each 1 ≤ i ≤ k, exchanging the edge (v2i−1, v2i) with (v2i−2, v2i−1),
and (ii) adding the edge (v2k, v2k+1). A canonical path joining a near-perfect to a perfect
matching will be termed “type B.”

We define a notion of congestion of Γ that accounts only for the chargeable transitions:

̺(Γ) := max
t∈T

{
1

Q(t)

∑

(I,F )∈cp(t)

π(I)π(F )

}
. (3.14)

Our main task will be to derive an upper bound on ̺(Γ), which we state in the next
lemma. From this, it will be a straightforward matter to obtain a lower bound on the
conductance Φ (see Lemma 3.3.2 below) and hence, via Theorem 3.3.3, a bound on
the mixing time. In the following lemma recall that m = |E|, where for our purposes
m = n2.

Lemma 3.3.1 Assuming the weight function w satisfies inequality (3.12) for all (y, z) ∈
V1 × V2, then ̺(Γ) ≤ 16m.

In preparation for proving Lemma 3.3.1, we establish some combinatorial inequalities
concerning weighted near-perfect matchings that will be used in the proof.

Lemma 3.3.2 Let G be as above, and let u, y ∈ V1, v, z ∈ V2.

1. λ(u, v)λ(M(u, v)) ≤ λ(M), for all vertices u, v with u ∼ v;
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2. λ(u, v)λ(M(u, z))λ(M(y, v)) ≤ λ(M)λ(M(y, z)), for all distinct vertices u, v, y, z
with u ∼ v.

Proof The mapping fromM(u, v) toM defined by M 7→M ∪{(u, v)} is injective,
and preserves activities modulo a factor λ(u, v); this dispenses with (i). For (ii), suppose
Mu,z ∈ M(u, z) and My,v ∈ M(y, v), and consider the superposition of Mu,z, My,v and
the single edge (u, v). Observe that Mu,z ⊕My,v ⊕ {(u, v)} decomposes into a collection
of cycles together with an odd-length path O joining y and z.3 Let O = {e0, e1, . . . , e2k}
be an enumeration of the edges of this path, starting at y and working towards z.
Denote by O0 the k + 1 even edges, and by O1 the k odd edges. Finally define a
mapping from M(u, z)×M(y, v) to M×M(y, z) by (Mu,z,My,v) 7→ (M,My,z), where
M := Mu,z ∪ O0 \ O1 and My,z := My,v ∪ O1 \ O0. Note that this mapping is injective,
since we may uniquely recover (Mu,z,My,v) from (M,My,z). (To see this, observe that
M ⊕My,z decomposes into a number of cycles, together with a single odd-length path
joining y and z. This path is exactly the path O considered in the forward map. There
is only one way to apportion edges from O \{(u, v)} between Mu,z and My,v.) Moreover,
the mapping preserves activities modulo a factor λ(u, v). 2

Corollary 3.3.1 Let G be as above, and let u, y ∈ V1, v, z ∈ V2. Then, provided in each
case that the left hand side of the inequality is defined,

1. w∗(u, v) ≥ λ(u, v), for all vertices u, v with u ∼ v;

2. w∗(u, z)w∗(y, v) ≥ λ(u, v)w∗(y, z), for all distinct vertices u, v, y, z with u ∼ v;

3. w∗(u, z)w∗(y, v) ≥ λ(u, v)λ(y, z), for all distinct vertices u, v, y, z with u ∼ v and
y ∼ z.

Proof Inequalities (i) and (ii) follow from the correspondingly labelled inequalities
in Lemma 3.3.2, and the definition of w∗. Inequality (iii) is implied by (i) and (ii). 2

Armed with Corollary 3.3.1, we can now turn to the proof of our main lemma.

Proof [Proof of Lemma 3.3.1] Note from the Metropolis rule that for any pair of
states M,M ′ such that the probability of transition from M to M ′ is non-zero, we have
Q(M,M ′) = min{π(M), π(M ′)}/2m. We will show that for any transition t = (M,M ′)
and any pair of states I, F ∈ cp(t), we can define an encoding ηt(I, F ) ∈ Ω such that
ηt : cp(t)→ Ω is an injection (i.e., (I, F ) can be recovered uniquely from ηt(I, F )), and

π(I)π(F ) ≤ 8 min{π(M), π(M ′)}π(ηt(I, F )) = 16mQ(t)π(ηt(I, F )). (3.15)

3It is at this point that we rely crucially on the bipartiteness of G. If G is non-bipartite, we may
end up with an even-length path and an odd-length cycle, and the proof cannot proceed.
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Figure 3.5: A canonical path through transition M →M ′ and its encoding.

Summing inequality (3.15) over (I, F ) ∈ cp(t), we get

1

Q(t)

∑

(I,F )∈cp(t)

π(I)π(F ) ≤ 16m
∑

(I,F )∈cp(t)

π(ηt(I, F )) ≤ 16m,

where we have used the fact that ηt is an injection. This immediately yields the claimed
bound on ̺(Γ).

We now proceed to define the encoding ηt and show that it has the above properties.
For a transition t = (M,M ′) which is involved in stage (ii) of unwinding a cycle, the
encoding is

ηt(I, F ) = I ⊕ F ⊕ (M ∪M ′) \ {(v0, v1)}.
(Refer to figure 3.5, where just a single alternating cycle is viewed in isolation.) Other-
wise, the encoding is

ηt(I, F ) = I ⊕ F ⊕ (M ∪M ′).

It is not hard to check that C = ηt(I, F ) is always a matching in Ω (this is the reason
that the edge (v0, v1) is removed in the first case above), and that ηt is an injection.
To see this for the first case, note that I ⊕ F may be recovered from the identity
I ⊕ F = (C ∪ {(v0, v1)}) ⊕ (M ∪ M ′); the apportioning of edges between I and F
can then be deduced from the canonical ordering of the cycles and the position of the
transition t. The remaining edges, namely those in the intersection I∩F , are determined
by I ∩ F = M ∩M ′ ∩ C. The second case is similar, but without the need to reinstate
the edge (v0, v1).

It therefore remains only to verify inequality (3.15) for our encoding ηt.

Consider first the case where I ∈ M and t = (M,M ′) is the initial transition in the
unwinding of an alternating cycle in a type A canonical path, where M = M ′∪{(v0, v1)}.
Since I, F, C,M ∈M and M ′ ∈M(v0, v1), inequality (3.15) simplifies to

λ(I)λ(F ) ≤ 8 min{λ(M), λ(M ′)w(v0, v1)}λ(C).

The inequality in this form can be seen to follow from the identity

λ(I)λ(F ) = λ(M)λ(C) = λ(M ′)λ(v0, v1)λ(C),



66 CHAPTER 3. MATCHINGS AND RELATED STRUCTURES

using of inequality (i) of Corollary 3.3.1, and inequality (3.12). The situation is sym-
metric for the final transition in unwinding an alternating cycle.

Staying with the type A path, i.e., with the case I ∈ M, suppose the transition t =
(M,M ′) is traversed in stage (ii) of unwinding an alternating cycle, i.e., exchanging edge
(v2i, v2i+1) with (v2i−1, v2i). In this case we have I, F ∈M while M ∈M(v0, v2i−1),M

′ ∈
M(v0, v2i+1) and C ∈ M(v2i, v1). Since

λ(I)λ(F ) = λ(M)λ(C)λ(v2i, v2i−1)λ(v0, v1)

= λ(M ′)λ(C)λ(v2i, v2i+1)λ(v0, v1),

inequality (3.15) simplifies to

1 ≤ 8 min

{
w(v0, v2i−1)

λ(v2i, v2i−1)
,
w(v0, v2i+1)

λ(v2i, v2i+1)

}
w(v2i, v1)

λ(v0, v1)
.

This inequality can be verified by reference to Corollary 3.3.1: specifically, it follows
from inequality (iii) in the general case i 6= 1, and by two applications of inequality (i)
in the special case i = 1.

We now turn to the type B canonical paths. Suppose I ∈M(y, z), and consider a tran-
sition t = (M,M ′) from stage (i) of the unwinding of an alternating path, i.e., exchang-
ing edge (v2i, v2i−1) with (v2i−2, v2i−1). Observe that F ∈ M,M ∈ M(v2i−2, z),M ′ ∈
M(v2i, z) and C ∈ M(y, v2i−1). Moreover, λ(I)λ(F ) = λ(M)λ(C)λ(v2i−2, v2i−1) =
λ(M ′)λ(C)λ(v2i, v2i−1). In inequality (3.15) we are left with

w(y, z) ≤ 8 min

{
w(v2i−2, z)

λ(v2i−2, v2i−1)
,
w(v2i, z)

λ(v2i, v2i−1)

}
w(y, v2i−1),

which holds by inequality (ii) of Corollary 3.3.1. Note that the factor 8 = 23 is deter-
mined by this case, since we need to apply inequality (3.12) three times.

The final case is the last transition t = (M,M ′) in unwinding an alternating path,
where M ′ = M ∪ (z′, z). Note that I, C ∈ M(y, z), F,M ′ ∈ M,M ∈ M(z′, z) and
λ(I)λ(F ) = λ(M ′)λ(C) = λ(M)λ(z′, z)λ(C). (Here we have written z′ for v2k.) Plugging
these into inequality (3.15) leaves us with

1 ≤ 8 min

{
w(z′, z)

λ(z′, z)
, 1

}
,

which follows from inequality (i) of Corollary 3.3.1.

We have thus shown that the encoding ηt satisfies inequality (3.15) in all cases. This
completes the proof of the lemma. 2

Based on the upper bound on congestion, we can derive the following lower bound on
the conductance.



3.3. THE PERMANENT 67

Corollary 3.3.2 Assuming the weight function w satisfies inequality (3.12) for all (y, z) ∈
V1 × V2, then Φ ≥ 1/100̺3n4 ≥ 1/106m3n4.

Proof Set α = 1/10̺n2. Let S,S be a partition of the state-space. (Note that we
do not assume that π(S) ≤ π(S).) We distinguish two cases, depending on whether
or not the perfect matchings M are fairly evenly distributed between S and S. If
the distribution is fairly even, then we can show Φ(S) is large by considering type A
canonical paths, and otherwise by using the type B paths.

Case I. π(S ∩M)/π(S) ≥ α and π(S ∩M)/π(S) ≥ α. Just looking at canonical paths
of type A we have a total flow of π(S ∩M)π(S ∩M) ≥ α2π(S)π(S) across the
cut. Thus ̺Q(S,S) ≥ α2π(S)π(S), and Φ(S) ≥ α2/̺ = 1/100̺3n4.

Case II. Otherwise (say) π(M∩S)/π(S) < α. Note the following estimates:

π(M) ≥ 1

4n2 + 1
≥ 1

5n2
;

π(S ∩M) < απ(S) < α;

π(S \M) = π(S)− π(S ∩M) > (1− α)π(S).α ≥ 1/7n2.

Consider the cut S \M : S ∪M. The weight of canonical paths (all chargeable
as they cross the cut) is π(S \M)π(M) ≥ (1 − α)π(S)/5n2 ≥ π(S)/6n2. Hence
̺Q(S \M,S ∪M) ≥ π(S)/6n2. Noting Q(S \M,S ∩M) ≤ π(S ∩M) ≤ απ(S)
we have

Q(S,S) ≥ Q(S \M,S)

= Q(S \M,S ∪M)−Q(S \M,S ∩M)

≥ (1/6̺n2 − α)π(S)

≥ π(S)/15̺n2

≥ π(S)π(S)/15̺n2.

Rearranging, Φ(S) = Q(S,S)/π(S)π(S) ≥ 1/15̺n2.

Clearly, it is Case I that dominates, giving the claimed bound on Φ. 2

Theorem 3.3.2 of the previous section, now follows immediately.

Proof [Proof of Theorem 3.3.2] The condition on the starting state ensures log(π(X0)
−1) =

O(n log n), where X0 in the initial state. The lemma now follows from (2.1) and Theo-
rem 2.2.1. 2
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initialize λ(e)← amax for all e ∈ V1 × V2

initialize w(u, v)← namax for all (u, v) ∈ V1 × V2

while ∃e with λ(e) > a(e) do
take S samples from MC with parameters λ,w,

each after a simulation of T steps
use the sample to obtain estimates w′(u, v) satisfying

3w∗(u, v)/4 ≤ w(u, v) ≤ 4w∗(u, v)/3 with high probability ∀u, v
set λ(e)← max{3λ(e)/4, a(e)} and w(u, v)← w′(u, v) ∀u, v

output final weights w(u, v)

Figure 3.6: The algorithm for non-negative entries.

3.3.2 Arbitrary weights

Our algorithm easily extends to compute the permanent of a matrix A with non-negative
entries. Let amax = maxi,j a(i, j) and amin = mini,j a(i, j). Assuming per(A) > 0, then it
is clear that per(A) ≥ (amin)n. Rounding zero entries a(i, j) to (amin)n/n!, the algorithm
follows as described in figure 3.6.

The running time of this algorithm is polynomial in n and log(amax/amin). For complete-
ness, we provide a strongly polynomial time algorithm, i.e., one whose running time is
polynomial in n and independent of amax and amin, assuming arithmetic operations are
treated as unit cost. The algorithm of Linial, Samorodnitsky and Wigderson [?] con-
verts, in strongly polynomial time, the original matrix A into a nearly doubly stochastic
matrix B such that 1 ≥ per(B) ≥ exp(−n− o(n)) and per(B) = α per(A) where α is an
easily computable function. Thus it suffices to consider the computation of per(B). In
which case we can afford to round up any entries smaller than say n−2n to n−2n. The
analysis for the 0,1-case now applies with the same running time.

3.3.3 Problems reducible to matchings

There are a number of problems reducible to counting and generating matchings. Here
we discuss counting graphs with a fixed degree sequence, counting Hamilton cycles in
dense graphs and counting Euler orientations.

Counting Graphs with a Fixed Degree Sequence

Let G(d) denote the set of all labelled graphs with vertex set {1, 2, . . . , n} and degree
sequence d = (d1, . . . , dn). It costs us very little in terms of complexity of discussion if
we extend the discussion to allow the exclusion of a set of edges X. Thus let G(d, X)
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denote the set of all graphs G ∈ G(d) for which the edge set of G is disjoint from X and
so G(d) = G(d, ∅). Our goal is to provide a fully polynomial almost uniform generator
for G(d, X), subject to appropriate conditions on d and X.

Define G ′(d, X) to be
⋃

d′ G(d′, X), where the union ranges over vectors d′ ∈ Nn which
satisfy d′ ≤ d and

∑n
i=1 |di − d′i| ≤ 2. Call a class of degree sequences/excluded pairs

P-stable if there exists a polynomial p such that |G ′(d, X)|/|G(d, X)| ≤ p(n) for every
sequence d = (d1, . . . , dn) in the class. Informally, a degree sequence/excluded pairs
d, X is P-stable if |G(d, X)| does not change radically when d is slightly perturbed.
Although the class of all graphical degree sequences (with X = ∅) is not P-stable, there
are natural subclasses which are. We shall return to this issue in the next section.

Our aim is to construct a fully polynomial almost uniform generator for G(d, X), which
is valid for all sequences d within a specified P-stable class.

Theorem 3.3.4 There is a good sampler and an FPRAS for G(d, X) provided the pair
d, X are drawn from some P-stable class.

Proof For given degree sequence d = (d1, . . . , dn) and excluded set X, let Γ =
Γ(d, X) be the undirected graph with vertex set

V (Γ) = {vik : 1 ≤ i ≤ n and 1 ≤ k ≤ di} ∪ {uij : 1 ≤ i, j ≤ n, i 6= j and (i, j) /∈ X}
and edge set

E(Γ) = {(vik, uij) : 1 ≤ i, j ≤ n, 1 ≤ k ≤ di, i 6= j and (i, j) /∈ X}
∪ {(uij, uji) : 1 ≤ i, j ≤ n, i 6= j and (i, j) /∈ X}.

The intention is to set up a correspondence between perfect matchings M in Γ and
elements of G(d, X). Informally, Γ contains an edge (uij, uji) corresponding to each
potential edge (i, j) in a graph G ∈ G(d, X); the presence of the edge (uij, uji) in M
models the absence of the edge (i, j) in G. Additionally there are n clusters of vertices
of the form {vik : 1 ≤ k ≤ di} which, together with their incident edges, enforce the
degree contraints at each vertex i in G.

Let φ be the function, from matchings in Γ to (undirected) graphs on vertex set {1, . . . , n},
which maps the matching M ⊆ E(Γ) to the graph with edge set

{(i, j) : i 6= j and (uij, uji) /∈M}.

It is a straightforward task to verify that φ(M) = G(d, X) and, moreover, that each
graph in G(d, X) is the image of precisely

∏n
i=1 di! elements of M. In particular, when

(uij, uji) /∈ M there exist edges (vis, uij), (vjt, uji) ∈ M and this enforces the degree
constraints.

Thus, to generate elements of G(d, X) almost uniformly, it is enough to generate perfect
matchings in Γ(d) almost uniformly. By Theorem 3.2.1, this will be possible provided
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|N (Γ(d))|/|M(Γ(d))| ≤ q(m), where m = |V (Γ)| and q is some fixed polynomial. (The
polynomial q will depend on the polynomial p in the definition of P-stable.)

Call a matching M of Γ normalised iff either (i) M is a perfect matching, or (ii) M
is a near-perfect matching whose unmatched vertices are both cluster vertices. Denote
the set of all normalised matchings of Γ by N ′(Γ). Let M ∈ N (Γ) be a matching in
which the vertex uij is unmatched. By adding the edge (uij, uji) to M , and removing the
edge from M which was previously incident at uji, we succeed in moving one unmatched
vertex into the set of cluster vertices. Two such operations are sufficient to normalise
any near-perfect matching. (If vertices uij and uji are both unmatched, then M can be
normalised by adding the single edge (uij, uji).)

The normalising operation maps at most n2 distinct matchings onto a single normalised
matching; hence |N (Γ)| ≤ n2|N ′(Γ)|. It is straightforward to check that φ(N ′(Γ)) =
G ′(d, X) and that each element of G ′(d, X) is the image of at most

∏n
i=1 di! elements of

N ′(Γ). Putting these facts together we have

|N (Γ)|
|M(Γ)| ≤

n2|N ′(Γ)|
|M(Γ)| ≤

n2|G ′(d, X)|
|G(d, X)| ≤ n2p(n).

The proof is completed by appealing to Theorem 3.2.1; the degree of the polynomial q
in the statement of that theorem can be taken as ⌈1

2
deg p⌉+ 1. 2

The proof of Theorem 3.3.4 hinged on the fact that a polynomial bound on the ratio
|G ′(d, X)|/|G(d, X)| implies a polynomial bound on the ratio |N (Γ(d))|/|M(Γ(d))|; in
fact the reverse implication also holds. P-stability is therefore not merely a sufficient,
but also a necessary condition for our reduction to be applicable.

In the next section, we will develop a simple numerical condition on degree sequences/excluded
pairs which is sufficient to guarantee P-stability.

A criterion for P-stability

For a graphical degree sequence d = (d1, . . . , dn), define dmax = maxi di and e(d) =
1
2

∑n
i=1 di. Note that e(d) is integral. Next let xmax denote the maximum degree in

the graph induced by X. We now derive a very useful sufficient condition for d to be
P-stable in terms of the quantities dmax, e(d) and xmax.

Theorem 3.3.5 The class of all pairs d, X which satisfy e(d) > dmax(dmax + xmax − 1)
is P-stable.

Proof Let d, X satisfy the above condition. We will show how to associate with
each graph G = (v,E) ∈ G ′(d, X) a graph Ḡ ∈ G(d, X) which is “close to” G, in the
sense that G can be transformed into Ḡ via a simple edge exchange operation. The
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result will then follow from the observation that no graph in G(d, X) can be close to too
many graphs in G ′(d, X).

If G ∈ G(d, X) we simply set Ḡ = G, so assume that G ∈ G ′(d, X) − G(d, X). We
describe the operation first in the case that G has degree sequence d′ of the form

d′i =

{
di − 1 for i ∈ {k, l};
di otherwise.

If (k, l) /∈ E ∪X then we just add this edge to G to form Ḡ. If on the other hand the
edge (k, l) ∈ E ∪X we look for a pair x, y of vertices such that (x, y) ∈ E

(i) x, y, k, l are all distinct;

(ii) (x, k) and (y, l) are not edges of G.

(iii) (x, k), (y, l) /∈ X.

Then the graph Ḡ is formed by adding to G the edges (x, k) and (y, l) and delet-
ing the edge (x, y). We claim that such a pair x, y can always be found. To see
this, note that there are 2e(d′) = 2(e(d) − 1) candidates for the ordered pair x, y
among endpoints of edges of G, some of which are excluded by requirements (i) –
(iii). Elementary counting reveals that the number of candidates excluded by (i) is
at most 2(d′k + d′l)− 2 ≤ 2(2dmax − 3). Similarly, the number excluded by (ii) is at most
2(dmax − 2)(dmax − 1) and the number excluded by (iii) is at most 2xmaxdmax. It follows
that a suitable pair x, y can be found provided that

2(e(d)−1) > 2(2dmax−3)+2(dmax−2)(dmax−1)+2xmaxdmax = 2dmax(dmax+xmax−1)−2,

which is equivalent to the condition on d stipulated in the theorem.

It remains to describe Ḡ when the degree sequence of G is

d′i =

{
di − 2 for i = k;

di otherwise.

In this case, we seek an edge (x, y) of G for which (i) x, y 6= k, and (ii) (x, k), (y, k) /∈
E ∪X. The graph Ḡ is then obtained from G by adding the edges (x, k) and (y, k) and
deleting (x, y). Using similar reasoning to the above, the reader may easily verify that
a suitable edge (x, y) always exists under the stated condition on d.

Now for any graph H ∈ G(d, X), define the set

K(H) = {G ∈ G ′(d, X) : Ḡ = H}.
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Note that the sets K(H) partition G ′(d, X). It is a straightforward task to verify
that each element of K(H) can be coded by a unique tuple (x, y, k, l), and hence that
|K(H)| ≤ n4. We therefore conclude that |G ′(d, X)| / |G(d, X)| ≤ n4, so this class of
degree sequences is indeed P-stable. 2

For the remainder of this discussion we consider X = ∅ and talk about degree sequences
only. Informally, Theorem 3.3.5 says that a degree sequence belongs to a P-stable class
provided its maximum and average degrees do not differ by too much. Let us mention
two important types of degree sequence which satisfy this condition:

(i) Let d = (k, k, . . . , k), i.e., d is k-regular, with k ≤ n/2. Then setting e(d) = nk/2
and dmax = k, we see at once that the hypothesis of Theorem 3.3.5 is satisfied.

(ii) Suppose all degrees in d lie in the range [1,
√
n/2 ]. Then setting e(d) ≥ 1

2
(dmax +

n− 1) and dmax ≤
√
n/2, the hypothesis of Theorem 3.3.5 is again seen to hold.

Note also that there is an obvious bijection between the sets G(d) and G(d), where d
is the complement of d, i.e., di = n− 1− di. Hence for the purposes of generation and
counting d and d are equivalent.

Remark 3.3.1 The class of all graphical degree sequences is not P-stable. To see this,
consider the family of degree sequences on 2k vertices of the form

d(k) = (1, 2, . . . , k − 1, k, k, k + 1, . . . , 2k − 1)

for k = 3, 4, . . . . Observe that the selection of a graph with any given degree sequence
d = (d1, . . . , dn) can be viewed recursively as follows:

1. Select a set of dn neighbours for vertex n.

2. Recursively select a graph with degree sequence d′ = (d′1, . . . , d
′
n−1), where d′

is obtained from d by deleting the final component and decrementing by 1 the
components which correspond to the dn chosen neighbours for vertex n.

Adopting this view, it is clear that there is a unique graph with degree sequence d(k).

Now modify d(k) by decrementing by 1 the final two components. Note that graphs on
the modified degree sequence are members of G ′(d(k)). Applying the recursive selection
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procedure we therefore have

|G ′(d(k))| ≥ |G(1, 2, . . . , k, k, k + 1, . . . , 2k − 3, 2k − 3, 2k − 2)|
≥ |G(1, 1, 2, . . . , k − 1, k − 1, k, . . . , 2k − 4, 2k − 4)|
≥ |G(1, 1, 1, 2, . . . , k − 2, k − 2, k − 1, . . . , 2k − 5)|
≥ 3× |G(1, 1, 1, 2, . . . , k − 3, k − 3, k − 2, . . . , 2k − 7)|
≥ 32 × |G(1, 1, 1, 2, . . . , k − 4, k − 4, k − 3, . . . , 2k − 9)|
...

≥ 3k−3|G(1, 1, 1, 1)|
= 3k−2.

(The factor of 3 arises at each stage from the freedom to choose one of three degree-one
vertices to be adjacent to the vertex of largest degree.) The ratio |G ′(d(k))|/|G(d(k))| is
exponential in k, and hence in n = 2k, the number of vertices.

Remark 3.3.2 When considering bipartite graphs we can dispense with worrying about
P-stability. Suppose we consider bipartite graphs with m+ n vertices. Then we change
the definition of Γ so that it is bipartite, allowing the generation of a (near) random
perfect matching without qualification.

V (Γ) ={vik : 1 ≤ i ≤ m and 1 ≤ k ≤ di} ∪ {wjk : 1 ≤ j ≤ n and 1 ≤ k ≤ dj}
∪ {uij, u

′
ij : 1 ≤ i ≤ m, 1 ≤ j ≤ n, (i, j) /∈ X}

and edge set

E(Γ) = {(vik, uij) : 1 ≤ i,≤ m, 1 ≤ j ≤ n 1 ≤ k ≤ di, and (i, j) /∈ X}
∪ {(wjk, u

′
ij) : 1 ≤ i ≤ m, 1 ≤ j ≤ n 1 ≤ k ≤ di, and (i, j) /∈ X}

∪ {(uij, u
′
ij) : 1 ≤ i, j ≤ n, and (i, j) /∈ X}.

Digraphs

Consider a directed graph
−→
G = (

−→
V ,
−→
E ), where the in-degree (out-degree, respectively)

of a vertex v ∈ −→V is denoted by d−(v) (d+(v)). A 0,1-flow is defined as a subset

of edges
−→
E ′ ⊂ −→E such that in the resulting subgraph (

−→
V ,
−→
E ′), d−(v) = d+(v) for all

v ∈ −→V . Counting the number 0,1 flows is reducible to computing the 0,1 permanent of
an undirected bipartite graph G = (V,E) as follows.
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The graph G = (V,E) consists of:

V =

{
hi,j ,mi,j, ti,j for all −−→vivj ∈

−→
E ,

u1
i , . . . , u

d−(vi)
i for all vi ∈

−→
V

}
,

E =





(hi,j ,mi,j), (mi,j, ti,j) for all −−→vivj ∈
−→
E ,

(uk
i , hi,j) for all i, j, k where uk

i , hi,j ∈
−→
V ,

(uk
i , tj,i) for all i, j, k where uk

i , tj,i ∈
−→
V





A 0, 1-flow
−→
E ′ is mapped to a perfect matching M in the following manner. For each

−−→vivj ∈
−→
E ′ add the edge (hi,j,mi,j) to M , while for each −−→vivj ∈

−→
E \ −→E ′ add the edge

(mi,j, ti,j) to M . Now for vi ∈
−→
V , observe that the set of vertices {hi,j}j ∪ {tj′,i}j′,

consists of exactly d−(vi) unmatched vertices. There are d−(vi)! ways of pairing these
unmatched vertices with the set of vertices {uk

i }k. Thus the flow E ′ corresponds to∏
v∈−→V d−(v)! perfect matchings of G, and it is clear that the mapping is a bijection.

This implies the following corollary.

Corollary 3.3.3 For an arbitrary directed graph
−→
G , there exists an fpras for counting

the number of 0,1 flows.

Suppose the directed graph
−→
G has a fixed source s and sink t. After adding a simple

gadget from t to s we can estimate the number of maximum 0, 1 flows from s to t by
estimating the number of 0, 1 flows in the resulting graph.

Hamilton Cycles in Dense Graphs

Let G = (V,E) be a graph, where V = {v1, v2, . . . , vn}. Denote the degree of vertex vi

by di, for i = 1, 2, . . . , n. We will say that G is dense if mini di ≥ (1
2

+ α)n, where
0 < α ≤ 1

2
is a fixed constant. Under these circumstances it is known thatGmust contain

a Hamilton cycle. Moreover, the proof of this fact is easily modified to give a simple
polynomial-time algorithm for constructing such a Hamilton cycle. This algorithm,
which uses edges whose existence is guaranteed by the pigeonhole principle to “patch
together” disjoint cycles, provides the required easy decision procedure.

We consider here the natural but more difficult problems of counting the number of
Hamilton paths and cycles in such graphs. These problems are in fact #P-complete,
so exact counting is presumably intractable. More positively, our main results in Sec-
tions 3.3.3 and 3.3.3 establish the existence of fpras’s for these counting problems when
α > 0. We may observe that if the degree condition is relaxed to mini di ≥ (1

2
−αn)n with

αn = Ω(nκ−1) for any fixed κ > 0, then the question of the existence of any Hamilton
path or cycle becomes NP-Complete and so approximate counting is NP-hard. This is
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true even if we insist on G being k-connected for any k = o(n). Start with an arbitrary
graph G and add a clique C of size m = n1/κ and an independent set I of size m − 1
and then join every vertex in C to every other vertex, to produce a graph Γ. Then G
has a Hamilton path if and only if Γ has a Hamilton cycle. Also Γ contains a Hamilton
path if and only if G contains two vertex disjoint paths that cover all its vertices.

Thus our results establish quite precisely the difficulty of the counting problem except
in the region where α is close to zero. Section 5 extends the positive results of the earlier
sections to cover self-avoiding paths and cycles of all lengths.

The natural approach given previous successes in this area is to try to find a rapidly
mixing Markov chain with state space the set of Hamilton cycles of a given dense graph,
and possibly its Hamilton paths as well. Earlier attempts with this approach have proved
fruitless. Somewhat surprisingly, the key lies in the fact that in dense graphs, Hamilton
cycles form a substantial fraction of the set of 2-factors, a 2-factor being defined as a
set of vertex-disjoint cycles which together contain all vertices of G. This is not obvious
a priori and the main technical difficulty in the approach lies in obtaining a good upper
bound on the ratio of 2-factors to Hamilton cycles in a dense graph. A direct attack —
relating the number of 2-factors with k cycles to the number with k+1 cycles — appears
unworkable. Instead, we introduce a weight function on 2-factors that allows us to argue
about the distribution of total weight as a function of the number of cycles. By a rather
delicate analysis, we are able to show that the Hamilton cycles carry sufficient weight
for our purpose. In summary we prove

Theorem 3.3.6 If G is dense then there are fpras’s for

(a) approximating its number of Hamilton cycles,

(b) approximating its number of Hamilton paths,

(c) approximating its number of cycles of all sizes,

(d) approximating its number of paths of all sizes.

Outline Approach

Our approach to constructing an fpras for Hamilton cycles in a dense graph G is via a
randomized reduction to sampling and estimating 2-factors in G. Using the results of
Section 3.3.3 we prove

Theorem 3.3.7 There exist both a good sampler and an FPRAS for the set of 2-factors
in a dense graph.
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Proof The set of 2-factors in a graph G = (V,E) is equal to G(d, X), where d =
(2, 2, . . . , 2), and X = V (2) − E is the complementary edge set to E. The result now
follows from Theorems 3.3.4 and 3.3.5, since, for a dense G and n sufficiently large,
dmax = 2, xmax <

1
2
n− 1, and dmax(dmax + xmax − 1) < n = e(d). 2

Given Theorem 3.3.7, the reduction from Hamilton cycles to perfect matchings is easy to
describe. We estimate first the number of 2-factors in G, and then the proportion of 2-
factors which are Hamilton cycles. Both counting and sampling phases run in polynomial
time, by Theorem 3.3.7, provided only that G is dense. For the sampling phase to also
produce an accurate estimate of the number of Hamilton cycles, it is necessary that the
ratio of 2-factors to Hamilton cycles in G not be too large, i.e. bounded by a polynomial
in n. This will be established in Section 3.3.3.

Many 2-factors are Hamiltonian

Let n be a natural number and β = 10/α2. Let k0 = ⌊β lnn⌋, and for 1 ≤ k ≤ n, define
g(k) = nβk!(β lnn)−k, and

f(k) =

{
g(k), if k ≤ k0;

g(k0), otherwise.

Lemma 3.3.3 Let f be the function defined above. Then

1. f is non-increasing and satisfies

min{f(k − 1), f(k − 2)} = f(k − 1) ≥ (β lnn)k−1f(k);

2. f(k) ≥ 1, for all k.

Proof Observe that g is unimodal, and that k0 is the value of k minimizing g(k);
it follows that f is non-increasing. When k ≤ k0, we have f(k − 1) = g(k − 1) =
(β lnn)k−1g(k) = (β lnn)k−1f(k); otherwise, f(k−1) = g(k0) = f(k) ≥ (β lnn)k−1f(k).
In either case, the inequality in part 1 of the lemma holds.

Part 2 of the lemma follows from the chain of inequalities

1

f(k)
≤ 1

g(k0)
≤ (β lnn)k0

nβk0!
≤ n−β

∞∑

k=0

(β lnn)k

k!
= n−β exp(β lnn) = 1.

2

Lemma 3.3.4 Suppose α is constant greater than 0. Let G = (V,E) be an undirected
graph of order n and minimum degree (1

2
+ α)n. Then the number of 2-factors in G

exceeds the number of Hamilton cycles by at most a polynomial (in n) factor, the degree
of the polynomial depending only on α.
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Proof For 1 ≤ k ≤ ⌊n/3⌋, let Φk be the set of all 2-factors in G containing exactly
k cycles, and let Φ = ∪kΦk be the set of all 2-factors. Define

Ψ =
{

(F, F ′) : F ∈ Φk, F
′ ∈ Φk′ , k′ < k, and F ⊕ F ′ ∼= C6

}
,

where ⊕ denotes symmetric difference, and C6 is the cycle on 6 vertices. Observe that
(Φ,Ψ) is an acyclic directed graph; let us agree to call its component parts nodes and arcs
to avoid confusion with the vertices and edges of G. Observe also that if (F, F ′) ∈ Ψ is
an arc, then F ′ can be obtained from F by deleting three edges and adding three others,
and that this operation can decrease the number of cycles by at most two. Thus every
arc (F, F ′) ∈ Ψ is directed from a node F in some Φk to a node F ′ in Φk−1 or Φk−2.

Our proof strategy is to define a positive weight function on the arc set Ψ such that
the total weight of arcs leaving each node (2-factor) F ∈ Φ \ Φ1 is at least one greater
than the total weight of arcs entering F . This will imply that the total weight of arcs
entering Φ1 is an upper bound on the number of non-Hamilton 2-factors in G, and that
the maximum total weight of arcs entering a single node in Φ1 is an upper bound on the
ratio |Φ \ Φ1|/|Φ1|.
The weight function w : Ψ → IR

+ we employ is defined as follows. For any arc (F, F ′)
with F ′ ∈ Φk: if the 2-factor F ′ is obtained from F by coalescing two cycles of lengths l1
and l2 into a single cycle of length l1 + l2, then w(F, F ′) = (l−1

1 + l−1
2 )f(k); if F ′ results

from coalescing three cycles of length l1, l2 and l3 into a single one of length l1 + l2 + l3,
then w(F, F ′) = (l−1

1 + l−1
2 + l−1

3 )f(k).

Let F ∈ Φk be a 2-factor with k > 1 cycles γ1, γ2, . . . , γk, of lengths n1, n2, . . . , nk.
We proceed to bound from below the total weight of arcs leaving F . For this purpose
imagine that the cycles γ1, γ2, . . . , γk are oriented in some way, so that we can speak of
each oriented edge (u, u′) in some cycle γi as being “forward” or “backward”. Since we
are interested in obtaining a lower bound, it is enough to consider only arcs (F, F+)
from F of a certain kind: namely, those for which the 6-cycle γ = F ⊕F+ is of the form
γ = (x, x′, y, y′, z, z′), where (x, x′) ∈ F is a forward cycle edge, (y, y′) ∈ F is a forward
edge in a cycle distinct from the first, and (z, z′) ∈ F is a backward cycle edge. The edge
(z, z′) may be in the same cycle as either (x, x′) or (y, y′), or in a third cycle. Observe
that (x′, y), (y′, z) and (z′, x) must necessarily be edges of F+. It is routine to check
that any cycle γ = (x, x′, y, y′, z, z′) satisfying the above constraints does correspond to
a valid arc from F . The fact that (z, z′) is oriented in the opposite sense to (x, x′) and
(y, y′) plays a crucial role in ensuring that the number of cycles decreases in the passage
to F+ when only two cycles involved.

First, we estimate the number of cycles γ for which (x, x′) is contained in a particular
cycle γi of F . We might say that γ is rooted at γi. Assume, for a moment, that the
vertices x, x′, y, y′ have already been chosen. There are at least (1

2
+ α)n − 5 ways to

extend the path (x, x′, y, y′), first to z and then to z′, which are consistent with the rules
given above; let Z ′ be the set of all vertices z′ so reachable. Denote by G(x) the set
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of vertices adjacent to x. The number of ways of completing the path (x, x′, y, y′) to a
valid 6-cycle is at least

|G(x) ∩ Z ′| ≥ |G(x)|+ |Z ′| − n
≥ (1

2
+ α)n+ [(1

2
+ α)n− 5]− n

= 2αn− 5

≥ αn,

for n sufficiently large. A lower bound on the number of 6-cycles γ rooted at γi now
follows easily: there are ni choices for (x, x′); then at least (1

2
+ α)n − ni choices for

(y, y′); and finally — as we have just argued — at least αn ways to complete the cycle.
Thus the total number of 6-cycles rooted at γi is at least αnni[(

1
2

+ α)n− ni].

We are now poised to bound the total weight of arcs leaving F . Each arc (F, F+)
defined by a cycle γ rooted at γi has weight at least n−1

i min{f(k− 1), f(k− 2)}, which,
by Lemma 3.3.3, is bounded below by (β lnn)(kni)

−1f(k). Thus the total weight of arcs
leaving F is bounded as follows:

∑

F+:(F,F+)∈Ψ

w(F, F+) ≥
k∑

i=1

αnni[(
1
2

+ α)n− ni]
(β lnn)f(k)

kni
(3.16)

= αn2[(1
2

+ α)k − 1]
(β lnn)f(k)

k
≥ α2β f(k)n2 lnn

≥ 10f(k)n2 lnn, (3.17)

where we have used the fact that k ≥ 2. Note that the presence of a unique backward
edge, namely (z, z′), ensures that each cycle γ has a distinguishable root, and hence that
the arcs (F, F+) were not overcounted in summation (3.16).

We now turn to the corresponding upper bound on the total weight of arcs (F−, F ) ∈ Ψ
entering F . It is straightforward to verify that the cycle γ = (x, x′, y, y′, z, z′) = F−⊕F
must contain three edges — (x, x′), (y, y′) and (z, z′) — from a single cycle γi of F , the
remaining edges coming from F−. The labeling of vertices in γ can be made canonical
in the following way: assume an ordering on vertices in V , and assign label x to the
smallest vertex. The condition (x, x′) ∈ F uniquely identifies vertex x′, and the labeling
of the other vertices in the cycle γ follows.

Removing the three edges (x, x′), (y, y′) and (z, z′) from γi leaves a triple of simple
paths of lengths (say) a − 1, b − 1 and c − 1: these lengths correspond (respectively)
to the segment containing x, the segment containing x′, and the remaining segment.
Going round the cycle γi, starting at x′ and ending at x, the vertices x, x′, y, y′, z, z′ may
appear in one of eight possible sequences:

x′, y′, y, z′, z, x;
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x′, z, z′, y, y′, x;
x′, z, z′, y′, y, x;
x′, z′, z, y, y′, x;
x′, y′, y, z, z′, x;
x′, y, y′, z′, z, x;
x′, z′, z, y′, y, x;
x′, y, y′, z, z′, x.

For a given triple of lengths (a, b, c), each of the above sequences corresponds to at most
ni possible choices for the edges (x, x′), (y, y′) and (z, z′), yielding a maximum of 8ni in
total. To see this, observe that the edge (x, x′) may be chosen in ni ways (minimality
of x fixes the orientation of the edge), and that the choice of (x, x′) combined with the
information provided by the sequence completely determines the triple of edges.

The eight sequences divide into five possible cases, as the first four sequences lead to
equivalent outcomes (covered by case 1 below). Taken in order, the five cases are:

1. For at most 4ni of the choices for the edges (x, x′), (y, y′) and (z, z′), γi ⊕ γ is a
single cycle;

2. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths a and b+ c;

3. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths b and a+ c;

4. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths c and a+ b;

5. for at most ni choices, γi ⊕ γ is a triple of cycles of lengths a, b and c.

The first case does not yield an arc (F−, F ), since the number of cycles does not decrease
when passing from F− = F ⊕ γ to F , but the other four cases do have to be reckoned
with.
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The total weight of arcs entering F can be bounded above as follows:

∑

F−:(F−,F )∈Ψ

w(F−, F ) ≤
k∑

i=1

nif(k)
∑

a,b,c≥1
a+b+c=ni

[(
1

a
+

1

b
+

1

c

)
+

(
1

a
+

1

b+ c

)
+

(
1

b
+

1

a+ c

)
+

(
1

c
+

1

a+ b

)]

=
k∑

i=1

nif(k)
∑

a,b,c≥1
a+b+c=ni

[
6

a
+

3

b+ c

]

≤
k∑

i=1

nif(k)n

ni−1∑

a=1

[
6

a
+

3

ni − a

]

≤ 9f(k)n2Hn (3.18)

where Hn =
∑n

i=1 i
−1 ≤ lnn + 1 is the nth harmonic number. Combining inequalities

(3.17) and (3.18), we have

∑

F+:(F,F+)∈Ψ

w(F, F+) −
∑

F−:(F−,F )∈Ψ

w(F−, F ) ≥ 10f(k)n2 lnn− 9f(k)n2Hn

≥ f(k)n2(lnn− 9)

≥ n2(lnn− 9),

where the final inequality is by Lemma 3.3.3. Thus the total weight of arcs leaving
F exceeds the total weight of arcs entering by at least 1, provided n is sufficiently
large. The number of non-Hamilton 2-factors |Φ \ Φ1| is bounded above by the total
weight of arcs entering Φ1, which in turn is bounded — see inequality (3.18) — by
|Φ1| × 9f(1)n2Hn = |Φ1| ×O(n2+β). This establishes the lemma. 2

Counting the number of cycles of all sizes

We will first consider approximating the total number of cycles in graphs with minimum
degree (1

2
+ α)n.

We first note that if we add a loop to each vertex and extend the definition of 2-factor
to include loops as cycles of length one, then the argument of Section 3.3.3 may be
extended to this case (note that we still forbid cycles of length two i.e. double edges).
Thus there exists both a fully polynomial randomized approximation scheme and a fully
polynomial almost uniform sampler for the set of partial 2-factors in a dense graph. Let
a partial 2-factor be cyclic if it consists of a single cycle of length at least three and
a collection of loops. Clearly the number of cyclic partial 2-factors is the same as the
number of cycles.
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The procedure for approximating the number of cycles of all sizes is as follows: we
estimate first the number of partial 2-factors in G, and then the number of cyclic partial
2-factors by standard sampling methods as a proportion of the number of partial 2-
factors. To produce an accurate estimate in polynomial time it is only necessary to
show that the ratio of partial 2-factors to cyclic partial 2-factors is not too large. Let

Fℓ = {partial 2-factors with ℓ loops}, and fℓ = |Fℓ|.
For a given F ∈ Fℓ let L = {loops of F}, which we will now identify with the corre-
sponding set of vertices. For v ∈ L let dv denote the number of neighbours of v in L
and D =

∑
v∈L dv.

If v ∈ L then there are at least 2αn−2dv ways of adding v to a cycle C of F by deleting
an edge (a, b) of C and adding edges (a, v), (v, b). Indeed we go round each cycle C of
F ; if the successor b of a vertex a neighbouring v is also a neighbour of v, then it forms
an (a, b, v) triangle. The number of such triangles is at least 2αn− 2dv.

So in total there are at least
∑

v∈L

(2αn− 2dv) = 2ℓαn− 2D (3.19)

≥ 2ℓ(αn− (ℓ− 1)) (3.20)

such augmentations.

Suppose first that ℓ ≤ ℓ1 = ⌊αn/2⌋. Then (3.20) gives at least ℓαn augmentations of
F ∈ Fℓ to an F ′ ∈ Fℓ−1. Each F ′ ∈ Fℓ−1 arises in at most n ways and so

fℓ−1

fℓ
≥ αℓ.

Putting ℓ0 = ⌈2/α⌉ we see that

fℓ1 + fℓ1−1 + · · ·+ fℓ0+1 ≤ fℓ0 ≤ fℓ0 + fℓ0−1 + · · ·+ f0. (3.21)

Suppose next that ℓ > ℓ1. Note first that since a graph with r vertices and s edges
contains at least r − s+ 1 distinct cycles, we see that L contains at least

D

2
− ℓ+ 1 (3.22)

distinct cycles.

Adding a cycle C contained in L to F and removing |C| loops gives us a 2-factor in Fℓ′

where ℓ′ < ℓ. From (3.19) and (3.22) we see that there are at least
(

2ℓαn− 2D

4

)+

+

(
D

2
− ℓ
)+

≥ ℓ
(αn

2
− 1
)

(3.23)

≥ ℓαn

3
(3.24)
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augmentations of either sort from F . Each F ′ ∈ F<ℓ arises in at most n + n ways
(accounting for both ways of reducing L) and so

fℓ ≤
6

αℓ
(fℓ−1 + fℓ−2 + · · ·+ f0)

≤ θ(fℓ−1 + fℓ−2 + · · ·+ f0),

where θ = 12/(α2n), assuming ℓ > ℓ1.

Thus
fℓ + fℓ−1 + · · ·+ f0

fℓ−1 + fℓ−2 + · · ·+ f0

≤ 1 + θ

and so

fℓ + fℓ−1 + · · ·+ f0 ≤ (1 + θ)ℓ−ℓ1Σ1, (3.25)

where Σ1 = fℓ1 + fℓ1−1 + · · ·+ f0. We weaken (3.25) to

fℓ1+k ≤ (1 + θ)kΣ1

≤ e12α−2

Σ1. (3.26)

It follows from (3.21) and (3.26) that

f0 + f1 + · · ·+ fn

f0 + f1 + · · ·+ fℓ0

≤ 2 + 2ne12α−2

. (3.27)

Now take an F ∈ Fℓ where ℓ ≤ ℓ0 and fix its set of loops L. The number of partial
2-factors with this same L is at most a polynomial factor, p(n) say, of the number of
cycles of size n− ℓ through V \L, by the results of Section 3. (It is clear that because ℓ
is small here, the required degree conditions are satisfied.) Thus, by (3.27), the ratio of
partial 2-factors to cyclic partial 2-factors is O(np(n)) and we have proved the existence
of an fpras for the number of cycles.

Paths and Hamilton Paths

We obtain an fpras for counting the number of Hamilton paths in the following way. We
add a vertex v0 and join it by an edge to every vertex of G. Call this new graph G∗.
The number of Hamilton cycles in G∗ is equal to the number of Hamilton paths in G.
Since G∗ is dense we can approximate the latter quantity by approximating the former.

Similarly, to estimate the number of paths of all lengths, we compute an estimate c∗

for the number of cycles in G∗ and an estimate ρ∗ for the proportion ρ of cycles which
contain v0. Since the number of cycles containing v0 is the number of paths in G, this
provides an estimate ρ∗c∗ for the number of paths. Also, this will give us an fpras
provided ρ is not too small. But clearly ρ ≥ 3/4 and we are done.



3.3. THE PERMANENT 83

Eulerian Orientations

A graph G = (V,E) is Eulerian if it is connected and all of its vertex degrees d(v), v ∈ V
are even. An orientation σ of G defines a digraph Dσ = (V,Aσ) where the unoriented
edge {u, v} ∈ E is replaced either by (u, v) or (v, u) in Aσ. Thus there are precisely 2|E|

distinct orientations of G.

Let d+
σ (v), d−σ (v) denote the outdegree, indegree of vertex v under orientation σ. σ is an

Eulerian orientation if d+
σ (v) = d−σ (v) for all v ∈ V .

Theorem 3.3.8 There is a good sampler and an FPRAS for the Euler orientations of
an Eulerian graph G.

Proof We reduce the problem of sampling/counting Euler orientations to that of
sampling/counting perfect matchings in an associated bipartite graph G′. The graph G′

has vertex bipartition V ′ = V1 ∪ V2 where

V1 =
⋃

v∈V

Xv and Xv = {xv,e : v ∈ e ∈ E} for v ∈ V.

V2 = {we : e ∈ E} ∪
⋃

v∈V

Yv and Yv = {yv,i : 1 ≤ i ≤ d(v)/2} for v ∈ V.

The edge set E ′ of G′ is defined by

E ′ = {{xu,e, we} : u ∈ e ∈ E} ∪
⋃

v∈V

Xv × Yv.

Let n′ = 2m = |V1| = |V2| where m = |E|. Let now M′ denote the set of perfect
matchings of G′. Let P0 denote the set of Eulerian orientations of G.

Lemma 3.3.5 M′ can be partitioned into M′
σ : σ ∈ P0 so that |M′

σ| =
∏

v∈V (d(v)/2)!
for all σ ∈ P0.

It follows immediately that sampling/counting for P0 can be reduced to sampling/counting
for M′.

Proof of Lemma 3.3.5 Given a perfect matchingM ofG′ we letXM
v = {xv,e ∈ Xv : {xv,e, we} ∈M}.

Then define an orientation σ as follows: If e = {u, v} ∈ E then put (u, v) into Aσ if
xu,e ∈ XM

u and put (v, u) into Aσ if xv,e ∈ XM
v . Exactly one of these is true, in order

that we is covered by M . The orientation is Eulerian because d+
σ (v) = |XM

v | = d(v)/2.

Furthermore, there are ν =
∏

v∈V (d(v)/2)! different matchings for each fixed collection
XM

v : v ∈ V , all giving the same orientation. The construction is reversible i.e. given
σ ∈ P0 we let XM

v = {xv,e : e is oriented away from v} for v ∈ V . 2
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Chapter 4

Computing the volume of a convex
body

The mathematical study of areas and volumes is as old as civilization itself, and has
been conducted for both intellectual and practical reasons. As far back as 2000 B.C.,
the Egyptians1 had methods for approximating the areas of fields (for taxation purposes)
and the volumes of granaries. The exact study of areas and volumes began with Euclid2

and was carried to a high art form by Archimedes3. The modern study of this subject
began with the great astronomer Johann Kepler’s treatise4 Nova stereometria doliorum
vinariorum, which was written to help wine merchants measure the capacity of their
barrels.

We consider here the problem of computing the volume of a convex body in Rn, where
n is assumed to be relatively large.

1The Rhind Papyrus (copied ca. 1650 BC by a scribe who claimed it derives from the “middle
kingdom” about 2000 - 1800 BC) consists of a list of problems and solutions, 20 of which relate to areas
of fields and volumes of granaries.

2The exact study of volumes of pyramids, cones, spheres and regular solids may be found in Euclid’s
Elements (ca. 300 BC).

3Archimedes (ca. 240 BC) developed the method of exhaustion (found in Euclid) into a powerful
technique for comparing volumes and areas of solids and surfaces. Manuscripts:

1. Measurement of the Circle. (Proves 3 10

71
< π < 3 1

7
).

2. Quadrature of the Parabola

3. On the Sphere and Cylinder

4. On Spirals

5. On Conoids and Spheroids

4The application of modern infinitesimal ideas begins with Kepler’s Nova stereometria doliorum

vinariorum (New solid geometry of wine barrels), 1615.
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4.1 The oracle model

A convex body K ⊆ Rn could be be given in a number of ways. For example K could
be a polyhedron and we are given a list of its faces, as we would be in the domain of
Linear Programming. We could also be given a set of points in Rn and told that K is
its convex hull.

In general, however, K may not be a polyhedron, and it might be difficult (or even
impossible) to give a compact description of it. For example, if K = {(y, z) ∈ Rm+1 :
v(y) ≥ z}, where v(y) = max{cx : Ax = y, x ≥ 0} is the value function of a linear
program (A is an m× n matrix.)

We want a way of defining convex sets which can handle all these cases. This can
be achieved by taking an “operational” approach to defining K i.e. we assume that
information about K can be found by asking an oracle. We assume that we have access
to a strong membership oracle. Given x ∈ Rn we can “ask” the oracle whether or not
x ∈ K. The oracle is assumed to answer immediately. Thus the work that the oracle
does is hidden from us, but in most cases of interest it would be a polynomial time
computation. For example, if K is a polyhedron given by its facets, all the oracle needs
to do is check whether or not x is on the right side of each defining hyperplane.

With such an oracle, we will need to be given a litle more information. For x ∈ Rn and
r > 0 we let B(x, r) denote a ball of radius r with centre x and let B = B(0, 1). We
assume that there exists d ∈ R such that

B ⊆ K ⊆ dB. (4.1)

In this case we say that the oracle is well-guaranteed.

Without a similar such guarantee, one could not be certain of finding even a single point
of K in finite time.

4.2 Sampling from a convex body

We discuss generating random points in a convex body K by the use of random walks.
Here δ > 0 is some parameter to be defined later.

Ball Walk: BW
Let v0 = 0 and generate v1, v2, . . . , vk, . . . as follows: With probability 1/2 put vk+1 = vk.
Otherwise, choose y randomly from B(vk, δ). If y ∈ K put vk+1 = y, otherwise vk+1 = vk.

A step of BW where y /∈ K is called an improper step and the other steps are called
proper steps.

One immediate problem with this Markov chain is that the state space K is far from
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finite and we have only been discussing finite Markov chains. Also, in practice we can
only compute the coordinates of points x ∈ K to finite precision. We therefore let
η = 2−⌈10n log2(ǫ

−1dn)⌉ ≤ (ǫ−1dn)−10n for some 0 < ǫ < 1 and let L be the lattice ηZn. Our
random walk will therefore be on KL where for convex set S we let SL = K ∩L and we
re-define BW. For x ∈ L and r > 0 we let BL(x, r) = {y ∈ L : |y − x| ≤ r}:
Ball Walk: BW
Let v0 be chosen with distribution P and generate v1, v2, . . . , vk, . . . as follows: With
probability 1/2 put vk+1 = vk. Otherwise, choose y randomly from BL(vk, δ). If y ∈ K
put vk+1 = y, otherwise vk+1 = vk.

The steady state distribution Q of BW is uniform over KL: if x, y ∈ KL and |x− y| ≤ δ
then

Pr(vk+1 = y | vk = x) =
1

2|BL(0, δ)| .

Thus the uniform distribution satisfies the detailed balance equations (1.15).

Speedy Walk: SW
If we ignore the improper steps of BW then we have a sequence v′0 = v0, v

′
1, v

′
2, . . . which

define a new Markov chain called the speedy walk.

The steady state distribution of SW is not uniform. For x ∈ KL let its local conductance
ℓL(x) be defined by

ℓL(x) =
|KL ∩BL(x, δ)|
|BL(x, δ)| .

The steady state distribution QL of SW is given by

QL(x) =
ℓL(x)

ℓL(KL)
.

This is just the usual degree formula (1.16). The average local conductance is

λL =
ℓL(KL)

|KL|
.

Theorem 4.2.1 If K ⊇ B then

λL ≥ 1− δ√n.

Proof (Deferred to Section 4.2.1) 2

It will be useful to note that UL is close in distribution to QL.

Lemma 4.2.1

Dtv(QL, UL) ≤ 1− λ2
L

λL
.
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Proof Let A ⊆ KL. Then

|QL(A)− UL(A)| =
∣∣∣∣∣
∑

x∈A

(
ℓL(x)

ℓL(KL)
− 1

|KL|

)∣∣∣∣∣ ≤

∑

x∈A

(
ℓL(x)

ℓL(KL)
− ℓL(x)

|KL|

)
+
∑

x∈A

(
1

|KL|
− ℓL(x)

|KL|

)

≤ |A|(|KL| − ℓL(KL))

ℓL(KL)|KL|
+
|KL| − ℓL(KL)

|KL|
≤ 1− ℓL

ℓL
+ 1− ℓL.

2

Our choice of δ = o(1/
√
n) is such that λL = 1 − o(1) for all bodies discussed in this

and later sections.

Theorem 4.2.2 Let K ⊆ dB be a convex body, d > 32δ. Then the mixing time τSW(ǫ)
of the speedy walk satisfies

τSW(ǫ) ≤ κnd2δ−2 log(1/ǫ)

for some absolute constant κ > 0.

Proof (Deferred to Section 4.5.3) 2

We will refer later to two sampling algorithms. First we need the following nesting of
convex sets: Let K be a convex body where B ⊆ K ⊆ dB. Let K(i) = (2i/nB) ∩ K
for 0 ≤ i ≤ m = n log2 d. Then K(0) = B and K(m) = K. In general quantities
superscripted by i will refer to K(i) e.g. λ

(i)
L denotes the average local conductance of

K(i).

Algorithm nested sampling:
begin

Choose u0 uniformly from BL.
For i = 1 to m do
v ← ui−1

begin

A: Carry out a t-step speedy walk on K
(i)
L starting at v and ending at w.

If u = 2n
2n−1

w ∈ K(i)
L then ui ← u and go to the next i.

Otherwise v ← w, goto A.
end

end

Algorithm ordinary sampling:
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begin
Run Algorithm nested sampling to obtain v1 = um.
For i = 1 to p do
w ← vi−1

begin
A: Carry out a t-step speedy walk on KL starting at w and ending at x.
If v = 2n

2n−1
x ∈ KL then vi ← v and go to the next i.

Otherwise w ← x, goto A.
end

end

Let UL denote the uniform distribution on KL and let U
(i)
L denote the uniform distribu-

tion on K
(i)
L for i = 1, 2, . . . ,m.

Theorem 4.2.3 Let 0 < α < 1
50

and

δ ≤ α√
n

and t =
⌈
κnd2δ−2 ln(10/α)

⌉
.

Let U (i) denote the distribution of ui in nested sampling, given uj, j 6= i and let V (i)

denote the distribution of vi in ordinary sampling, given vj , j 6= i. Then

(a) Dtv(U
(i)
L , U (i)) ≤ 4α for i = 1, 2, . . . ,m and conditional on an event G of probability

at least 1 − 5mα, the expected number of oracle calls in nested sampling is at most
10mt.

(b) Dtv(UL, V (i)) ≤ 4α for i = 1, 2, . . . , p and conditional on an event G of probability at
least 1 − 5mα, the expected number of oracle calls in ordinary sampling is at most
10(m+ p)t.

Proof Deferred to Section 4.5.1 2

4.3 Volume Algorithm

0 < ǫ < 1 be given. Let

δ =
1√

8n ln(n/ǫ)
, p =

⌈
120m

ǫ2

⌉
, ǫ0 =

⌈
ǫ

128002mnp

⌉
and t =

⌈
κn

(
d

δ

)2

ln
10

ǫ0

⌉
.

(4.2)
We write

|KL| = |K(0)
L |

m∏

i=1

|KLi|
K

(i−1)
L |

.

We need to be sure that an estimate of |KL| yields a good estimate of vol(K).
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Theorem 4.3.1 Let S ⊇ αB be a convex set in Rn where α ≥ δ. Then

|vol(S)− ηn|SL|| ≤
ǫ

10
vol(S).

Proof (Deferred to Section 4.2.1) 2

We note that K(i) ⊆ 21/nK(i−1) and so

1

2
≤ ρi =

|K(i−1)
L |
|K(i)| ≤ 1. (4.3)

We use sampling to estimate the ratios ρi, i = 1, 2, . . . ,m. Since |K(0)
L | = |BL| can be

computed to arbitrary accuracy, we see that this will give us an estimate of |KL| and
hence of vol(K).

Algorithm volume computation

Run Algorithm nested sample p times with t as in (4.2) and α = ǫ0 to obtain ui,r, i =
0, 1, . . . ,m, r = 1, 2, . . . , p.

Now for r = 1, 2, . . . , p define

ai,r =

{
1 ui,r ∈ K(i−1)

L
0 otherwise

and let bi = ai,1 + · · ·+ ai,p for i = 1, 2, . . . ,m.

Then put

ζ = ηn |BL|pm

b1b2 · · · bm
.

Theorem 4.3.2 Assume that B ⊆ K ⊆ dB. Then

Pr(ζ ∈ [(1− ǫ)vol(K), (1 + ǫ)vol(K)]) ≥ 3

4
− o(1).

Furthermore, conditional on an event G of probability 1− O( ǫ
n
) the expected number of

oracle calls for Algorithm volume computation is O(n4d2 ln d(lnn/ǫ)2ǫ−2).

Proof Let βi = pρi and

X =
m+1∑

i=1

ln

(
bi
βi

)
.

We show

Pr(|X| ≥ ǫ/2) ≤ 1

4
+ o(1). (4.4)
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Included in this calculation is the assumption that G occurs. Now, Pr(G) = 1 − O( ǫ
n
)

and so what we actually prove is

Pr(|X| < ǫ/2) ≥ Pr(|X| < ǫ/2 | G)Pr(G) ≥ 3

4

(
1− O

( ǫ
n

))
.

Now eXζ = ηn|KL| and so |X| < ǫ/2 implies

vol(K) ∈
[(

1− ǫ

10

)
e−ǫ/2ζ,

(
1 +

ǫ

10

)
eǫ/2ζ

]
.

Hence for i = 1, 2, . . . ,m, bi has the binomial distribution B(p, αi) where

αi = Pr(ui ∈ K(i−1)
L ) =

|K(i−1)
L |
|K(i)

L |
+ ǫ1 = ρi + ǫ1

where |ǫ1| ≤ ǫ0.

It follows from (4.3) that αi ≥ 1/3, 1 ≤ i ≤ m.

Applying the Chernoff bounds we obtain that with probability 1− o(1)

bi ≥
βi√

2
i = 1, 2, . . . ,m. (4.5)

Set

A =
m∑

i=1

bi − βi

βi

, C =
m∑

i=1

(
bi − βi

βi

)2

and D =
∑

i<j

(bi − βi)(bj − βj)

βiβj

.

Using the formula for the variance of the binomial distribution we get

E(C) =
m∑

i=1

1

βi

(
1− βi

p

)
+O(mǫ0) ≤

ǫ2

150
.

Now ai,r, aj,s are independent for r 6= s and Theorem 4.2.3 implies |Pr(ai,r = 1 | aj,r =
1)− αi| ≤ ǫ0 for arbitrary i, j, r and so

E

(
(bi − βi)(bj − βj)

βiβj

)
≤ 4p2ǫ0

βiβj
≤ 40ǫ0

and hence

E(D) < 20m2ǫ0 ≤
ǫ2

640
.

Claim 4.3.1 Whenever (4.5) holds, C < ǫ2/30 and D < ǫ2/64 then we have |X| < ǫ/2.
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Proof of Claim Since A2 = C + 2D we see that |A| < ǫ/
√

15. If X ≥ 0 then using
the inequality ln x ≤ x− 1, we obtain X ≤ A < ǫ/2. If X < 0 then using (4.5) and the
inequality lnx ≥ x− 1− (x− 1)2 (for x ≥ 1/

√
2) we get X ≥ A− C ≥ −ǫ/2.

End of proof of claim

By Markov’s inequality, the probability that either C > ǫ2/30 or D > ǫ2/64 is at most
.25 and (4.4) follows.

We now consider the expected number of steps in the algorithm. We first remark that
the algorithm requires

t(m+ 1)p = O(n4d2 ln d(lnn/ǫ)2ǫ−4) proper steps.

Given G, the expected total number of steps, proper and improper is say ≤ 5Ctmp for
some C > 0. We stop the algorithm if fewer than Ctmp proper steps have been made
after 50Ctmp steps in total. Then we succeed in producing an estimate with probability
at least 9

10
− o(1).

We have not said anything about the size of d. Using the Ellipsoid Algorithm one can
in O∗(n4) steps5 find an affine transformation K ′ = AK + b of K such that B ⊆ K ′ ⊆
O(n3/2)B. Here A is an n × n matrix and vol(K ′) = det(A)vol(K). So, applying the
above theorem we obtain an O∗(n7) algorithm. In Section 4.4 we show how to reduce d
to O∗(n1/2) and obtain an O∗(n5) algorithm.

4.4 Putting a body into isotropic position

For a convex body K and real function f we let

EK(f) =

∫

K

f(x)dx.

The definition extends naturally to vectors of functions.

A body K is in isotropic position if its centre of gravity

b = b(K) = EK(x) = 0 and EK((vTx)2) = 1 for all |v| = 1.

If a body is in isotropic position then it contains B and most of its volume is contained
in O(

√
n)B. This makes it a useful concept for volume approximation. It is known thatreference?

for any convex body K there is an affine transformation T such that TK is in isotropic
position. We only manage to obtain θ-isotropic position in this section, i.e.

|b(K)| ≤ θ and 1− θ ≤ EK((vTx)2) ≤ 1 + θ for all |v| = 1.

5O∗ notation ignores all factors other than powers of n.
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Theorem 4.4.1 If K is in θ-nearly isotropic position then

(a) (1− 2θ)B ⊆ K ⊆ (1 + 2θ)(n+ 1)B.

(b) vol(K ∩ dǫ,θB) ≥ (1− ǫ)vol(K) where dǫ,θ =
(

(1+θ)n
ǫ

)1/2

.

Proof (a) . Can’t find a simple
proof of (a)(b) Let x be chosen randomly from K. By assumption, E(|x|2) ≤ (1 + θ)n. Therefore,

for any d > 0,

1− vol(K ∩ dB)

vol(K)
= Pr(|x| > d) ≤ E(|x|2)

d2
≤ (1 + θ)n

d2

and (b) follows. 2

Our aim is to desribe an algorithm for finding an affine transformation A such that AK
is in θ-nearly isotropic position for some small θ. Algorithm isotropy 1 The number of

samples needed has
been reduced to
O(n(log n)3). This
(mercifully) obviates
the need for the stuff
in Section 4.4.1

Suppose 0 < θ, γ ≤ 1/4 and let

ǫ1 =
γ2θ2

32(n+ 1)4
and m1 =

⌈
80n2

θ2γ2

⌉
.

use Algorithm ordinary sample with p = m1 and α = ǫ1 to obtain y(1), y(2), . . . , y(m1) ∈
KL. Compute the vector

ȳ =
1

m1

m1∑

i=1

y(i)

and the matrix

Y =
1

m1

m1∑

i=1

(y(i) − ȳ)(y(i) − ȳ)T .

If Y is singular, declare failure and repeat. Otherwise, output K ′ = Y −1/2(K − ȳ).

Theorem 4.4.2 With probability ≥ 1− γ, the body K ′ is in θ-nearly isotropic position.

Proof (Deferred to Section 4.6.2) 2

The rest of this section describes how to obtain y(1), y(2), . . . , y(m1) with expected number
O∗(n5) of oracle calls. Having done this, the O∗(n5) volume algorithm is immediate. It
follows from Theorem 4.4.1 that B ⊆ (1− 2θ)−1(K ′ ∩ dǫ,θB) ⊆ (1− 2θ)−1dǫ,θB. Apply-
ing the algorithm of Section 4.3 we obtain a good approximation to (1− 2θ)−nvol(K ′ ∩
dǫ,θB) which by Theorem 4.4.1 is a good approximation to (1 − 2θ)−nvol(K ′) = (1 −
2θ)−n det(Y −1/2)vol(K). The expected number of oracle calls for the volume computa-
tion is O(n4d2

ǫ,θ ln dǫ,θ(lnn/ǫ)2ǫ−4) = O∗(n5).
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Let us assume for the moment that

B ⊆ K ⊆ 10nB. (4.6)

We will need to compute an approximation to b(K).

Algorithm barycentre

Let 0 < φ, γ < 1 be given and let

m2 =

⌈
8n

φγ

⌉
and ǫ2 =

φγ

20(n+ 1)2
.

Apply Algorithm ordinary sample with p = m2 and α = ǫ2 to obtain z(1), z(2), . . . , z(m2)

and compute their centre of gravity g.

Theorem 4.4.3

(a) With probability ≥ 1− γ, g − b(K) ∈ φ(K − b(K)).

(b) Assume that K is in isotropic position. Then with probability ≥ 1−γ, |g−b(K)| ≤ φ.

Proof (Deferred to Section 4.6.1). 2

We may assume therefore that we have carried out Algorithm barycentre and thatWe should mentin
what the algorithm
does b(K) ∈ − 1

10
K. (4.7)

The algorithm for generating y(1), y(2), . . . , y(m1) in Algorithm isotropy is then

(Step 1) Apply Algorithm ordinary sample with p = 1 and α = γ/6 to get a single
point u. This needs O∗(n5) oracle calls, in expectation.

(Step 2) Rescale K so that
1√
n
B ⊆ K ⊆ 10

√
nB, (4.8)

which implies
EK(|x|2) ≤ 100n. (4.9)

Apply Algorithm local conductance (Section 4.4.1 below) to increase the local
conductance of K to at least 1− 100θ ≥ .999. This algorithm needs O∗(n5) oracle
calls, in expectation.

(Step 3) Apply Algorithm ordinary sample to generate y(1), y(2), . . . , y(m1). The
expected number of oracle calls is O∗(n5), because we have reduced the diameter to
O(
√
n) having used Algorithm local conductance to get the local conductance

up to .999.
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This completes the description for getting K into θ-nearly isotropic position when (4.8)
is satisfied. We now show how to eliminate this assumption. Assume that K ⊆ dB.

Algorithm isotropy 2

begin
p = ⌈log2 d⌉ , K0 = K.
For i = 0 to p do
begin

K ′
i = Ki ∩ 10nB.

Use Algorithm isotropy 1 to find with probabilty ≥ 1− γ
log2 d

,

a map Ti which takes K ′
i into θ-nearly isotropic position.

Ki+1 = TiKi.
end
Output Kp.

end

Theorem 4.4.4 With probability ≥ 1−γ, the body Kp produced by Algorithm isotropy

2 is in θ-nearly isotropic position.

Proof Define di = max
{

d
2i , 10n

}
. It suffices to prove by induction on i that if all

iterations are successful (which happens with probability at least 1− γ) then

Ki ⊆ diB. (4.10)

In which case, since dp−1 = 10n, Kp = TpTp−1 · · · T0K is in θ-nearly isotropic position.

The case i = 0 is trivial and so let i > 0. Let v ∈ Ki be the image under Ti−1 of
u ∈ Ki−1. If u ∈ K ′

i−1 then v lies in Ti−1K
′
i−1 which is in θ-nearly isotropic position and

so by Theorem 4.4.1 |v| ≤ (1 + 2θ)(n+ 1) ≤ 2n. So assume that u ∈ Ki−1 \K ′
i−1. Let q

be the point where the line segnment [0, u] meets the boundary of K ′
i−1. Let x = Ti−1(0)

and y = Ti−1(q) where |x|, |y| ≤ 2n. Now u = τq where τ = |u|/(10n) > 1. Since Ti−1

is affine, it follows that v = τy + (1− τ)x and hence

|v| ≤ τ |y|+ |1− τ | |x| < 4nτ <
|u|
2
≤ d

2i
,

which proves (4.10). 2

4.4.1 Improving Local Conductance

We assume that (4.7), (4.8) hold. We now define a flat step. Its aim is to improve local
conductance. Suppose we carry out SW and we do an improper step from u ∈ K to
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v /∈ K. We find by binary search a point u′ ∈ [u, v] such that u′ ∈ (21/nK) \ K. We
assume now that we have a separation oracle for K. It returns a hyperpalne H through
u′ such that K is contained in one of the open half-spaces of H. Let h be the unit normal
of H whhich is directed away from the origin. Let

Uh =

(
1− 1

2n

)
(I + hhT ). (4.11)

A flat step replaces K by UhK if H is at distance < 1/2 from the origin.

Algorithm local conductance

Let 0 < φ, γ < 1 be given and let

δ0 =
{θ, γ}
24
√
n
, d0 =

√
2n

θ
, M =

⌈
32

θ
n log n

⌉
, T =

⌈
κn2d2δ−2 ln(δ0

√
n)
⌉
.

Step 1 Select an integer N uniformly at random from {0, 1, . . . ,M − 1}.
Step 2 Using ordinary sample generate a point u ∈ KL whose distribution is closer

than λ/6 in variation distance to UL.

Step 3 Let K0 = K.

for i = 0 to N − 1 do
begin

Starting at u execute SW on K ′
i = Ki ∩ d0B until either

(i) T proper steps are made, (ii) a flat step is made.
In case (i) Ki+1 = Ki and in case (ii) Ki+1 = UhKi.

end

Step 4 Output KN .

Theorem 4.4.5 Assume that K satisfies (4.7), (4.8) and (4.9). Then Algorithm local

conductance produces a convex body KN which also satisfies (4.7), (4.8) and (4.9).
The expectation of the average local conductance of KN is at least 1 − 100θ. With
probability ≥ 1− γ, the number of calls to the oracle is at most 3MT = O∗(n5).

Proof [Deferred to Section 4.6.3]

4.5 Deferred proofs of Section 4.3

4.5.1 Proof of Theorem 4.2.3

(a) It follows from Theorem 4.2.2 that given v, the conditional distribution W (i) of w

is within variation distance α of Q
(i)
L . We must examine the distribution of u = 2n

2n−1
w.
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Let c = 2n−1
2n

.

Q
(i)
L (cK

(i)
L ) =

∑

x∈cK
(i)
L

|(x + δBL) ∩K(i)
L |

|x + δBL|
≥

∑

x∈cK
(i)
L

|(x+ cδBL) ∩ cK(i)
L |

|x + cδBL|
× |x+ cδBL|
|x+ δBL|

≥ cn(1− c−1α)|cK(i)
L | ≥ c2n(1− c−1α)Q

(i)
L (K

(i)
L ) ≥ 8

15
Q

(i)
L (K

(i)
L )

The first inequality in the above comes from Theorem 4.2.1. It follows that

W (i)(cK
(i)
L ) ≥ Q

(i)
L (cK

(i)
L )− α ≥ 8

15
Q

(i)
L (K

(i)
L )− α ≥ 8

15
− 23

15
α ≥ 1

2

and so the expected number of executions of A to find u ∈ K(i)
L is at most 2.

The distribution of the first point u such that u ∈ cK(i)
L is proportional to the restriction

of W (i) to cK
(i)
L . Therefore, for S ⊆ K

(i)
L ,

V (i)(S)− U (i)
L (S) =

W (i)(cS)

W (i)(cK
(i)
L )
− U (i)

L (S) ≤ Q
(i)
L (cS) + α

Q
(i)
L (cK

(i)
L )− α

− U (i)
L (S).

Here

Q
(i)
L (cS) ≤ |cS|

ℓ
(i)
L (K

(i)
L )

and Q
(i)
L (cK

(i)
L ) =

ℓ
(i)
L (cK

(i)
L )

ℓ
(i)
L (K

(i)
L )
≥ (1− αc−1)|cK(i)

L |
ℓ
(i)
L (K

(i)
L )

>
1

2
.

Hence,

V (i)(S)− U (i)
L (S) ≤ |cS|+ αℓ

(i)
L (K

(i)
L )

(1− α)|cK(i)
L | − αℓ

(i)
L (K

(i)
L )
− |cS|
|cK(i)

L |
< 4α.

To complete the proof of (a) we need to discuss the average number of actual steps

for each speedy step. Consider a walk in K
(i+1)
L starting from ui. Let W (i) be the

distribution of ui. Let

B(i) =

{
x ∈ K(i)

L :
W (i)(x)

Q
(i+1)
L (x)

> 3

}
.

Now for x ∈ K(i)
L we have

Q
(i+1)
L (x) =

ℓ
(i+1)
L (x)

ℓ
(i+1)
L (K

(i+1)
L )

≥ ℓ
(i)
L (x)

ℓ
(i+1)
L (K

(i+1)
L )

≥ 2

5
Q

(i)
L (x) (4.12)

where the last inequality comes from (4.3) and Lemma 4.2.1. Hence

B(i) ⊆ B̂(i) =

{
x ∈ K(i)

L :
W (i)(x)

Q
(i)
L (x)

>
6

5

}
.
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So,
1

5
W (i)(B̂(i)) ≤ |W (i)(B̂(i))−Q(i)

L (B̂(i))| ≤ α. (4.13)

We show next that if Z denotes the number of oracle calls per speedy step in the walk
from ui then

E(Z | vi /∈ B(i)) ≤ 4

ℓ
(i)
L
≤ 5. (4.14)

Let ui = x0, x1, . . . , denote the sequence of points reached by proper steps. Let Wk

denote the distribution of xk conditional on ui /∈ B(i). Then for x ∈ K(i+1)
L \B(i)

W0(x) =
P (i)(x)

P (i)(K
(i+1)
L \B(i))

≤ 3Q
(i+1)
L (x)

1− 5ǫ0
≤ 4Q

(i+1)
L (x).

It follows by induction that

Wk(x) ≤ 4Q
(i+1)
L (x) for k = 1, 2, . . .

Given ℓ
(i+1)
L (xk), the expected number of steps (proper and improper) between xk and

xk+1 is 1/ℓ
(i+1)
L (xk). The expected number conditional only on vi /∈ B(i) is thus

∑

x∈K
(i+1)
L

Wk(x)

ℓ
(i+1)
L (x)

≤ 4
∑

x∈K
(i+1)
L

Q
(i+1)
L (x)

ℓ
(i+1)
L (x)

=
4

λ
(i)
L

proving (4.14).

We therefore define G =
{
ui /∈ B(i) : i = 1, 2, . . . ,m

}
. The proof of (b) is similar to (a).

2

4.5.2 Proof of Theorem 4.2.1

We start by considering a continuous local conductance. For x ∈ K we let

ℓ(x) =
vol(B(x, δ) ∩K)

vol(B(x, δ))

and the average continuous local conductance

λ =
λ(K)

vol(K)
.
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Lemma 4.5.1 Let L be a measurable subset of the surface of a convex set K in Rn and
let S be the set of pairs (x, y) with x ∈ K, y /∈ K, |x − y| ≤ δ, and such that the line
segment xy meets L. Then the (2n)-dimensional volume of S is at most

δvoln−1(L)
cn−1

(n+ 1)cn
voln(δB) (4.15)

where cl denotes the volume of the unit ball in Rl.

Proof It suffices to prove the assertion for the case when L is “infinitesimally small”.
In this case, the measure of S is maximised when the surface of K is a hyperplane H in
a larger neighbourhood of L. Then the measure of S is independent of K and is given
by

voln−1(L)

∫ δ

α=0

∫ π

θ=0

α sin θ

n+ 1

((
δ

α

)n−1

− 1

)
(n− 1)cn−1(α cos θ)n−2αdαdθ

Fix the distance α of x from L and the angle θ between the line joining x and L and the

hyperplane H. The volume of the corresponding y’s is voln−1(L)α sin θ
n+1

((
δ
α

)n−1 − 1
)

– the

volume of the part of a cone on the y-side of H. Now multiply by (n−1)cn−1(α cos θ)n−2

– the (n− 2)-volume swept out by x the surface of an n − 1 dimensional ball of radius
α cos θ. Then integrate over α, θ. 2

Corollary 4.5.1 Let K and L be as in Lemma 4.5.1. Choose x uniformly from K and
choose u uniformly from δB. The probability that [x, x + u] intersects L is at most

δvoln−1(L)

2
√
nvol(K)

.

Proof Divide (4.15) by vol(K)× vol(δB) and use the fact that cn/cn−1 > 2/
√
n for

n > 2. 2

The average local conductance λ thus satisfies

λ ≥ 1− δ

2
√
n

voln−1(∂K)

vol(K)
.

If K ⊇ B then vol(K) ≥ voln−1(∂K)/n and so

λ ≥ 1− δ
√
n

2
. (4.16)

We now need to relate λ to λL. We first prove Theorem 4.3.1.

Proof of Theorem 4.3.1.

Let SI
L = {x ∈ SL : C(x) ⊆ S} and let SB

L = SL \ SI
L denote the interior and border Needs fixing!
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points of SL respectively. S ⊇ αB implies that

(1 + 2α−1η
√
n)−1

⋃

x∈SL

C(x) ⊆ S ⊆ (1 + α−1η
√
n)
⋃

x∈SI
L

C(x). (4.17)

The theorem follows easily from this. 2

Note that (4.17) implies

|SB
L | ≤ η−nvol(S)((1 + 2α−1η

√
n)n − (1 + α−1η

√
n)−n)

≤ 4α−1η−(n−1)
√
nvol(S). (4.18)

Lemma 4.5.2

(a) x ∈ K implies that ℓ(x) ≥
(

δ
10d

)n
.

(b) x, x′ ∈ K and |x− x′| ≤ η
√
n implies |ℓ(x)− ℓ(x′)| ≤ ǫ

n
ℓ(x).

(c) x ∈ KL implies |ℓ(x)− ℓL(x)| ≤ ǫ
n
ℓ(x).

Note: the estimates ǫ
n

are much larger than we will actually prove.

Proof
(a) Consider the finite cone C with point x and base the intersection of B with the
hyperplane through the origin O which is perpendicular to the line L joining x to O. C
contains a ball of radius δ

10
with centre on L, at distance δ

2
from x.

(b)
vol(B(x, δ) \B(x′, δ)) ≤ (1− (1− δ−1η

√
n)n)vol(B(x, δ) ≤ 2δ−1n3/2ηδn.

Now use (a).

(c) This follows from (b) and Theorem 4.3.1, taking account of the note prior to the
proof. 2

Theorem 4.2.1 follows.

4.5.3 Proof of Theorem 4.2.2

Geometric lemmas related to local condutance

The following classic theorem is basic to the study of convexity:

Theorem 4.5.1 Brunn-Minkowski Theorem Let K1,K2 be convex bodies in Rn.
Then

vol(K1 +K2)
1/n ≥ vol(K1)

1/n + vol(K2)
1/n.
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Corollary 4.5.2 Let K1,K2 be convex bodies. Then the function
f(x) = vol((x+K1) ∩K2)

1/n is concave.

Proof This follows from Theorem 4.5.1 and

(λx+ (1− λ)y +K1) ∩K2 ⊇ λ((x+K1) ∩K2) + (1− λ)((y +K1) ∩K2).

2

In the remainder of this subsection x, y are members of K and |x− y| < δ/
√
n. Let

C = (x+ δB) ∩ (y + δB), Mx = (x+ δB) \ C and My = (y + δB) \ C,

Rx = Mx ∩ (x− y + C) and Ry = My ∩ (y − x+ C).

Let C ′ be obtained by blowing up C from its centre (x+ y)/2 by a factor ρ = 1 + 4
4n−1

.

Lemma 4.5.3
Mx \Rx ⊆ C ′.

Proof Assume w.l.o.g. that x = −y and let z = µx + w ∈ Mx \ Rx where w is More needed

orthogonal to x. It can be seen that 0 < µ < 2. Now |ρ−1z − x| ≤ |ρ−1z − y| and so it
is enough to show that |ρ−1z − y| ≤ δ. This follows by straightforward calculation. 2

Lemma 4.5.4
vol(K ∩ (Mx \Rx)) ≤ 3vol(K ∩ C).

Proof By Lemma 4.5.3, blowing up C by a factor ρ covers both K ∩ C and K ∩
(Mx \Rx). Hence

vol(K ∩ (C ∪ (Mx \Rx))) ≤ vol(K ∩ C ′) ≤
(

1 +
4

4n− 1

)n

vol(K ∩ C) ≤ 3vol(K ∩ C)

and the lemma follows. 2

We say that a real-valued function f(x) defined on the convex set K ⊆ Rn is log-concave
if log f(x) is concave on K. This clearly entails f(x) > 0 on K.

In particular:

If f(x)α is concave, for some α > 0, then f is itself log-concave. (4.19)

Lemma 4.5.5
vol(K ∩ C)2 ≥ vol(K ∩Rx)vol(K ∩Ry).
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Proof Corollary 4.5.2 and (4.19) imply that the function g(u) = vol(K ∩ (u+ C))
is log-concave. Therefore

g(0)2 ≥ g(x− y)g(y − x) = vol(((x− y) + C) ∩K)vol(((y − x) + C) ∩K)

≥ vol(K ∩Rx)vol(K ∩Ry).

2

Lemma 4.5.6

vol(K ∩ C) ≥ 1

5
min {vol(K ∩ (x+ δB)), vol(K ∩ (y + δB))} .

Proof We have

vol(K ∩Rx) = vol(K ∩Mx)− vol(K ∩ (Mx \Rx))

≥ vol(K ∩ (x+ δB))− vol(K ∩ C)− 3vol(K ∩ C)

by Lemma 4.5.4. We also get a symmetric lower bound for vol(K∩Ry). Then by Lemma
4.5.5 we have

vol(K ∩ C) ≥ min {vol(K ∩Rx), vol(K ∩Ry)}
≥ min {vol(K ∩ (x+ δB)), vol(K ∩ (y + δB))} − 4vol(K ∩ C).

The lemma follows. 2

Lemma 4.5.7 Suppose S1, S2 is a partition of K into two measurable sets where x ∈
S1, y ∈ S2 and |x− y| ≤ δ/

√
n. Then

vol((x+ δB) ∩ S2)

vol(δB)
+

vol((y + δB) ∩ S1)

vol(δB)
≥ 1

5
min {ℓ(x), ℓ(y)} . (4.20)

Proof The LHS Λ of (4.20) is at least

1

vol(δB)
(vol(S1 ∩ C) + vol(S2 ∩ C)) =

vol(K ∩ C)

vol(δB)
.

Thus by Lemma 4.5.6,

Λ ≥ 1

5vol(δB)
min {vol(K ∩ (x+ δB)), vol(K ∩ (y + δB))} =

1

5
min {ℓ(x), ℓ(y)} .

2
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Geometric lemmas for the main argument

Now, for any a ∈ Rn, |a| = 1, consider the set of hyperlanes H(s) = {ax = s} orthogonal
to a, and half-spaces H+(s) = {ax ≤ s}, H−(s) = {ax ≥ s} they define. If K is
any convex body, let K(s) = K ∩ H(s), K+(s) = K ∩ H+(s), K−(s) = K ∩ H−(s).
(We call K(s) a “cross section” of K in “direction” a.) Let β1 = infs{K(s) 6= ∅},
β2 = sups{K(s) 6= ∅}. Then w = β2 − β1 is the width of K in direction a, and we will
write w = W (K, a). Note that

Lemma 4.5.8 diameter K = maxaW (K, a).

Proof

diameter K = max{|x− y| : x, y ∈ K} = max{|z| : z ∈ K −K}
= max

z∈K−K
max
|a|=1

az = max
|a|=1

max
z∈K−K

az = max
a
W (K, a).

2

We will also need the following technical result.

Lemma 4.5.9 Let a1, a2, . . . , an−1 be mutually orthogonal unit vectors and suppose that
a ∈ LIN(a1, a2, . . . , an−1). Then diameter K(s) < n1/2 maxiW (K, ai) for all s.

Proof If a, |a| = 1 is in the subspace generated by the ai then W (K(s), a) ≤
W (K, a). But W (K, a) ≤

√
n− 1 maxiW (K, ai), since K can clearly be contained in

an (infinite) cubical cylinder of side maxiW (K, ai). Applying Lemma 4.5.8 now gives
the conclusion. 2

Let α(s) = voln−1(K(s)) and V (s) = voln(K+(s)), and assume, without loss, that β1 = 0
and β2 = w. Note then V (w) = voln(K). It is a consequence of the Brunn-Minkowski
theorem, that α(s)1/(n−1) is a concave function of s in [0, w]. Then we have

Lemma 4.5.10 V (s)/V (w) ≤ ns/w.

Proof First we show that if 0 < u < s, α(u)/α(s) ≥ (u/s)n−1. This follows since if
u = λ0 + (1− λ)s, then Brunn-Minkowski implies

α(u)1/(n−1) ≥ λα(0)1/(n−1) + (1− λ)α(s)1/(n−1)

≥ (1− λ)α(s)1/(n−1) = (u/s)α(s)1/(n−1).

Thus

V (s) ≥
∫ s

0

(u/s)n−1α(s) du = (s/n)α(s), (4.21)

V (w)− V (s) ≤
∫ w

s

(u/s)n−1α(s) du = (wn − sn)/(nsn−1)α(s). (4.22)
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Dividing (4.22) by (4.21) gives V (s)/V (w) ≥ (s/w)n. By symmetry, this inequality in
turn implies

(V (w)− V (s))/V (w) ≥ ((w − s)/w)n = (1− s/w)n ≥ 1− ns/w,

since (1− x)n ≥ 1− nx for x ∈ [0, 1]. This gives the result. 2

We will need the following simple lemma asserting the existence of a hyperplane simul-
taneously “bisecting the measure” of two arbitrary sets.

Lemma 4.5.11 Let S1, S2 ⊆ Rn, be measurable and L a two-dimensional linear sub-
space of Rn. Let f be continuous on K. Then there exists a hyperplane H, with nor-
mal a ∈ L, such that the half-spaces H+, H− determined by H satisfy f(Si ∩ H+) =
f(Si ∩H−) for i = 1, 2.

Proof Let α1, α2 be a basis for L. For each θ ∈ [−1,+1], let bi(θ) be such that
the hyperplane (θα1 + (1− |θ|)α2)x = bi(θ) bisects the f -measure of Si for i = 1, 2. (If
Si is disconnected in such a way that the possible bi form an interval, bi(θ) will be its
midpoint.) It clearly suffices to show that b1(θ0) = b2(θ0) for some θ0. If b1(−1) = b2(−1)
we are done, so suppose w.l.o.g. that b1(−1) > b2(−1). We clearly have bi(1) = −bi(−1)
for i = 1, 2, so b1(1) < b2(1). But since f is a continuous measure, it follows easily that
bi(θ) is a continuous function of θ. The existence of θ0 ∈ (−1, 1) now follows. 2

Three lemmas on logconcavity

Lemma 4.5.12 Let f : R+ → R+ be log-concave and let F (x) =
∫ x

0
f(t)dt. Then F is

also log-concave.

Proof It suffices to show that for 0 < a < b and c = (a + b)/2 that F (c)2 ≥
F (a)F (b). Now

∆ = F (c)2 − F (a)F (b) = B(A+B)− AC
where A =

∫ a

0
f(t)dt, B =

∫ c

a
f(t)dt and C =

∫ b

c
f(t)dt.

Let g(x) = Geθx where θ = (c − a)−1 log(f(c)/f(a)) and G = f(a)e−θa so that g(x) =
f(x) for x = a, c. If f(c) ≤ f(a) then C ≤ B and then clearly ∆ ≥ 0. We can therefore
assume that f(c) > f(a) and hence that θ > 0.

The log-concavity of f implies that

f(x) ≥ g(x) for x ∈ [a, c] and f(x) ≤ g(x) for x /∈ [a, c].

Thus
∆ ≥ B̂(A+ B̂)− AĈ
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where B̂ =
∫ c

a
g(t)dt = Gθ−1(eθc − eθa), Ĉ =

∫ b

c
g(t)dt = Gθ−1(eθb − eθc).

We can therefore prove the lemma by showing that

B̂ +
B̂2

Â
≥ Ĉ (4.23)

where Â =
∫ a

0
g(t)dt = Gθ−1(eθa − 1) ≥ A. But (4.23) is equivalent to

(eθa − 1)(eθb − eθc) ≤ (eθa − 1)(eθc − eθa) + (eθc − eθa)2

or after simplification,

eθaeθb + 2eθc ≤ e2θc + eθa + eθb

which follows from eθaeθb = e2θc and the convexity of eθx. 2

Corollary 4.5.3 Let f, F be as in Lemma 4.5.12. Let 0 ≤ x ≤ d and 0 ≤ t ≤ d − x.
Then

F (x+ t)− F (x) ≥ t

d
F (x) log

(
F (d)

F (x)

)
.

Proof Let F̃ (x) = F (x)/F (d). Lemma 4.5.12 implies that F̃ is log-concave. Write
x+ t = λx+ (1− λ)d where λ = d−x−t

d−x
. Then the log-concavity of F̃ implies

F̃ (x+ t) ≥ F̃ (x)1−t/(d−x)

and so

F̃ (x+ t)− F̃ (x) ≥ F̃ (x)(F̃ (x)−t/(d−x) − 1)

= F̃ (x)

(
exp

{
t

d− x log

(
1

F̃ (x)

)}
− 1

)

≥ F̃ (x) · t

d− x log

(
1

F̃ (x)

)

and the lemma follows. 2

Lemma 4.5.13 The local conductance ℓ is a log-concave function on K.

Proof This follows from Corollary 4.5.2 and (4.19). 2
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The main argument

Let S1, S2 be a partition of K into two measurable sets. Let

h(x) =





vol((x+δB)∩S2)
vol(δB)

x ∈ S1

vol((x+δB)∩S1)
vol(δB)

x ∈ S2

Then
h(S1)

ℓ(K)
=

∫

x∈S1

ℓ(x)

ℓ(K)
· vol((x+ δB) ∩ S2)

vol((x+ δB) ∩K)
dx

is the probability Q(S1, S2) that x ∈ S1 and y ∈ S2 where x is a point chosen from K
with distribution ℓ(x)/ℓ(K) and y is obtained from x by one continuous speedy step. It
follows as in (2.3) that h(S1) = h(S2). The conclusion of Lemma 4.5.7 is that

h(x) + h(y) ≥ 1

5
min {ℓ(x), ℓ(y)} for x ∈ S1, y ∈ S2, |x− y| ≤ δ/

√
n. (4.24)

Theorem 4.2.2 will follow from

Theorem 4.5.2 Let B ⊆ K ⊆ dB be a closed convex set in Rn. Let K be partitioned
into two measurable subsets S1, S2. Let ℓ be a log-concave function which is strictly
positive on K. Let h be a non-negative integrable function which satisfies (4.24). Then

h(K)ℓ(K)

2ℓ(S1)ℓ(S2)
≥ 1

5000
√
n

min

{
δ

d
log

(
ℓ(K)2

ℓ(S1)ℓ(S2)

)
, 1

}
. (4.25)

Proof We first prove

h(K) ≥ 1

2500
√
n

min

{
δ

d
max
i=1,2

{
ℓ(Si) log

(
ℓ(K)

ℓ(Si)

)}
, ℓ(S1), ℓ(S2)

}
. (4.26)

Let ℓ0 = min {ℓ(x) : x ∈ K} > 0. We let ǫ = min
{

ℓ0
100
, δ√

n

}
and then let δ1 ≤ δ/(10

√
n)

be such that
|ℓ(x)− ℓ(x′)| ≤ ǫ whenever x, x′ ∈ K, |x− x′| ≤ δ1.

We fix a line L = {xs = a+ su : s ∈ R} in direction u, where a, u ∈ Rn, |u| = 1.

Let α(s),K(s) be as in the previous section and let I = {s : K(s) 6= ∅} = [β1, β2]. Let
h̄(s) = h(K(s))/α(s) be the average of h over K(s).

We consider first the case where K is needle-like i.e. each K(s) has diameter at most
δ1/2.

It follows that ℓ(x) ∈ [.99ℓ(xs), 1.01ℓ(xs)] for x ∈ K(s).

LetH =
{
s ∈ I : h̄(s) ≥ 1

30
ℓ(xs)

}
. Let Ji = {s ∈ I \H : voln−1(K(s) ∩ Si) ≥ 2α(s)/5}.
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Claim 4.5.1

(a) If s ∈ I \H then mini=1,2{voln−1(K(s) ∩ Si)} ≤ 1
3
α(s).

(b) s ∈ Ji and y ∈ S3−i implies h(y) ≥ 1
12
ℓ(xs).

Proof (a) Suppose s ∈ I \ H and that voln−1(K(s) ∩ Si) ≥ 2α(s)/5 for i = 1, 2.
Choose x ∈ K(s) ∩ S1, y ∈ K(s) ∩ S2. Then we have

h(x) + h(y) ≥ 1

5
min {ℓ(x), ℓ(y)} ≥ 1

6
ℓ(xs). (4.27)

If h(x) ≥ 1
12
ℓ(xs) for all x ∈ K(s) ∩ S1 then h̄(s) ≥ 1

30
ℓ(xs), contradiction. Otherwise it

follows that h(y) ≥ 1
12
ℓ(xs) for all y ∈ K(s) ∩ S2 and we get a similar contradiction.

(b) If h(y) < 1
12
ℓ(xs) then (4.27) implies h(x) ≥ 1

12
ℓ(xs) for all x ∈ Si ∩ K(s), which

implies h̄(s) ≥ 1
30
ℓ(xs), contradiction.

End of proof of Claim 4.5.1

It is clear that J1∪J2 = I \H and it follows from Claim 4.5.1 that J1 and J2 are disjoint.

Now let µ(s) = ℓ(xs)α(s) for s ∈ I. Then
∫

s∈H

h̄(s)α(s)ds ≥ 1

30

∫

s∈H

ℓ(xs)α(s)ds =
1

30
µ(H). (4.28)

On the other hand ∫

s∈H

h̄(s)α(s)ds ≤ h(K). (4.29)

Now for i = 1, 2,

ℓ(Si) =

∫

s∈Ji

∫

x∈K(s)∩Si

ℓ(x)dx+

∫

s∈J3−i

∫

x∈K(s)∩Si

ℓ(x)dx+

∫

s∈H

∫

x∈K(s)∩Si

ℓ(x)dx

≤ 1.01µ(Ji) + 12h(K) + 1.01µ(H). (4.30)

The term 12h(K) is a consequence of Claim 4.5.1.
Similarly, I don’t know where I

got 99

100
from. 1

2
is

clear. It affects
constants, maybe

ℓ(Si) ≥
99

100
µ(Ji) and ℓ(K) ≤ 101

100
µ(I). (4.31)

If (4.26) fails then (4.30) gives

ℓ(Si) ≤ 1.02(µ(Ji) + µ(H))

and then together with (4.28), (4.29) we obtain

µ(H) <
31

2500
√
n

min

{
δ

n
max
i=1,2

{
(µ(Ji) + µ(H)) log

(
101µ(I)

99µ(Ji)

)}
,

µ(J1) + µ(H), µ(J2) + µ(H).}
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We see immediately that µ(H) = o(µ(Ji)) so that µ(Ji) + µ(H) = (1 + o(1))µ(Ji) for
i = 1, 2 and then dividing through by 1− o(1) we can write

µ(H) < (1 + o(1))
31

2500
√
n

min

{
δ

d
max
i=1,2

{
µ(Ji) log

(
101µ(I)

99µ(Ji)

)}
, µ(J1), µ(J2)

}
(4.32)

Assuming µ(J1) ≤ µ(J2) we have

µ(J1) log

(
101µ(I)

99µ(J1)

)
≤ µ(J1) log

(
µ(I)

µ(J1)

)
× log(202/99)

log 2
≤ 1.03µ(J1) log

(
µ(I)

µ(J1)

)

(4.33)
and

µ(J2) log

(
101µ(I)

99µ(J2)

)
≤ µ(J2) log(202/99) < µ(J2). (4.34)

Using (4.33), (4.34) in (4.32), we obtain

µ(H) <
1

80
√
n

min

{
δ

d
max
i=1,2

{
µ(Ji) log

(
µ(I)

µ(Ji)

)}
, µ(J1), µ(J2)

}
. (4.35)

We first dismiss the degenerate case where, say, µ(J1) = 0. It follows from (4.28–4.30)
that h(K) ≥ 1

43
ℓ(S1) and the theorem is clearly true.

Claim 4.5.2 If s ∈ J1 and t ∈ J2 then |s− t| > δ1.

Proof h̄(s) < 1
30
ℓ(xs) implies that there exists x ∈ S1 ∩ K(s) such that h(x) ≤

1
18
ℓ(xs). Similarly there exists y ∈ S2 ∩ K(t) such that h(y) ≤ 1

18
ℓ(xt). If |s − t| ≤ δ1

then |x − y| ≤ δ√
n

and so h(x) + h(y) ≥ 1
5
ℓ(x) ≥ 1

6
ℓ(xs), assuming that ℓ(x) ≤ ℓ(y). It

follows that ℓ(xt) ≥ 2ℓ(xs) and so |ℓ(xs)− ℓ(xt)| ≥ ℓ0, contradicting |xs − xt| ≤ δ1.
End of proof of Claim 4.5.2

We now show that we can assume w.l.o.g. the existence of an interval (σ, τ) ⊆ H such
that if A1 = [β1, σ] and A2 = [τ, β2] then

µ(Ai ∩ Ji) ≥
1

2
µ(Ji), i = 1, 2. (4.36)

Let

b1 = inf

{
s : µ(Ji ∩ [β1, s]) ≥

1

2
µ(Ji), i = 1, 2

}
.

Assume w.l.o.g. that

µ(J1 ∩ [β1, s]) ≥
1

2
µ(J1) and µ(J2 ∩ [s, β2]) ≥

1

2
µ(J2).

It follows from Claim 4.5.2 that b1 ∈ J1 ∪H. Let

b2 = inf([b1, β2] ∩ J2).



4.5. DEFERRED PROOFS OF SECTION 4.3 109

If b2 ≥ β2 we are in the degenerate case dealt with following (4.35). Let

b3 = sup([b1, b2] ∩ J1)

and let σ = b3 and τ = b2. Equation (4.36) is satisfied and Claim 4.5.2 implies that
τ − σ ≥ δ1.

Suppose now that τ −σ ≥ 2δ
3
√

n
. The Brunn-Minkowski Theorem implies that α1/(n−1) is

concave and so α is log-concave. It follows that µ is also log-concave. Applying Corollary
4.5.3 (twice) we have

µ(H) ≥ max
i=1,2

{
2δ

3d
√
n
µ(Ai) log

(
µ(I)

µ(Ai)

)}
. (4.37)

Suppose next that ξ = τ − σ < 2δ
3
√

n
. Let λ(s) = ℓ(xσ)e−θ(s−σ)/ξ where eθ = ℓ(xσ)/ℓ(xτ),

so that λ(s) = ℓ(xs) for s = σ, τ . The log-concavity of ℓ implies that λ(s) ≤ ℓ(xs) for
s ∈ H and λ(s) ≥ ℓ(xs) for s /∈ H. Our aim is to find a contradiction to (4.35) and so
we can assume in fact that ℓ(xs) = λ(s) for s ∈ I.

Suppose that µ(τ) ≥ (1 + ζ)µ(σ) for some ζ > 0. The log-concavity of µ implies that
µ(s) ≥ µ(σ) for s ∈ H and that µ(σ − t) ≤ (1 + ζ)−t/ξµ(σ) for t > 0. But then

µ(A1) ≤ µ(σ)(log(1 + ζ))−1ξ and µ(H) ≥ µ(σ)ξ.

This implies

µ(H) ≥ 1

10
√
n
µ(A1) (4.38)

if ζ ≥ 1
5
√

n
. Using the same argument when µ(σ) ≥ (1 + ζ)µ(τ) we can now assume that

∣∣∣∣
µ(σ)

µ(τ)
− 1

∣∣∣∣ ≤
1

10
√
n
. (4.39)

It follows immediately that

µ(H) ≥ µ(σ)ξ

2
. (4.40)

We choose u ∈ J1 ∩ [σ − δ1, σ] and v ∈ J2 ∩ [τ, τ + δ1] and argue as in Claim 4.5.2 to
prove that

ℓ(xσ)

ℓ(xτ )
> 3/2, (4.41)

which implies
θ ≥ log 3/2.

Now let η be a super-gradient of α1/(n−1) at the point σ i.e. α(σ−t)1/(n−1) ≤ α(σ)1/(n−1)−
ηt for t ∈ R. Then

µ(σ − t) ≤ (α(σ)1/(n−1) − ηt)n−1ℓ(xσ)eθt/ξ



110 CHAPTER 4. COMPUTING THE VOLUME OF A CONVEX BODY

for t ∈ R.

(4.39) and (4.41) imply that α(τ) > α(σ) and so η > 0. Now, putting α0 = α(σ)1/(n−1),
using 1 − x ≤ e−x−x2

for 0 ≤ x ≤ 1 and noting that necessarily α0 ≥ (σ − β1)η, we
obtain

µ(A1) ≤ ℓ(xσ)

∫ σ−β1

0

(α0 − ηt)n−1eθt/ξdt

≤ µ(σ)

∫ σ−β1

0

exp

{
θt

ξ
− (n− 1)

(
ηt

α0

+
η2t2

α2
0

)}
dt. (4.42)

Now

ηξ ≥ α(τ)1/(n−1) − α(σ)1/(n−1)

= α0

((
α(τ)

α(σ)

)1/(n−1)

− 1

)
≥ α0

((
ℓ(xσ)

ℓ(xτ)

(
1− 1

4
√
n

))1/(n−1)

− 1

)

≥ α0

(
exp

{
θ

n− 1
− 1

3n3/2

}
− 1

)
≥ α0

θ

n− 1

(
1− 1

2
√
n

)
.

So
η

α0

≥ θ

(n− 1)ξ

(
1− 5δ√

n

)
.

Going back to (4.42) we obtain

µ(A1) ≤ µ(σ)

∫ ∞

−∞
exp

{
− θ2t2

2ξ2(n− 1)
+

θt

2ξ
√
n

}
dt = (1 + o(1))ξµ(σ)

√
πn/(2θ2),

Comparing with (4.40) we see that

µ(H) ≥ (1− o(1))
θ√
πn

µ(A1). (4.43)

It follows from (4.36), (4.37), (4.38) and (4.43) that

µ(H) ≥ 1

10
√
n

min

{
δ

d
max
i=1,2

{
µ(Ai) log

(
µ(I)

µ(Ai)

)}
, µ(A1), µ(A2)

}

≥ 1

20
√
n

min

{
δ

d
max
i=1,2

{
µ(Ai) log

(
µ(I)

µ(Ai)

)}
, µ(J1), µ(J2)

}
(4.44)

Now for i = 1, 2,

µ(Ai) ≤ µ(Ji) implies µ(Ai) log

(
µ(I)

µ(Ai)

)
≥ 1

2
µ(Ji) log

(
µ(I)

µ(Ji)

)
. (4.45)
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x log x−1 has a unique maximum over x ∈ [0, 1] at e−1 and so

µ(Ji) ≤ µ(Ai) ≤
9

10
µ(I) implies µ(Ai) log

(
µ(I)

µ(Ai)

)
≥ 1

4
µ(Ji) log

(
µ(I)

µ(Ji)

)
. (4.46)

Finally, if µ(Ji) ≤ µ(Ai) = (1−α)µ(I), α ≤ 1
10

then µ(J3−i) = βµ(I) where α ≤ β ≤ 2α
and µ(Ji) = (1− β)µ(I)− µ(H). Now (4.35) implies µ(H) = o(α) and then we have

µ(Ji) log

(
µ(I)

µ(Ji)

)
≤ µ(I)(β + β2) and µ(Ai) log

(
µ(I)

µ(Ai)

)
≥ 9

10
αµ(I)

and so

µ(Ai) log

(
µ(I)

µ(Ai)

)
≥ 1

3
µ(Ji) log

(
µ(I)

µ(Ji)

)
. (4.47)

It follows from (4.44) – (4.47) that

µ(H) ≥ 1

80
√
n

min

{
δ

d
max
i=1,2

{
µ(Ji) log

(
µ(I)

µ(Ai)

)}
, µ(J1), µ(J2)

}

contradicting (4.35) and completing the proof of the needle-like case.

We now turn to the general case where K is not necessarily needle-like. Let ℓ1 =
max {ℓ(x) : x ∈ K} and M = max

{
ℓ−1
0 , ℓ1

}
. Suppose there is a convex body K with

sets S1, S2 such that (4.26) fails. Suppose that there exist mutually orthogonal directions
a1, . . . , aj such that max1≤i≤j W (K, ai) < δ1/(2

√
n). If j ≥ n − 1, by Lemma 4.5.9 the

needle-like case applies and we have a contradiction. Thus suppose j ≤ n−2 is maximal
such that a counter-example can be found. Let L be a two-dimensional linear subspace
orthogonal to a1, . . . , aj. By Lemma 4.5.11 there is a hyperplane P with normal a ∈ L,
|a| = 1, which bisects the ℓ-measure of both S1, S2. We choose P+ to be the half-space
such that h(K ∩ P+) is smaller. Let us write K ′ for K ∩ P+ etc. If the theorem fails
for K, S1, S2, then it follows that it must also fail for K ′, S ′

1, S
′
2. (The diameter can

only decrease, and the value of ℓ0 increase, so the same d, δ1, ǫ will apply.) Also, if
K∗ = K \K ′,

vol(K∗) ≥ ℓ(K∗)

M
=
ℓ(K)

2M
≥ vol(K)

2M 2
.

Thus, by Lemma 4.5.10, W (K ′, a) ≤ ρW (K, a) where ρ = 1− 1
2nM2 .

Suppose we iterate this bisection, obtaining a sequence of bodies

K = K(1) ⊃ K(2) ⊃ · · ·K(m) ⊃ · · · ,

where K(m) = P (m) ∩ K(m−1), containing sets for which the theorem fails. Now K(m)

clearly converges to a compact convex set K∗. If a(m) is the normal to P (m), by
compactness a(m) has a cluster point a∗ ∈ L. By continuity, taking the limit in
0 ≤W (K(m+1), a(m)) ≤ ρW (K(m), a(m)) gives 0 ≤W (K∗, a∗) ≤ ρW (K∗, a∗). Thus
W (K∗, a∗) = 0, and hence for some m, W (K(m), a(m)) < δ1/(2

√
n), contradiction.
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Assuming that ℓ(S1) ≤ ℓ(S2) and using (4.26) we obtain

h(K)ℓ(K)

2ℓ(S1)ℓ(S2)
≥ 1

2500
√
n

min

{
δ

d
log

(
ℓ(K)

ℓ(S1)

)
, 1

}

≥ 1

2500
√
n

min

{
δ

d
log

(
ℓ(K)2

2ℓ(S1)ℓ(S2)

)
, 1

}

≥ 1

2500
√
n

min

{
δ

2d
log

(
ℓ(K)2

ℓ(S1)ℓ(S2)

)
, 1

}

and the theorem follows. 2

We now complete the proof of Theorem 4.2.2. Suppose that we have a partition S
(1)
L , S

(2)
L

of KL with S
(1)
L ≤ S

(2)
L . We need to bound the following quantity from below:

ΦL(S
(1)
L ) =

ℓL(KL)

ℓL(S
(1)
L )ℓL(S

(2)
L )

∑

x∈S
(1)
L

|BL(x, δ) ∩ S(2)
L |

|BL(x, δ)| .

We define

δ′ = δ − η√n, K∗ = (1− η√n)K, S∗
1 = K∗ ∩

⋃

x∈S
(1)
L

C(x) and S∗
2 = K∗ \ S∗

1 .

Then denoting the local conductance of K∗ by ℓ∗ we see that Theorem 4.26 implies

ℓ∗(K∗)

ℓ∗(S∗
1)ℓ∗(S∗

2)

∫

x∈S∗
1

vol(B(x, δ′) ∩ S∗
2)

vol(B(x, δ′))
dx ≥ 1

5000
√
n

min

{
δ′

d
log

(
ℓ(K∗)

ℓ∗(S∗
1)

)
, 1

}
(4.48)

Arguing as in Lemma 4.5.2 we get

ℓ∗(K∗) ≤
(

1 +
ǫ

n

)
ηnℓL(KL), ℓ∗(S∗

i ) ≥
(

1 +
ǫ

n

)−1

ηnℓL(S
(i)∗
L ), i = 1, 2 (4.49)

where S
(i)∗
L =

{
x ∈ S(i)

L : C(x) ∩K∗ 6= ∅
}

.

Furthermore,

∫

x∈S∗
1

vol(B(x, δ′) ∩ S∗
2)

vol(B(x, δ′))
dx =

∫

x∈S∗
1

∫

x∈S∗
2

1|x−y|≤δ′ dxdy ≤
∑

x∈S
(1)∗
L

∑

x∈S
(2)∗
L

η2n1|x−y|≤δ ≤
∑

x∈S
(1)∗
L

|BL(x, δ) ∩ S(2)
L |. (4.50)

It follows from (4.49), (4.50) and ηn|BL(x, δ)| ≤
(
1 + ǫ

n

)
vol(B(x, δ′)) – Lemma 4.3.1 –

that

ΦL(S
(1)
L ) ≥

(
1 + ǫ

n

)−4

5000
√
n

ℓ∗L(S
(1)∗
L )

ℓL(S
(1)
L )
· ℓ

∗
L(S

(2)∗
L )

ℓLS
(2)
L )

min

{
δ′

d
log

((
1 + ǫ

n

)−1
ℓL(KL)

(
1 + ǫ

n

)
ℓL(S

(1)∗
L )

)
, 1

}
(4.51)
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Arguing as in Lemma 4.5.2 we get

ℓL(S
(2)∗
L ) ≥ ℓL(S

(2)
L )− 2

ǫ

n
ℓL(KL) ≥ ℓL(S

(2)
L )
(

1− 4
ǫ

n

)

since ℓL(S
(2)
L ) ≥ 1

2
ℓL(KL).

Case 1: ℓL(S
(1)∗
L ) ≥ 1

2
ℓL(S

(1)
L ).

It follows from (4.51) that

ΦL(S
(1)
L ) ≥ 1

10001
√
n

min

{
δ

d
log

(
ℓL(KL)

ℓL(S
(1)
L )

)
, 1

}
. (4.52)

Case 1: ℓL(S
(1)∗
L ) < 1

2
ℓL(S

(1)
L ).

We show that

x ∈ S(1)B
L = S

(1)
L \ S

(1)∗
L implies |BL(x, δ) ∩ S(2)

L | ≥
1

2
|BL(x, δ) ∩KL|. (4.53)

As a consequence

ΦL(S
(1)
L ) ≥ ℓL(KL)

ℓL(S
(1)
L )ℓL(S

(2)
L )

∑

x∈S
(1)B
L

|BL(x, δ) ∩KL|
2|BL(x, δ)| =

ℓL(KL)ℓL(S
(1)B
L )

2S
(1)
L )ℓL(S

(2)
L )

≥ 1

4
.

Suppose that in contradiction to (4.53) that ∃x ∈ S(1)B
L such that

|BL(x, δ) ∩ S(1)
L | >

1

2
|BL(x, δ) ∩KL| ≥

1

3
η−n(10d/δ)−n (4.54)

where the last inequality is from Theorem 4.3.1 and Lemma 4.5.2.

Now
ℓL(S

(1)B
L ) ≤ |S(1)B

L | ≤ 3η−(n−1)dnn1/2 (4.55)

and (4.53) implies

ℓL(S
(1)∗
L ) ≥ (η−n(2d)−n − 3η−(n−1)dn

√
n)(2d)−n. (4.56)

(4.55) and (4.56) contradict ℓL(S
(1)∗
L ) < ℓL(S

(1)B
L ).

Thus (4.52) holds in general and so

ΦL(S
(1)
L ) ≥ 1

10001
√
n

min

{
δ

d
log

(
ℓL(KL)2

2ℓL(S
(1)
L )ℓL(S

(2)
L )

)
, 1

}

≥ 1

10001
√
n

min

{
δ

2d
log

(
ℓL(KL)2

ℓL(S
(1)
L )ℓL(S

(2)
L )

)
, 1

}

Thus the conductance function ΦL(x) for the speedy chain satisfies the conditions of
Theorem 2.6.4 with A = δ

20002d
√

n
and B = 1

20002
√

n
and Theorem 4.2.2 follows. 2
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4.6 Deferred proofs of Section 4.4

4.6.1 Proof of Theorem 4.4.3

(a) The claim is invariant under affine transformations and so we can assume that K
is in isotropic position. We therefore have to show that g ∈ −φK which is implied by
|g| ≤ φ

n
. Now

E(|g|2) =
1

m2
2

(
∑

i

E(|z(i)|2) +
∑

i6=j

E(z(i)T z(j))

)
. (4.57)

Let ξi = W (i)−UL where W (i) will be the conditional distribution of z(i) given z(j), j 6= i.
Then

E(|z(i)|2) =
∑

x∈KL

|x|2UL(x) +
∑

x∈KL

|x|2ξ(x) ≤ n+ 2n2ǫ2.

Also, for i < j,

E(z(i)T z(j)) =
∑

x∈KL

E(xT z(j) | z(i) = x)W (i)(x)

=
∑

x∈KL

∑

y∈KL

xTyPr(z(j) = y | z(i) = x)W (i)(x)

=

(
∑

x∈KL

xξi(x)

)T (∑

y∈KL

yξj(y)

)
≤ 4n2ǫ22.

Hence

E(|g|2) ≤ 1

m2
2

(n2 + 2n2ǫ2 + 4n4ǫ22) ≤
γφ2

4

and so we can use the Markov inequality to complete the proof of (a).

The proof of (b) is similar. 2

4.6.2 Proof of Theorem 4.4.2

Replacing K by TK for some non-singular affine transformation T yields the same value
for K ′ and so we can assume that K is in isotropic position.

We start by proving the second condition of θ-isotropy. We want to prove that with
probability at least 1− η every w ∈ Rn satisfies

(1− θ)|w|2 ≤ 1

vol(K ′)

∫

K′−b(K′)

(wT y)2dy ≤ (1 + θ)|w|2. (4.58)
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By change of variables, y → Y 1/2y + ȳ, (4.58) can be written as

(1− θ)|v|2 ≤ 1

vol(K)

∫

K

(vTy)2dy ≤ (1 + θ)|v|2.

We can assume that |v| = 1 in (4.59) and so the middle term is 1. So we have to prove

1

1 + θ
≤ vTY v ≤ 1

1− θ . (4.59)

Putting Y = Z− ȳ ȳT where Z = 1
m

∑m
i=1 y

(i)y(i)T we see that we have to show that with
probability at least 1− η, for every v ∈ Rn, |v| = 1,

1

1 + θ
+ (vT ȳ)2 ≤ vTZv ≤ 1

1− θ + (vT ȳ).

Now by Theorem 4.4.3 we have that with probability at least 1− γ, we have

|ȳ| ≤ θ/4 (4.60)

and so it suffices to prove that for all |v| = 1,

|vTE(Z)v − 1| ≤ θ

4
. (4.61)

Indeed,

vTE(Z)v =
1

m1

m1∑

i=1

vTE(y(i)y(i)T )v =
1

m1

m1∑

i=1

∑

x∈KL

(vTx)2W (i)(x)

=
1

m1

m1∑

i=1

(vTx)2(UL(x) + ξ(i)(x)) = 1 +
1

m1

m1∑

i=1

(vTx)2ξ(i)(x)

and (4.61) follows from ∣∣∣∣∣
1

m1

m1∑

i=1

(vTx)2ξ(i)(x)

∣∣∣∣∣ ≤ n4ǫ1.

Next we prove that with probability at least 1− γ
2

||Z −E(Z)|| ≤ θ

4
. (4.62)

To prove this we use
||Z − E(Z)||2 ≤ Tr((Z −E(Z))2).

We compute the expectation of this trace.

m2
1(Z −E(Z))2 =

m1∑

i=1

(y(i)y(i)T −E(y(i)y(i)T )2+

∑

i6=j

(y(i)y(i)T −E(y(i)y(i)T ))(y(j)y(j)T −E(y(j)y(j)T )). (4.63)
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The first term is handled as follows: Fix any i; then

E((y(i)y(i)T −E(y(i)y(i)T )2) = E((y(i)y(i)T )2)−E(y(i)y(i)T )2

and hence

E(Tr((y(i)y(i)T −E(y(i)y(i)T )2))) ≤ E(Tr((y(i)y(i)T )2)) = E(|y(i)|4)
=
∑

x∈KL

|x|4UL(x) +
∑

x∈KL

|x|4ξ(i)(x) ≤ 8n2 + ǫ1n
4,

where we have used the inequality EK(|x|4) ≤ 8EK(|x|2) by a theorem of Gromov and
Milman.which theorem?

The second term in (4.63)is handled as follows: Fix any i 6= j; then

Tr((y(i)y(i)T −E(y(i)y(i)T ))(y(j)y(j)T −E(y(j)y(j)T ))) =
n∑

k=1

n∑

l=1

(y
(i)
k y

(i)
l −E(y

(i)
k y

(i)
l ))(y

(j)
k y

(j)
l −E(y

(j)
k y

(j)
l )).

The expectation of each term here can be bounded by ǫ1(n+ 1)4 and the expectation of
the second term in (4.63)c an be bounded by ǫ1m

2
1(n+ 1)4. So,

E(||Z − E(Z)||2) ≤ m−1
1 (8n2 + ǫ1n

4) + ǫ1(n+ 1)4 ≤ γ2φ2

8

and (4.61) follows.

To complete the proof it suffices to remark that b(K ′) = −Y 1/2ȳ and hence if (4.59) and
(4.60) hold, then

|b(K ′)| =
√
ȳTY ȳ ≤

√
θ2

16(1− θ) < θ.

2

4.6.3 Proof of Theorem 4.4.5

We first prove some preliminary lemmas.

Lemma 4.6.1 If b(K) ∈ −αK for α > 0 and hTx ≤ c for h ∈ Rn, |h| = 1 and x ∈ K
then EK((hTx)2) ≤ (1 + 2α+ 2α2)c2.

Proof We first observe that if f = ρTx + σ is an arbitrary linear function on K
then

EK(f2) ≤ EK(f)2 +
(

max
K

f −EK(f)
)2

. (4.64)
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Indeed, (4.64) is clear if K is in isotropic position for then EK(f) = σ, EK(f2) = |ρ|2
and maxK f ≥ |ρ| since K ⊇ B. Now note thet if (4.64) is true for some K and all f
then it remains true for AK and all f , where A is an affine transformation.

Now let f = hTx. Then EK(hTx) = hT b ≥ −αc since b ∈ −αK. So, applying (4.64),
we get

EK((hTx)2) ≤ c2 + (c+ αc)2.

2

Lemma 4.6.2 Let h ∈ Rn, |h| = 1 for which hTx < 1
2

for all x ∈ K. Let Uh be as in
(4.11). Then

(a) If K satifies (4.7) and (4.9) then so does UhK.

(b) vol(UhK) ≥ 9
8
vol(K).

Proof For (4.7) we use

b(UhK) = Uhb(K) ∈ Uh

(
− 1

10
K

)
= − 1

10
UhK.

For (4.9) we see that Lemma 4.6.1 implies EK((hTx)2) ≤ 1
3
. Hence

EUhK(|x|2) = EK(|Uhx|2) =

(
1− 1

2n

)2

EK(|x+ (xTh)h|2) =

(
1− 1

2n

)2

EK(|x|2 + 3(hTx)2) <

(
1− 1

2n

)2

(100n+ 1) < 100n.

This completes the proof of (a).

Since det(Uh) = 2
(
1− 1

2n

)n ≥ 9
8

we have (b). 2

Lemma 4.6.3 Let K be a convex body containing the origin and let v be chosen uni-
formly from K. Make one step of a lazy random walk starting from v. Then the proba-
bility that this step is a nonflat improper step is at most 4δ0

√
n.

Proof Put K1 = conv(K ∪ 1
2
B). Assume that the attempted step v → u is nonflat

improper. Then trivially u /∈ K1. We prove that the (2n)-dimensional measure of the set
S of pairs v, u with v ∈ K, u ∈ Rn \K1 and |v−u| ≤ δ0 is at most 4δ0

√
nvol(K)vol(δ0B)

and this will prove the lemma.

Let q′ be the point of intersection of the segment [v, u] and ∂K1. Then clearly q′ ∈ F ′ =
∂K1 ∩ (21/nK). Applying Lemma 4.5.1 to K1 we get that

vol2n(S) ≤ δ0voln−1(F
′)

cn−1

(n+ 1)cn
vol(δ0B) <

δ0√
n

voln−1(F
′)vol(δ0B).
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The hyperplane supporting K1 at any point of F ′ has distance at least 1/2 from the ori-
gin. Hence the union U of segments connecting 0 to F ′ has volume at least voln−1(F

′)/(2n).
On the other hand, clearly U ⊆ 21/nK. This implies that

voln−1(F
′) ≤ 4nvol(K)

and so

vol2n(S) ≤ 4δ0
√
nvol(K)vol(δ0B).

2

Lemma 4.6.4 Let K ⊆ d0B, d0 ≥ 1 be a convex body with average local conductance
λ with respect to δ0 moves where 0 < δ0 <

1
32

. Let u ∈ K. Starting from u, do a lazy
random walk in K until at least

T =
⌈
κn2d2

0δ
−2
0 log(δ0

√
n)
⌉

proper steps are made. Then the probability that no flat steps were attempted is at most
λ + 6δ0

√
n.

Proof We may assume that δ0 < 1/(6
√
n). Consider a random walk in the body

K1 = conv(K ∪ 1
2
B) starting at u. Until this walk hits K1 \K it can be considered a

random walk in K. Conversely, a random walk in K can be considered a random walk
in K1 until the first flat step is attempted, because until then, any time we attempt to
step out of K, we are actually stepping out of K1. Hence the probability that a random
walk of length T in K attempts a flat step is at least as large as the probability that a
random walk in K1 of length T hits K1 \K.

Now (1/2)B ⊆ K1 ⊆ d0B and so (4.16) implies that the average local conductance of
K1 is at least 1− δ0

√
n. Theorem 4.2.2 and Lemma 4.2.1 imply that the distribution of

the point w at the (T − 1)th proper step is within variation distance

2δ0
√
n of uniform. Lemma 4.6.3 then implies that the probability the step from w is

proper or nonflat is at most λ+ 2δ0
√
n+ 4δ0

√
n. 2

We can now prove Theorem 4.4.5. The first assertion is clear by Lemma 4.6.2. This
implies that the volume of every Ki is at most that of B(0, 10n) which is (10n)n/2cn.plausible

On the other hand (4.9) implies that vol(K0) ≥ n−n/4cn. Since each flat step increase
the volume by at least 9/8 we see that at most 8n log n flat steps can occur.

Consider the algorithm going on for M rather than N iterations. Let Li, L
′
i be the

average local conductances of Ki,K
′
i respectively. It follows from (4.9), K ′

i ⊆ dB and
the Markov inequality that

vol(K ′
i)

vol(Ki)
≥ 1− 50θ.
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So,

Li ≥ L′
i

vol(K ′
i)

vol(Ki)
≥ L′

i(1− 50θ).

Let λi = E(Li) (Li is a random variable). Let Xi be the indicator variable of the event
that the ith random walk ended with a flat step. Then

∑
iXi is the number of such

walks and hence ∑

i

Xi ≤ 8n log n. (4.65)

On the other hand, from Lemma 4.6.4, we get that

Pr(Xi+1 = 1 | previous history) ≥ 1− 6δ0
√
n− L′

i ≥ 1− θ

4
− 1

1− 50θ
Li

and so
M−1∑

i=0

E(Xi) ≥
M−1∑

i=0

(
1− θ

4
− 1

1− 50θ
Li

)

and so by (4.65)

1

M

M−1∑

i=0

λi ≥ (1− 50θ)

(
1− 8n log n

M
− θ

4

)
≥ 1− 100θ.

Since N is chosen randomly from {0, 1, . . . ,M − 1} we see that

E(LN) = λN ≥ 1− 100θ.

For simplicity imagine that the last walk goes on if necessary until a total of at least
3MT steps are made. If the number of nonflat improper steps during the algorithm
is larger than MT then their number among the first 3MT steps is larger than MT .
Since u and therefore evey given point in the sequence has a distribution that is closer to
uniform than γ/6 (in total variation distance), the probability that a given step is nonflat
improper is at most γ/6 + 4δ0

√
n < γ/3 by Lemma isolem4. Thus the expected number

of nonflat improper steps is at most γMT . The probability bound on the number of
steps then follows from the Markov inequality. 2
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Chapter 5

Matroids

Let E be a finite ground set and B ⊆ 2E a collection of subsets of E. We say that B
forms the collection of bases of a matroid M = (E,B) if the following two conditions
hold:

1. All bases (sets in B) have the same size, namely the rank of M .

2. For every pair of bases X,Y ∈ B and every element e ∈ X, there exists an element
f ∈ Y such that X ∪ {f} \ {e} ∈ B.

The above axioms for a matroid capture the notion of linear independence. Thus if
S = {u0, . . . , um−1} is a set of n-vectors over a field K, then the maximal linearly
independent subsets of S form the bases of a matroid with ground set S. The bases in
this instance have size equal to the dimension of the vector space spanned by S, and
they clearly satisfy the second or “exchange” axiom. A matroid that arises in this way
is vectorial, and is said to be representable over K. A matroid that is representable
over every field is called regular. Several other equivalent axiomatisations of matroid
are possible, each shedding different light on the notion of linear independence; the
above choice turns out to be the most appropriate for our needs. For other possible
axiomatisations, and more on matroid theory generally, consult Oxley [?] or Welsh [?].

The advantage of the abstract viewpoint provided by matroid theory is that it allows
us to perceive and exploit formal linear independence in a variety of combinatorial
situations. Most importantly, the spanning trees in an unlabelled graph G = (V,E)
form the bases of a matroid, the cycle matroid of G, with ground set E. A matroid that
arises as the cycle matroid of some graph is called graphic. The co-cycle matroid of G
again has ground set E but the bases are now complements (in E) of spanning trees.
The relationship of the cycle and co-cycle matroids of G is a special case of a general
one of duality. All graphic matroids are regular, but the converse does not hold: the
co-graphic matroid of a non-planar graph is regular but not graphic. A rather trivial
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class of matroids we shall encounter are the “uniform matroids.” The uniform matroid
Ur,m of rank r on a ground set E of size m has as its bases all subsets of E or size r.

Two absolutely central operations on matroids are contraction and deletion. If e ∈ E
is an element of the ground set of M then the matroid M \ e obtained by deleting e
has ground set E−e = E \ {e} and bases B(M \ e) = {X ⊆ E−e : X ∈ B(M)}; the
matroid M/e obtained by contracting e has ground set E−e and bases B(M/e) = {X ⊆
E−e : X ∪ {e} ∈ B(M)}. Any matroid obtained from M by a series of contractions and
deletions is a minor of M .

The matroid axioms given above suggest a very natural walk on the set of bases of a
matroid M . The bases-exchange graph G(M) of a matroid M has vertex set B(M) and
edge set {

{X,Y } : X,Y ∈ B and |X ⊕ Y | = 2
}
,

where ⊕ denotes symmetric difference. Note that the edges of the bases-exchange
graph G(M) correspond to the transformations guaranteed by the exchange axiom.
Indeed, it is straightforward to check, using the exchange axiom, that the graph G(M)
is always connected. By simulating a random walk on G(M) it is possible, in principle,
to sample a base (almost) u.a.r. from B(M). Although it has been conjectured that
the random walk on G(M) is rapidly mixing for all matroids M , the conjecture has
never been proved and the circumstantial evidence in its favour seems slight. Neverthe-
less there is an interesting class of matroids, the “balanced” matroids for which rapid
mixing has been established. The definition of balanced matroid is due to Feder and
Mihail [?], as is the proof of rapid mixing. We follow their treatment quite closely.

5.1 Balanced matroids

For this section we usually drop explicit reference to the matroid M , and simply write
B and E in place of B(M) and E. Suppose a base X ∈ B is chosen u.a.r. If e ∈ E, we
let e stand (with a slight abuse of notation) for the event e ∈ X, and ē for the event
e /∈ X. Furthermore, we denote conjunction of events by juxtaposition: thus ef̄ denotes
the event e ∈ X ∧ f /∈ X, etc. The matroid M is said to possess the negative correlation
property if the inequality Pr(ef) ≤ Pr(e)Pr(f) holds for all pairs of distinct elements
e, f ∈ E. Another way of expressing negative correlation is by writing Pr(e | f) ≤ Pr(e);
in other words the knowledge that f is present in X makes the presence of e less likely.1

Further, the matroid M is said to be balanced if all minors of M (including M itself)
possess the negative correlation property. We shall see in §5.1.2 that regular matroids
are always balanced. But there are balanced matroids that are not regular: it is easy to
check that all uniform matroids satisfy the negative correlation property and that the

1We assume here that Pr(f) > 0; an element f such that Pr(f) = 0 is said to be a loop.
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class of uniform matroids is closed under contraction and deletion; on the other hand,
U2,m is not regular when m ≥ 4. (Refer to Oxley [?, Theorem 13.1.1].)

5.1.1 Efficiently sampling bases of balanced matroids

It is convenient in this section to work with a combinatorial version of conductance
rather than conductance itself. The cutset expansion of a graph G is the minimum, over
all subsets S ⊂ V (G) with 0 < |S| ≤ |V (G)|/2 of the ratio | cut(S)|/|S|, where cut(S) ⊆
E(G) denotes the set of edges with one endpoint in S and one in the complement of S.
The main result of this section is a lower bound on cutset expansion of the bases-exchange
graph.

Theorem 5.1.1 The cutset expansion of the bases-exchange graph G(M) of any bal-
anced matroid M is at least 1.

Suppose we implement the random walk on the bases-exchange graph G(M) in the
following natural way. The current state (base) is X.

Step 1 With probability 1
2

set Y = X.

Step 2 Otherwise, choose e u.a.r. from E \X.

Step 3 Choose f ∈ E u.a.r. from the elements of the ground set satisfying Y = X ∪
{e} \ {f} ∈ B.

The new state is Y . Call this the bases-exchange walk. Note that the transition matrix
implicitly described by the above implementation is symmetric. Since we have already
observed that G(M) is connected, we see that the bases-exchange walk converges to a
stationary distribution that is uniform over states. Furthermore, the non-zero transition
probabilities (corresponding to edges of G(M)) are all at least 1/2mr. Thus, according
to Theorem 5.1.1, the conductance of the random walk is bounded below by 1/2mr, and
by Theorem 2.2.1 we obtain:

Corollary 5.1.1 The mixing time of the bases-exchange walk on any balanced matroid
of rank r on a ground set of size m is at most 4m2r2(r lnm+ ln ǫ−1).

We approach the proof of Theorem 5.1.1 via a couple of lemmas. If E ′ ⊆ E, then a
increasing property over E ′ is a property of subsets of E ′ that is closed under the superset
relation; equivalently, it is a property that may be expressed as a monotone Boolean
formula in the indicator variables of the elements in E ′. A decreasing property is defined
analogously.
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Lemma 5.1.1 Let M be a balanced matroid and let e ∈ E.

(a) If µ is an increasing property over E−e, then Pr(µ | e) ≤ Pr(µ | ē).

(b) If µ is a decreasing property over E−e, then Pr(µ | e) ≥ Pr(µ | ē).

Proof We prove (a), (b) follows by consideration of µ̄. The proof is by induction
on the size of the ground set. We may assume that Pr(µe) > 0, otherwise the result
is immediate. Conditional probabilities with respect to e and µe are thus well defined,
and we may re-express our goal as Pr(µ | e) ≤ Pr(µ). If the rank of M is 1 then either
(i) ∅ ∈ µ and Pr(µ) = 1 or (ii) ∅ /∈ µ and Pr(µe) = 0. Thus we may assume that the
rank r of M is at least 2.

From the identity

E(|X \ e| | µe) =
∑

f 6=e

Pr(f | µe) = r − 1 = E(|X \ e| | e) =
∑

f 6=e

Pr(f | e),

and the assumption that r ≥ 2, we deduce the existence of an element f satisfying
Pr(f | µe) ≥ Pr(f | e) > 0, and hence

Pr(µ | ef) ≥ Pr(µ | e); (5.1)

note that the conditional probability on the left is well defined. Two further inequalities
that hold between conditional probabilities are

Pr(f | e) ≤ Pr(f) (5.2)

and
Pr(µ | ef) ≤ Pr(µ | f); (5.3)

the former comes simply from the negative correlation property, and the latter from
applying the inductive hypothesis to the matroid M/f and the property derived from µ
by forcing f to 1.

At this point we dispense with the degenerate case Pr(f̄ | e) = 0. It follows from (5.2)
that Pr(f) = 1, and then from (5.3) that Pr(µ | e) ≤ Pr(µ), as desired. So we may
now assume Pr(f̄ | e) > 0 and hence that probabilities conditional on the event ef̄ are
well defined. In particular,

Pr(µ | ef̄) ≤ Pr(µ | f̄), (5.4)

as can be seen by applying the inductive hypothesis to the matroid M \ f and the
property derived from µ by forcing f to 0. Further, inequality (5.1) may be re-expressed
as

Pr(µ | ef) ≥ Pr(µ | ef̄). (5.5)
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The inductive step is now achieved through a chain of inequalities based on (5.2)–(5.5):

Pr(µ | e) = Pr(µ | ef)Pr(f | e) + Pr(µ | ef̄)Pr(f̄ | e)
= Pr(µ | ef)Pr(f | e) + Pr(µ | ef̄)(1−Pr(f | e))
=
[
Pr(µ | ef)−Pr(µ | ef̄)

]
Pr(f | e) + Pr(µ | ef̄)

≤
[
Pr(µ | ef)−Pr(µ | ef̄)

]
Pr(f) + Pr(µ | ef̄) (5.6)

= Pr(µ | ef)Pr(f) + Pr(µ | ef̄)Pr(f̄)

≤ Pr(µ | f)Pr(f) + Pr(µ | f̄)Pr(f̄) (5.7)

= Pr(µ),

where inequality (5.6) uses (5.2) and (5.5), and inequality (5.7) uses (5.3) and (5.4). 2

Given e ∈ E, the set of bases B may be partitioned as B = Be∪Bē, where Be = {X ∈ B :
e ∈ X} and Bē = {X ∈ B : e /∈ X}; observe that Be and Bē are isomorphic to B(M/e)
and B(M \ e), respectively. For A ⊆ Be (respectively, A ⊆ Bē), let Γe(A) denote the
set of all vertices in Bē (respectively, Be) that are adjacent to some vertex in A. The
bipartite subgraph of the bases-exchange graph induced by the bipartition B = Be ∪ Bē

satisfies a natural expansion property. For S ⊆ B we let Se = {X ∈ S : e ∈ X} and
Sē = S \ Se.

Lemma 5.1.2 Suppose M is a balanced matroid, e ∈ E, and that the partition B =
Be ∪ Bē is non-trivial. Then for all S ⊆ B,

|Γe(Se)|
|Bē|

≥ |Se|
|Be|

, and

|Γe(Sē)|
|Be|

≥ |Sē|
|Bē|

.

Proof µ1 = {Y ⊆ E−e : ∃X ∈ Se s.t. Y ⊇ X \ {e}} is an increasing property. The
collection of all bases in Be satisfying µ1 is precisely Se, while the collection of all bases
in Bē satisfying µ1 is precisely Γe(Se). Hence the first part of the lemma is equivalent
to the inequality Pr(µ1 | ē) ≥ Pr(µ1 | e), which follows from Lemma 5.1.1. Similarly,
µ2 = {Y ⊆ E−e : ∃X ∈ Sē s.t. Y ⊆ X ∪ {e}} is a decreasing property. The set of all
bases in Bē satisfying µ2 is precisely Sē, while the set of all bases in Be satisfying µ2

is precisely Γe(Sē). Hence the second part of the lemma is equivalent to the inequality
Pr(µ2 | e) ≥ Pr(µ2 | ē), which again follows from Lemma 5.1.1. 2

We now have the tools needed to bound the cutset expansion of the bases-exchange
graph.

Proof of Theorem 5.1.1 We proceed by induction on |E|. Let S ⊂ B be a
collection of bases, with |S| ≤ |B|/2, defining a cut in the bases-exchange graph of M .
Let Se = S ∩ Be and Sē = S ∩ Bē, and define α and β by |Se| = α|Be| and |Sē| = β|Bē|.
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The edges forming the cut are of three kinds: (i) those whose endpoints are both within
Be, (ii) those whose endpoints are both within Bē, and (iii) those which span Be and
Bē. By the induction hypothesis, the numbers of edges of kinds (i) and (ii) are at least
min{α, 1 − α}|Be| and min{β, 1 − β}|Bē|, respectively. To lower bound the number of
edges of kind (iii), assume first that α ≥ β. By Lemma 5.1.2, there are at least α|Bē|
bases in Bē adjacent to some base in Se; of these, at least (α−β)|Bē| must lie outside Sē.
Thus there are at least (α − β)|Bē| edges of type (iii). This argument can equally well
be applied in the opposite direction, starting at the set Bē \ Sē, yielding a second lower
bound of ((1−β)− (1−α))|Be| = (α−β)|Be|. Thus the number of edges of kind (iii) is
at least (α− β) max{|Be|, |Bē|}. Since the case α < β is entirely symmetric, we obtain,
summing the contributions from edges of kinds (i)–(iii):

| cut(S)| ≥ min{α, 1− α}|Be|+ min{β, 1− β}|Bē|+ |α− β|max{|Be|, |Bē|}. (5.8)

To complete the proof we must show that | cut(S)| is always at least α|Be|+β|Bē| = |S|,
whenever |S| ≤ |B|/2. Note that this last condition may be expressed as

(1
2
− α)|Be|+ (1

2
− β)|Bē| ≥ 0. (5.9)

If α, β ≤ 1
2
, the required lower bound on | cut(S)| follows immediately from (5.8). We

therefore just need to treat the cases when one of α or β is greater than 1
2
. To simplify

the working, we’ll exploit the symmetry of (5.8) and assume, without loss of generality,
that

|Be| ≥ |Bē|. (5.10)

Suppose first that α > 1
2
. Then inequalities (5.9) and (5.10) entail β < 1− α < 1

2
, and

inequality (5.8) simplifies to

| cut(S)| ≥ (1− α)|Be|+ β|Bē|+ (α− β)|Be|.
Hence,

| cut(S)| ≥ (1− β)|Be|+ β|Bē| ≥ α|Be|+ β|Bē| = |S|,
as required.

Finally, suppose that β > 1
2
. Then necessarily α < 1

2
and inequality (5.8) simplifies to

| cut(S)| ≥ α|Be|+ (1− β)|Bē|+ (β − α)|Be| ≥ β|Be|+ (1− β)|Bē|
≥ (α + β − 1

2
)|Be|+ 1

2
|Bē| ≥ α|Be|+ β|Bē| = |S|.

This completes the inductive step. 2

5.1.2 Regular matroids are balanced

A natural question now presents itself: how big is the class of balanced matroids? Recall
that a regular matroid is one that is representable over every field. In this section we
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prove that all regular matroids are balanced. More precisely, we prove the equivalent
result that all “orientable” matroids are balanced. The class of orientable matroids is
known to be the same as the class of regular matroids [?, Corollary 13.4.6].2

In order to define the property of being orientable, we need some further matroid ter-
minology. A cycle C ⊂ E in a matroid M = (E,B) is a minimal (under set inclusion)
subset of elements that cannot be extended to a base. A cut is a minimal set of elements
whose complement does not contain a base. Note that in the case of the cycle matroid
of a graph, in which the bases are spanning trees, these terms are consistent with the
usual graph theoretic ones. Let C ⊆ 2E denote the set of all cycles in M and D ⊆ 2E

the set of all cuts. We say that M is orientable if functions γ : C × E → {−1, 0,+1}
and δ : D × E → {−1, 0,+1} exist which satisfy the following three conditions, for all
C ∈ C and D ∈ D:

γ(C, g) 6= 0 iff g ∈ C,
δ(D, g) 6= 0 iff g ∈ D, and∑

g∈E

γ(C, g)δ(D, g) = 0. (5.11)

We work in this section towards the following result.

Theorem 5.1.2 Orientable (and hence regular) matroids are balanced.

A near base of M is a set N ⊆ E that can be augmented to a base by the addition of a
single element from the ground set. A unicycle of M is a set U ⊆ E that can be reduced
to a base by the removal of a single element. A near base N defines a unique cut DN

consisting of all elements of the ground set whose addition to N results in a base. A
unicycle U defines a unique cycle CU consisting of all elements which whose removal
from U results in a base. Let e, f be distinct elements of the ground set E. We claim
that

γ(CU , e)γ(CU , f) + δ(DN , e)δ(DN , f) = 0, (5.12)

for all near-bases N and unicycles U that are related by U = N ∪ {e, f}. To see this,
note that the equation (5.11) simplifies in this situation to

γ(CU , e)δ(DN , e) + γ(CU , f)δ(DN , f) = 0, (5.13)

since all terms in the sum are zero except from those obtained by setting g = e and g = f .
Now it may be that all four quantities in (5.13) are zero, in which case we are done.
Otherwise, some quantity, say δ(DN , e), is non-zero, in which case DN ∪{e} = CU \ {f}

2When consulting this corollary, it is important to realise that Oxley applies the term “signable”
to the class of matroids Feder and Mihail call “orientable,” preferring to apply the latter term to a
different and larger class. We follow Feder and Mihail’s terminology.
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is a base and γ(CU , f) is non-zero also. Multiplying (5.13) through by γ(CU , f)δ(DN , e)
yields

γ(CU , e)γ(CU , f)δ(DN , e)
2 + γ(CU , f)2δ(DN , e)δ(DN , f) = 0,

which simplifies to equation (5.12) as required, since the square factors are both one.

For distinct elements e, f ∈ E, define

∆ef =
∑

N

δ(DN , e)δ(DN , f) = −
∑

U

γ(CU , e)γ(CU , f),

where the sums are over all near bases N and unicycles U . The equality of the two
expressions above is a consequence of (5.12), and the bijection between non-zero terms
in the two sums that is given by N 7→ N ∪ {e, f} = U . Select a distinguished element
e ∈ E and force γ(C, e) = −1 and δ(D, e) = 1 for all cycles C ∋ e and cuts D ∋ e.
This can be done by flipping signs around cycles and cuts, without compromising the
condition (5.11) for orientability, nor changing the value of ∆ef . With this convention
we have

∑

g 6=e

γ(C, g)δ(D, g) = 1, provided C ∋ e and D ∋ e; (5.14)

γ(CU , f) = δ(DN , f), provided U = N ∪ {e, f}; (5.15)

and
∆ef =

∑

U :e∈CU

γ(CU , f) =
∑

N :e∈DN

δ(DN , f), (5.16)

where C, D, U and N denote, respectively, arbitrary cycles, cuts, unicycles and near
bases satisfying the stated conditions. An intuitive reading of ∆ef is as a measure of
whether cycles containing e, f arising from unicycles tends to traverse e and f in the
same or opposite directions; similarly for cuts arising from near bases.

We extend earlier notation in an obvious way, so that Bef is the set of bases of M
containing both e and f , and Bēf is the set of bases excluding e but including f , etc.

Theorem 5.1.3 The bases B = B(M) of an oriented matroid M satisfy |B| · |Bef | =
|Be| · |Bf | −∆2

ef .

Proof We consider a pair of bases (X,Y ) ∈ Bē × Bef to be adjacent to a pair
(X ′, Y ′) ∈ Be×Bēf if (X ′, Y ′) can be obtained by an exchange involving e and a second
element g 6= e:

X ′ = X ∪ {e} \ {g} (5.17)

Y ′ = Y ∪ {g} \ {e}. (5.18)

With each adjacent pair we associate a weight

γ(CX∪{e}, g)δ(DY \{e}, g). (5.19)
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Given a pair (X,Y ) ∈ Bē × Bef , the condition that an exchange involving g leads to a
valid pair of bases (X ′, Y ′) via (5.17) and (5.18) is precisely that the weight (5.19) is
non-zero. Note that whenever this occurs, (X ′, Y ′) ∈ Be × Bēf . Thus

|Bē| · |Bef | =
∑

(X,Y )∈Bē×Bef

[∑

g 6=e

γ(CX∪{e}, g)δ(DY \{e}, g)

]

= W, (5.20)

where W is the total weight of adjacent pairs. Here we have used equation (5.14).

Now we perform a similar calculation, but in the other direction, starting at pairs
(X ′, Y ′) ∈ Be × Bēf . We apply a weight

δ(DX′\{e}, g)γ(CY ′∪{e}, g) (5.21)

to each adjacent pair, which is consistent, by (5.15), with the weight (5.19) applied
earlier. Again, starting at (X ′, Y ′), the condition that the pair (X,Y ) obtained by
inverting the exchange given in (5.17) and (5.18) is that the weight (5.21) in non-zero.
But now, even if the weight is non-zero, there is a possibility that the new pair of bases
(X,Y ) will not be a member of Bē × Bef ; this will happen precisely when g = f . Thus

|Be| · |Bēf | =
∑

(X′,Y ′)∈Be×Bēf

[∑

g 6=e

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]
(5.22)

=
∑

(X′,Y ′)∈Be×Bēf

[ ∑

g 6=e,f

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]

+
∑

(X′,Y ′)∈Be×Bēf

δ(DX′\{e}, f)γ(CY ′∪{e}, f)

= W +
∑

(X′,Y ′)∈Be×Bē

δ(DX′\{e}, f)γ(CY ′∪{e}, f) (5.23)

= W +
∑

X′∈Be

δ(DX′\{e}, f)
∑

Y ′∈Bē

γ(CY ′∪{e}, f)

= W +∆2
ef . (5.24)

Here, step (5.22) is by (5.14); step (5.23) uses the observation that terms are non-zero
only when f ∈ Y ′; and (5.24) is from the definition (5.16) of ∆ef .

Comparing 5.20 and 5.24 we have

|Be| · |Bēf | = |Bē| · |Bef |+∆2
ef ,

and the result now follows by adding |Be| · |Bef | to both sides. 2

Proof of Theorem 5.1.2 According to Theorem 5.1.3, all orientable matroids
satisfy the negative correlation property. Moreover, it is easily checked that the class of
orientable matroids is closed under contraction and deletion. 2
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Remark 1: (Flesh this out.) Number of bases of a regular matroid may be computed
exactly in time ? by matrix-tree theorem + Gaussian elimination. This gives alternative
polynomial-time sampling procedure. However, as we have seen, the class of balanced
matroids is strictly larger than the class of regular matroids.

Remark 2: (Flesh this out.) There exist non-balanced matroids. Let M be a matroid of
rank r on ground set E. For any 0 < r′ < r,

B′ = {X ′ : |X ′| = r′ ∧ ∃X ∈ B(M). X ′ ⊂ X}

is the collection of bases of a matroid M ′ on ground set E, the truncation of M to
rank r′. The truncation of a graphic matroid may fail to be balanced. Consider the
graph G with vertex set

{u, v, y, z, 0, 1, 2, 3, 4}
and edge set

{
{u, v}, {y, z}

}
∪
{
{u, i} : 0 ≤ i ≤ 4

}
∪
{
{v, i} : 0 ≤ i ≤ 4

}
.

Let e denote the edge {u, v} and f the edge {y, z}. Let F6 denote the set of forests
in G with six edges, F6

ef the number of such forests including edges e and f , etc. Then
F6

ef = 80, F6
ef̄

= 32, F6
ēf = 80 and F6

ēf̄
= 192. Thus

Pr(e | f) = 5/17 > 7/24 = Pr(e),

contradicting negative correlation.

5.2 Graphic matroids in particular

Since graphic matroids are balanced, the bases-exchange walk may be used to sample,
efficiently and almost u.a.r., spanning trees in an undirected graph. However there are
a number of other procedures for sampling bases in this special case, some of them
providing exactly uniform samples. Perhaps the most efficient proposal is the “cycle-
popping” technique of Wilson. We describe this now in the somewhat more general
setting of sampling a directed tree in a directed graph.

5.2.1 Cycle popping: the general setting

Let G = (V,A, r) be a directed graph with vertices V , arcs A and a distinguished root r.
A directed tree with root r in G is a subgraph (V, T ) in which there is a unique path from
each vertex v ∈ V to the root r. Note that a tree (we drop the qualifier “directed” at
this point) has n− 1 arcs, and every vertex other than r has outdegree 1 (the root has
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outdegree 0). Thus another way of viewing a tree is as a function f : V \ {r} → V that
is cycle free: that is, f i(v) = v entails i = 0, for all v, i such that f i(v) is defined. One
way to sample a tree is to select u.a.r. a function f : V \ {r} → V and accept if it is
cycle-free. However the rejection probability will in general be high, as can be seen by
considering the n×n grid: there are O(n2) disjoint 4-cycles in the grid, and each of them
will, independently with probability 1/256, lead to a cycle in f . Thus the probability
that f is cycle-free is exponentially small in the number of vertices. The idea behind the
cycle-popping strategy is to remove cycles and re-randomise f on the affected vertices.

We first describe cycle-popping in a setting that is convenient for proof, but not for
implementation. For each vertex u ∈ V \{r}, we postulate a sequence (S0

u, S
1
u, S

2
u, . . .) ∈

Γ (u)ω of r.v’s, where Γ (u) = {v : (u, v) ∈ A} is the set of neighbours of u. Each r.v.
Si

u is distributed uniformly over Γ (u), and is independent of all the other r.v’s. We
call the indices i “colours.” At any instant there is a visible colour c(u) at vertex u;
initially, c(u) = 0 for all u ∈ V \ {r}. As time progresses, higher colours become visible,
corresponding to r.v’s further along the lists being revealed.

Consider the following procedure, guided by the r.v’s (Si
u). Let the currently visible

colours be c : V \ {r} → N, and consider the function f : V \ {r} → V given by

f(u) = S
c(u)
u for all u ∈ V \ {r}. The digraph Df = (V, {(v, f(v)) : v ∈ V \ {r}}) has

the following structure. The weak component containing r is a directed tree with root r.
Every other weak component consists of a single cycle plus disjoint directed trees rooted
at a vertex of the cycle. If f is cycle-free we are done. Otherwise, select an ℓ-cycle
C = (u, f(u), f2(u), . . . , f ℓ−1(u)) and “pop” it; that is, increment c(v) for all vertices v
on the cycle C, revealing a fresh set of colours/r.v’s. This process, if iterated, might
continue indefinitely, but if it terminates, f will define a tree in G with root r. We
shall argue that the process terminates with probability 1, and that the tree produced
is exactly uniform.

The cycle-popping process is nondeterministic, since a number of cycles may be available
for popping at any instant. The key observation is that the order of popping does not
matter: if the process terminates then it always terminates with the colour labelling c
(and hence the same cycle-free function f). Consider any configuration of the process,
uniquely determined by the colour assignment c. A number of cycles C0, . . . , Cs−1 may be
available for popping. Assume s ≥ 2 and that Cj and Ck are distinct cycles. Necessarily,
Cj and Ck are disjoint, so that if we decide to pop Cj first we can then pop Ck and
be in exactly the same configuration as if we had popped Ck first and then Cj. Thus
the process has the “diamond property” and hence is Church-Rosser: either the process
continues indefinitely, or terminates at a well defined configuration independent of the
order in which cycles are popped. This is a result of Newman [?], see also Sperschneider
and Antoniou [?].

In fact, more is true. Label each transition of the cycle-popping process by the coloured
cycle—i.e., the sequence of vertices u on the cycle together with their corresponding
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colours c(u)—whose popping generates that transition. In each diamond, the same two
coloured cycles are involved in the two paths through the diamond. Thus in any sequence
of transitions leading to the unique terminating configuration (assuming it exists) exactly
the same set of coloured cycles are popped, only the order of popping varies. Thus we can
think of the cycle-popping process (assuming it terminates) as defining an underlying
tree T , rooted at r, on which are superimposed a partially ordered set C of coloured
cycles. Conditioned on the set C of cycles, the tree T is uniform. Thus, conditioned on
termination, the cycle-popping process generates a rooted tree u.a.r. We collect these
discoveries in the following theorem.

Theorem 5.2.1 The order in which cycles are popped in the cycle-popping process is of
no consequence: for a given collection of r.v’s (Si

u) the process either always continues
indefinitely, or always terminates at the same configuration (colouring) c. Conditioned
on termination, the tree defined by the colouring c is distributed uniformly.

In fact, termination occurs with probability 1, but this is easier to appreciate once we
move to an alternative, more implementation-friendly version of the process.

5.2.2 Cycle popping: the implementation

The process of the previous section is straightforwardly implementable, provided we view
the r.v’s (Si

u) as being revealed to us on demand. We know from Theorem 5.2.1 that
the order in which the cycles are popped is of no consequence. A particularly elegant
way of performing the computations is to perform a random walk on G, popping cycles
as soon as they are discovered. (Refer to Figure 5.1.) We shall refer to this particular
implementation of cycle-popping as the cycle-erased random walk, even though it is more
commonly called the loop-erased random walk in the literature. Note that by storing
the current function f as an array Tree[ ], the effect of popping a cycle is achieved
automatically through overwriting an array element.

Assume that G is strongly connected and contains at least one odd cycle, so that the
random walk on G has a well defined stationary distribution π.Perhaps we should

relax this.

Theorem 5.2.2 The procedure call TreeSample(G) halts with probability 1, returning
a uniform random tree in G, rooted at r. The expected running time of TreeSample(G)
is proportional to

∑
u π(u)Cu,r, i.e., the expected commute time between r and a π-

random vertex.

Proof The running time of TreeSample is proportional to the number of steps
in the simulated random walk. For each u 6= r we estimate the number of steps that are
taken from u; the total number of steps will be the sum of these. The key observation
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TreeSample(G, r)
begin

InTree[u]← false, for all u ∈ V \ {r};
InTree[r]← true;
for all s ∈ V :

u← s;
while not InTree[u]:

Select v ∈ Γ (u), u.a.r.;
Tree[u]← v;
u← v;

u← s;
while not InTree[u]:

InTree[u]← true;
u← Tree[u];

return Tree
end

Figure 5.1: An implementation of the cycle-popping strategy.

is that the number of steps from u is one greater that the number of coloured cycles
containing u that are popped. So the number of steps from u is dependent on u and
the r.v’s (Si

u), but not on the order in which the starting points are considered by
TreeSample, i.e., the order in which vertices s are taken in the outer loop. Thus we
may assume without loss of generality that s = u is the first vertex to be selected. The
expected number of steps from u is the expected number of visits to u (including the
visit at time 0) made by a random walk started at u before hitting r. The latter quantity
is π(u)Cu,r, see Lemma 2.5.2. The result now follows from Theorem 5.2.1. 2

The commute time between any pair of vertices is bounded by the twice the cover time.
Thus the expected running time of TreeSample(G) when applied to an undirected
graph G (i.e., all directed edges occur in antiparallel pairs) is O(nm), where m is the
number of edges, see Lemma 2.5.4.

5.3 Independent sets in matroids: forests

The independent sets I(M) of a matroid M = (E,B) are the subsets of the ground
set E that may be extended to a base; thus, I(M) = {I ⊆ E : ∃X ∈ B(M). X ⊇ I}. In
the case of the cycle matroid of a graph G, the independent sets are the forests in G.
There is a natural random walk on the independent sets of a matroid. Suppose the
current independent set is I. Select an element e ∈ E of the ground set u.a.r., and
let I ′ = I ⊕ {e}; if I ′ ∈ I(M) then move to I ′, otherwise remain at I. (If desired,
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exchange moves akin to those employed in the bases-exchange walk may be added.)
At first sight, performing a random walk on all independent sets rather than just the
maximal independent sets (i.e., bases) appears to allow more freedom, only increasing
the potential for rapid mixing. However, this initial impression is misleading, and it
is not known whether the natural random walk on independent sets is rapidly mixing,
even in the special case of graphic matroids. Exponential mixing time is consistent with
our present knowledge.

There is another way to connect forests with matroids. The set of all k-edge forests in a
graph G can be viewed as the set of bases of a matroid: a truncation of the cycle matroid
of G. Unfortunately, we saw at the end of §5.1.2 that the truncation of a graphic matroid
is not necessarily balanced, so we cannot employ the machinery so far established.

However, there is a special situation where we do know how to sample forests in a
graph G, and that is when G is sufficiently dense. For α > 0 we say that a graph G
is α-dense if every vertex in G has degree at least αn. The main result of this section
is that there is a polynomial-time uniform sampler for forests in α-dense graphs. (The
degree of the polynomial governing the runtime of the sampler grows unboundedly as
α → 0.) The idea, due to Annan [?], is to reduce the current problem to the already
solved problem of sampling spanning trees.

Theorem 5.3.1 Suppose we have a procedure TreeSample(H) for sampling, u.a.r.,
spanning trees in a graph H. There is a polynomial-time algorithm ForestSample

that, given access to TreeSample, takes an α-dense graph G as input and satisfies the
following specification:

• ForestSample either produces a forest in G or no output; the output distribution,
conditioned on there being an output, is uniform over all forests in G.

• ForestSample produces an output with probability at least 1
2
.

• The number of calls to TreeSample is bounded by n4/α.

Let G = (V,E) be an n-vertex graph with vertex set V and edge set E. Denote by G+

the derived graph with vertex set V + = V ∪{t} and edge set E+ = E∪{{v, t} : v ∈ V }.
Each spanning tree (V +, T ) in G+ projects to a forest (V, F ) in G, where the edge set
of the forest is simply F = T ∩ E. Moreover, every forest in G may be derived from at
least one spanning tree in G+ by projecting in this way. This observation in itself does
not provide a reduction from forest sampling to spanning tree sampling, as the number
of distinct spanning trees in G+ projecting to given forest F varies widely as a function
of F . At one extreme, the forest consisting of n trivial components arises in just one
way; while, at the other, the forest consisting of n/2 components of size 2 (i.e., a perfect
matching, assuming n is even) arises in 2n/2 ways. In general, the number of spanning
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ForestSample(G)
begin

Construct G+ as described in the text;
repeat 2n4/α times, or until successful:

(V +, T )← TreeSample(G+);
F ← T ∩ V
if (V +, T ) is the canonical tree for forest (V, F ) return (V, F )

end

Figure 5.2: A procedure for sampling forests in an α-dense graph.

trees corresponding to a specified forest is the product of the sizes of the connected
components forming that forest.

To overcome this problem we nominate a canonical spanning tree in G+ for each for-
est F .3 For example, assume a linear ordering on the vertices of V and deem a spanning
tree T canonical if it contains edges from t to the least vertex in every connected com-
ponent of G. Clearly, this rule results in one canonical tree for each forest. Certainly,
then, the output distribution of the procedure presented in Figure 5.2 is uniform over
forests in G. What is not immediately clear is that the procedure will ouput some forest
with probability at least 1

2
. The key fact we need to prove this is the following.

Lemma 5.3.1 Suppose the n-vertex graph G is α-dense, and let G+ be the derived graph
as defined above. Let {v, t} be any of the n edges in G+ with an endpoint at t. Select T
u.a.r. from the set of all spanning trees in G+. Then the probability that T contains the
edge {v, t} is at most 2/(αn+ 2).

Proof In Annan’s proof, this lemma is established using connections between span-
ning trees and resistances in electrical networks. For us, it is more convenient to appeal
to the property of balance, since we have already set up the machinery. Let e ∈ E be
any edge in G. Since graphic matroids are balanced, the probability that edge {v, t} is
contained in a random spanning tree of G+ is not decreased by the removal of edge e.
Removing in turn all edges e ∈ E that are not incident at v yields a subgraph of G+

whose only remaining edges are ({t} × V ) ∪ ({v} × Γ (v)), where Γ (v) denotes the set
of neighbours of v in G. By direct calculation, the number of spanning trees in this
vestigial graph which contain (respectively, do not contain) the edge {t, v} is 2k (respec-
tively, k2k−1), where k = |Γ (v)| ≥ αn. Thus the probability that {t, v} is contained in
a random spanning tree of G+ is at most 2k/(k2k−1 + 2k) ≤ 2/(αn+ 2), as claimed. 2

Lemma 5.3.1 assures us that a typical random spanning tree in G+ projects to a forest
with few components.

3For convenience, in the remainder of the section, we blur the distinction between a forest or tree
and the edges that compose it. Since all forests and trees are spanning, this will cause no confusion.
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Proof of Theorem 5.3.1 It is only the second of the three claims in the statement
of the theorem that remains to be proved. Let T be a spanning tree in G+ selected u.a.r.,
and let F be the derived forest in G. According to Lemma 5.3.1, the expected degree
of vertex t in T is at most 2/α. By Markov’s inequality, with probability at least 1

2
, the

degree of t is no greater than 4/α. Conditioned on the event that the degree of t is at
most 4/α, the probability that T is canonical for F is at least n−4/α. So the probability
that some forest is output is at least 1

2
n−4/α. The probability that none of the n4/α

trials produces an output is therefore bounded above by (1− 1
2
n−4/α)2n4/α ≤ 1/e ≤ 1

2
. 2

As a simple corollary of the above, we can show how to generate and count trees (not
necessarily spanning) in a dense graph.

Corollary 5.3.1 Let G be an α-dense graph. There is a good sampler and an FPRAS
for the set of all trees of G.

Proof Consider the following algorithm:

(i) Choose forest F at random.

(ii) Accept if F contains one non-trivial tree plus a collection of isolated vertices.

We claim that
Pr(accept in (ii)) ≥ n−⌊4/α⌋. (5.25)

Let fk denote the number of forests with k non-trivial trees and f =
∑n

k=1 fk and let
b = ⌊4/α⌋. Then

(a) Pr(accept in (ii))≥ f1

f
.

(b) f1 + f2 + · · ·+ fb ≥ f/2.

(c) fk+1 ≤ nfk.

Here, (a) is clear, (b) follows from Lemma 5.3.1 and (c) is a consequence of the fact that
we can obtain all k + 1 tree forests by deleting an edge of a k tree forest. So

f1 + f2 + · · ·+ fb < (1 + n+ n2 + · · ·+ nb−1)f1

=
nb − 1

n− 1
f1

and the result follows. 2



Chapter 6

Some other approaches

In this chapter we describe some approximate counting problems that can be solved
without the use of Markov chains.

6.1 Satisfiability

Here we are given a Boolean function F in Disjunctive Normal Form (DNF) e.g.

F = x1x2x3 + x̄1x2x4 + x3x̄5x6x7

and our task is to estimate the number of satisfying assignments of the variables.

Thus assume we have n Boolean variabes, x1, x2, . . . , xn and

F = m1 +m2 + · · ·+mr where mi =
n∏

j=1

x
αi,j

j

and αi,j ∈ {0,±1} and x0
j = 1, x1

j = xj, x
−1
j = x̄j.

Let A = {0, 1}n be the set of possible assignments of 0/1 values to the variables and let
A∗ = {a ∈ A : F (a) = 1}. The task is then to estimate |A∗|.
Let Ai = {a ∈ A : mi(a) = 1}, i = 1, 2, . . . , r. Then we are faced with the following
problem:
Cardinality of the Union Problem
Given sets A1, A2, . . . , Ar ⊆ A, estimate |A∗| where A∗ =

⋃r
i=1Ai.

The approach given here is valid if

(i) r is small, i.e. polynomial in the description of the problem.

137
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(ii) |Ai| is known for each i.

(iii) It is possible to efficiently choose a random element of Ai for each i.

(iv) It is possible to efficiently decide whether a given a ∈ A lies in Ai for each i.

For the problem to be interesting, the Ai need to be large, i.e. exponential in the
description of the problem.
It is clear that the DNF problem satisfies the conditions (i)–(iv).

Another way of looking at this problem is that we have a r × |A| 0/1 matrix M where
M(i, a) = 1 iff a ∈ Ai. Let ρi be the number of 1’s in row i and let ρ = ρ1 + ρ2 + · · ·+ ρr

be the total number of 1’s in M . Let ca denote the number of 1’s in column a and
let A∗ = {a : ca > 0}.. Now we want to estimate ν = |A∗|. Consider the following
algorithm: N is a parameter to be determined later.

matrix column weight algorithm

begin
Compute pi = ρi/ρ for i = 1, 2, . . . , r.
For t = 1 to N do
begin

(1a) Choose it randomly from [r] according to distribution p1, p2, . . . , pr.
(1b) Choose at randomly from {a : M(it, a) = 1}.
(1c) Compute Zt = ρ/cat .

Output Z̄ = Z1+Z2+···+ZN

N
.

end
end

The next lemma evaluates the accuracy of this procedure.

Lemma 6.1.1

Pr(|Z̄ − ν| ≥ ǫν) ≤ r

ǫ2N
.

Proof Fix t = 1. We claim that (it, at) is chosen uniformly at random from the set
{(i, a) : M(i, a) = 1}. Indeed (1a) determines row it with probability proportional to
the number of 1’s in a row and then (1b) chooses a random member o f the row. Thus
we see that for a ∈ A

Pr(a1 = a) =
ca
ρ
.

Thus

E(Z1) =
∑

a∈A

E(Z1 | at = a)Pr(at = a) =
∑

a∈A∗

ρ

ca
· ca
ρ

= |A∗|.
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Now we estimate the variance.

E(Z2
1) =

∑

a∈A∗

ρ2

c2a
· ca
ρ

= ρ
∑

a∈A∗

1

ca
≤ ρν ≤ rν2.

Thus

Var(Z1) ≤ rE(Z1)
2

which implies

Var(Z̄) ≤ r

N
E(Z̄)2

and the result follows from the Chebychef inequality. 2

Putting N = 4rǫ−2 we see that

Pr(|Z̄ − ν| ≥ ǫν) ≤ 1

4
.

This probability can be reduced to δ as we did in (1.2) by repeating the algorithm
⌈12 ln(2/δ)⌉ times and taking the median result.

6.1.1 Random assignments

We consider a generalisation of the DNF problem which will be useful in Section 6.2. We
consider the problem of estimating the probability that a randomly generated assignment
a satisfies a Boolean formula F , given in DNF. Thus we are given 0 < p < 1 and suppose
that assignment a ∈ A is chosen by independently putting xj = 1 with probability p.
We wish to estimate

∆p = Pr(F (a) = 1).

If p = 1/2 then ∆p = 2−n|A∗| and so this problem generalises the problem of the previous
section.

For a ∈ A let s(a) = | {j : aj = 1}. Let Ak = {a ∈ A : s(a) = k} and A∗
k = A∗ ∩Ak for

k = 0, 1, 2, . . . n. Then

∆p =
n∑

k=0

|A∗
k|pk(1− p)n−k

and so we can estimate ∆p efficiently if we can estimate the |A∗
k| efficiently. So let

A∗
i,k = {a ∈ A∗

k : mi(a) = 1} so that A∗
k =

⋃r
i=1A

∗
i,k. It remains to check that the

sets Ai,k satisfy requirements (i)–(iv) above. (i) holds. Let ni = | {j : αi,j = 1} | and
n̄i = | {j : αi,j = −1} | then |Ai,k| =

(
n−ni−n̄i

k−ni

)
and so (ii) holds. This calculation shows

that (iii) holds and (iv) still holds. It follows that the |A∗
k| can be estimated, along with

∆p.
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It is more efficient to estimate ∆p directly by modifying the matrix column weight

algorithm. We briefly indicate the steps. We write

∆p = (1− p)n
∑

a∈A∗

xs(a) where x =
p

1− p.

Then define the r × |A| matrix M with M(i, a) = xs(a) if mi(a) = 1 and M(i, a) = 0
otherwise. Now define ρi =

∑
a∈AM(i, a) and pi and ρ as above. The only change that

we need to make to the algorithm is to replace (1b) by
(1b’) Choose at from {a : M(it, a) = 1} with probability proportional to xs(a).
With these changes, (it, at) is chosen with probability proportional to xs(a) and the
output of the algorithm has expectation equal to

∑
a∈A∗ xs(a). The proof of Lemma

6.1.1 goes through minor changes.

6.2 Reliability

Here we are given a graph G = (V,E), n = |V |,m = |E| and a probability 0 < p < 1.
Let Gp = (V,Ep) be the random subgraph of G obtained by independently including
each e ∈ E with probability p. This models a network where each link (edge) fails
independently with probability q = 1− p. The task is to estimate

FAIL(p) = Pr(Gp is not connected).

If FAIL(p) is large then this can be estimated easily. We simply generate random copies
G1, G2, . . . , GN of Gp and let

δi =

{
1 Gi is not connected

0 Gi is connected

We can then estimate FAIL(p) by δ̄ = δ1+···+δN

N
where N is given in Lemma 6.2.1 below.

Let κ denote the minimum size of a cut in G i.e. minS⊆V |S : S̄| where S : S̄ is the set
of edges with one end in S and the other in S̄ = V \ S. We see immediately that

FAIL(p) ≥ qκ

since this is the probability that any given minimum cut fails in Gp i.e. contains no Gp

edges.

Lemma 6.2.1 Assume qκ ≥ n−4 and let N = 4n4ǫ−2. Then

Pr(|FAIL(p)− δ̄| ≥ ǫFAIL(p)) ≤ 1

4
.
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Proof δ̄ has mean φ = FAIL(p) and variance φ(1−φ)N−1 and so by the Chebychef
inequality

Pr(|FAIL(p)− δ̄| ≥ ǫFAIL(p)) ≤ φ(1− φ)

ǫ2φ2N

and the result follows from φ ≥ n−4. 2

Note that each δi can be computed in O(m) time and that κ can be computed in O(n3)
time so that we can decide when to use Lemma 6.2.1.

The interesting case is of course when FAIL(p) is small. A cut S : S̄ with ακ edges
is called an α-minimum cut. The algorithm we describe rests on the following two
theorems:

Theorem 6.2.1 G has at most 12n2α cuts of size at most ακ.

Proof (Deferred to Section 6.3).

Theorem 6.2.2 Suppose qκ = n−(2+δ) for some δ > 0. Then

Pr(∃ an (≥ α)-minimum cut which fails) ≤ n−αδγ12γ

where γ = 1 + 2/δ.

Proof (Deferred to Section 6.3).

Now consider the following algorithm:

qκ = n−(2+δ) and α0 = 2− log(ǫ/1000)

log n
.

Reliability algorithm

1. Enumerate the cuts Si : S̄i, i = 1, 2, . . . , ν of size at most α0κ.

2. Compute an ǫ/2-approximation Φ to

Φ0 = Pr(∃1 ≤ i ≤ ν : Si : S̄i fails).

3. Output Φ.

The cuts Si : S̄i, i = 1, 2, . . . , ν can be found in polynomial time (see Section 6.3).

Step 2 is executed as follows: Suppose we assign a set of Boolean variables xe.e ∈ E.
Consider the Boolean formula

F = F1 + F2 + · · ·+ Fν
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where
Fi =

∏

e∈Si:S̄i

xe.

The edges of Gp define a (random) assignment of values to the xe i.e. xe = 1 iff edge
e does not occur in Gp. Then Fi = 1 iff cut Si : S̄i fails and so F = 1 iff ∃i Si : S̄i

fails. Thus we can use the algorithm of Section 6.1.1 to compute an ǫ/2-approximation to
Φ0 = Pr(F = 1) and so carry out Step 2. We execute this algorithm so the probability of
failure is at most 1

4
. Thus the reliability algorithm can be executed in polynomial

time. It remains to prove

Theorem 6.2.3 If qκ = n−(2+δ), δ ≥ 2, then

Pr(|Φ− FAIL(p)| ≥ ǫFAIL(p)) ≤ 1

4
.

Proof Let
Φ1 = Pr(∃ an (≥ α)-minimum cut which fails).

It follows from Theorem 6.2.2 that

Φ1

FAIL(p)
≤ 288n−α0δ

n−(2+δ)
≤ ǫ

3
.

Now
Φ0 ≤ FAIL(p) ≤ Φ0 + Φ1

and so the ǫ
2
-approximation Φ to Φ0 is an ǫ-approximation to FAIL(p) and the theorem

follows. 2

6.3 Deferred Proofs

6.3.1 Proof of Theorem 6.2.1

We use the following contraction algorithm to produce a cut. Each cut of size at
most ακ will have probability at least 1

12
n−2α of being chosen and the theorem follows.

contraction algorithm

begin
k = ⌈2α⌉ , H ← G.
while |V (H)| > k do
begin

A Choose e randomly from E(H).
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H ← H \ e – contract e.
end

B begin
Let K : K̄ be a random partition of V (H) into 2 non-empty subsets.
”Expand” K into S ⊆ V (G).
Output S

end
end

We need to explain “expand” K. When we contract edge {v, w}, the two vertices v, w
are replaced by a single new vertex. Thus, in general, the vertices of H at Step B
correspond to (disjoint) subsets of V . Thes S =

⋃
v∈K v.

We note next that the minimum cut size of H is at least κ throughout. (H contains
parallel edges.) This because the cutsets of H are a subset of the cutsets of G. In
particular, H has minimum degree at leat κ.

We now consider a fixed α-minimum cut C of G. We will output S if (i) no edge of C
is chosen at Step A and (ii) the contracted version of C is chosen at Step B.

After t executions of Step A, H will have n− t vertices. Assume that no edge of C has
been contracted. H has at least 1

2
(n− t)κ edges and so the probability we do not choose

e ∈ C at the next iteration is at least 1 − 2α
n−t

. Thus the probability we choose C is at
least

21−k

n∏

r=k+1

(
1− 2α

r

)
=

k−1∏

i=0

2k − 2α− i
n− i

n−k−1∏

i=k

n− i+ k − 2α

n− i

≥ 21−kk!

nk
exp

{
n−k−1∑

i=k

f

n− i −
1

2

n−k−1∑

i=k

f2

(n− i)2

}

where f = k − 2α. Now

exp

{
n−k−1∑

i=k

f

n− i −
1

2

n−k−1∑

i=k

f2

(n− i)2

}
≥ nf (ek)−1e−π2/12

and so the probability we choose C is at least

21−kk!

ekn2αeπ2/12
≥ 1

12n2α
.

2

We see immediately that if we run the contraction algorithm O(n2α log n) times
then whp we will produce all cuts of size ακ or less.
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6.3.2 Proof of Theorem 6.2.2

Let κ = κ1 ≤ κ2 ≤ · · · ≤ κr be an enumeration of the cut sizes in G. We bound

∆ =
r∑

i=i0

qκi where i0 = min {i : κi ≥ ακ}

which bounds the probability that a large cut fails.

Theorem 6.2.1 implies that

κi ≥ max

{
α,

log(i/12)

2 log n

}
κ for i ≥ i0.

Thus

∆ ≤
∑

i≤12n2α

qακ +
∑

i>12n2α

n−(2+δ) log(i/12)/(2 log n)

≤ 12n−αδ +

∫ ∞

12n2α

( x
12

)−(1+δ/2)

dx

≤ 12n−αδ + 121+δ/2(12n2α)−δ/2

and the result follows.

6.4 Tutte Polynomial in Dense Graphs

For a graph G, the Tutte Polynomial TG(x, y) is a bivariate polynomial which for many
values of x, y evaluates to interesting graph invariants e.g. TG(1, 1) equals the number
of spanning trees of G. We define it here by

TG(x, y) =
∑

A⊆E

(x− 1)κ(A)−1(y − 1)|A|+κ(A)−n (6.1)

where κ(A) is the number of components of GA = (V,A).

Some more interesting evaluations

• TG(2, 1) is the number of forests of G.

• TG(1, 2) is the number of forests of edge sets which contain a spanning tree of G.

• TG(2, 0) is the number of orientations of the edges of G which do not contain a
directed cycle.
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• (−1)n−κ(E)λκ(E)TG(1 − λ) is the chromatic polynomial of G i.e. the coefficient of
λk in this polynomial is the number of proper k-colourings of the vertices of G.

• 1− FAIL(p) = q|E|−n+1pn−1TG(1, 1/q) when G is connected.

It turns out that the hyperbolae Hα defined by

Hα = {(x, y) : (x− 1)(y − 1) = α}

play a special role in the theory.

• Along H1, TG(x, y) = x|E|(x− 1)n−κ(E)−|E|.

• Along HQ, for general positive integer Q, TG specialises to the partition function
of the Potts model of statistical physics.

There are several other important evaluations. Given the expressive power of this poly-
nomial, it is not surprising that apart from a few special points and 2 special hyperbolae,
the exact evaluation of TG is #P -hard even for the very restricted class of planar bipar-
tite graphs. Here we consider dense graphs and prove the existence of an FPRAS for
TG(x, y) whenever x, y > 1.

For 0 < α < 1, let Gα denote the set of graphs G = (V,E) with |V | = n and minimum
degree δ(G) ≥ αn. A graph is α-dense if it is a member of Gα or, somewhat loosely,
dense if we omit the α.

A first easy, but essential, observation is the following. Let Gp denote the random graph
obtained by selecting edges of G independently with probability p.

Lemma 6.4.1 Assume G is connected with n vertices and m edges. Assume x, y > 1
and let p = (y−1)/y and Q = (x−1)(y−1). Let κ = κ(Gp) be the number of components
of Gp. Then

TG(x, y) =
ym

(x− 1)(y − 1)n
E(Qκ).

Proof It follows from (6.1) that

TG(x, y) =
ym

(x− 1)(y − 1)n

∑

A⊆E

(
y − 1

y

)|A|(
1

y

)m−|A|
((x− 1)(y − 1))κ(A)

=
ym

(x− 1)(y − 1)n

∑

A⊆E

Qκ(A)Pr{Gp = GA}.

2
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We now describe a property of dense graphs which is the key to much of the ensuing
analysis. Let N(v), v ∈ V denote the set of neighbours of v. Define G∗ = (V,E∗) by
(u, v) ∈ E∗ if and only if |N(u) ∩N(v)| ≥ α2n/2. Let

s = ⌈2/α⌉ − 1.

Lemma 6.4.2 Among any s+1 vertices of G, there are two which are adjacent in G∗.

Proof Suppose there exist v1, v2, . . . vs+1 such that |N(vi)∩N(vj)| < α2n/2 if i 6= j.
But then

∣∣∣∣∣

s+1⋃

i=1

N(vi)

∣∣∣∣∣ ≥
s+1∑

i=1

|N(vi)| −
∑

i6=j

|N(vi) ∩N(vj)|

> (s+ 1)αn−
(
s+ 1

2

)
α2n

2

= (s+ 1)αn
(

1− sα

4

)

≥ n.

2

Let Q̂ = max{Q,Q−1} and ζ = ym/((x− 1)(y − 1)n).

We claim that the following algorithm estimates TG(x, y) for G ∈ Gα.

Algorithm EVAL
begin

p := y−1
y

; Q := (x− 1)(y − 1); t := ⌈16Q̂2sǫ−2⌉;
for i = 1 to t do
begin

Generate Gp; Zi := Qκ(Gp)

end

Z̃ := Z1+Z2+···+Zt

t
;

Output Z = ζZ̃
end

We first prove

Lemma 6.4.3 In the notation of Lemma 6.4.1, let

n0 = min

{
n : n ≥ max

{
24 ln(nQ̂)

α2p2
, Q20/α2

}}
.
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If n ≥ n0 then

Q ≥ 1 implies E(Q2κ) ≤ 2Q2s.

Q < 1 implies E(Qκ) ≥ Qs/2.

Proof Let Eu denote the event {κ(Gp) ≥ u + s + 1} for 1 ≤ u ≤ u0 = ⌊α2n/8⌋. If
Eu occurs we choose X = {x1, x2, . . . , xu+s+1} with each xi from a different component
of Gp. Lemma 6.4.2 implies that we can choose y1, y2 ∈ X such that y1, y2 are adjacent
in G∗. Repeating the argument yields a matching {y1, y2} , . . . , {y2t−1,2t} in G∗ where
t = ⌈(u+ 1)/2⌉ and y1, y2, . . . , y2t each lie in different components of Gp. The probability
that Gp contains no path of length 2 connecting y2i−1 to y2i for each i, 1 ≤ i ≤ t is at
most (1− p2)K , where K = (α2n/2− 2u)t. Hence for u ≤ u0, n ≥ n0

Pr(Eu) ≤ n2t(1− p2)K ≤ (n2e−α2p2n/8)u.

Thus for u ≤ u0, n ≥ n0

Pr(Eu) ≤ (n2 exp{−3 ln(nQ̂)})u = n−uQ̂−3u.

Suppose first that Q ≥ 1. Then

E(Q2κ) ≤ Q2s

(
1 +Q2

u0∑

u=1

Q2uPr(Eu)

)
+Q2nPr(Eu0)

≤ Q2s

(
1 +Q2

u0∑

u=1

(n−1Q−1)u

)
+Q2nn−α2n/8

≤ 2Q2s.

Suppose now that Q < 1. Then

E(Qκ) ≥ Qs(1−Pr(E1))
≥ Qs/2

for n ≥ n0. 2

Theorem 6.4.1 For fixed rational x, y, and ǫ > 0, if T = TG(x, y) and Z is the output
of Algorithm EVAL, then

Pr(|Z − T | ≥ ǫT ) ≤ 1

4
.

Proof Since Z = ζ
(

Z1+...+Zt

t

)
, from Lemma 6.4.1 we see that T = E(Z). From

Chebychev’s inequality

Pr{|Z − T | ≥ ǫT} ≤ Var(Z)

ǫ2T 2
≤ ζ2

ǫ2t

Var(Zi)

T 2
≤ ζ2

ǫ2t

E(Z2
i )

T 2
.
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Case Q < 1

Lemma 6.4.3 gives

E(Z2
i ) = E(Q2κ(Gp)) ≤ 1.

T 2 = ζ2(E(Zi))
2 = ζ2(E(Qκ(Gp)))2 ≥ ζ2Q2s/4.

giving

Pr{|Z − T | ≥ ǫT} ≤ 4

ǫ2tQ2s
.

Case Q ≥ 1

Pr{|Z − T | ≥ ǫT} ≤ ζ2

ǫ2t

E(Q2κ)

T 2
≤ 2Q2s

ǫ2t

using Lemma 6.4.3, and noticing that for Q ≥ 1, T ≥ ζ.

The result follows provided

t ≥ 16

ǫ2Q2s
(Q < 1) and t ≥ 8Q2s

ǫ2
(Q ≥ 1),

which it is by choice of t in EVAL. 2

Note: although polynomially bounded the running time grows when
(x− 1)(y − 1) or its inverse grow.

6.5 Permanent via Determinant

We consider here an algorithm for estimating the permanent of a 0-1 matrix based on
evaluating a determinant. Let A be an n× n 0-1 matrix:

The KKLLL estimator
The estimator is defined to be the random variable Z that results from the simple
experiment described below. The idea is due to Karmarker, Karp, Lipton, Lovász and
Luby [?] and it is an improvement on a method due to Godsil and Gutman [?].

(1) Form a matrix B from A as follows. Let {1, ω, ω2} be the cube roots of unity. For
each pair i, j in the range 1 ≤ i, j ≤ n:

(a) If Ai,j = 0 then set Bi,j equal to 0;

(b) IfAi,j = 1 then chooseBi,j independently and randomly from the set {1, ω, ω2}.

(2) Set Z equal to | detB|2, where |z| denotes the modulus of complex number z.
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Let G be the bipartite graph on vertex set U + V , where U = V = [n] and (i, j) is an
edge of G iff Ai,j = 1. Let M denote the set of all perfect matchings in G. Clearly,
perA = |M|. For M ∈ M let sgn(M) be the sign of the associated permutation σM

where σM(i) = j iff (i, j) ∈ M. Let β(M) =
∏

(i,j)∈M Bi,j. With these notational
definitions we can prove that Z is an unbiassed estimator of perA.

Theorem 6.5.1
E(Z) = perA.

Proof

Z =
∑

M,M ′∈M
sgn(M)sgn(M ′)β(M)β(M ′)

=
∑

M∈M
1 +

∑

M 6=M ′∈M
sgn(M)sgn(M ′)β(M)β(M ′).

The result now follows from

E(β(M)β(M ′)) = 0 for M 6= M ′ ∈ M. (6.2)

If M 6= M ′ then M ⊕M ′ (the symmetric difference of M and M ′) contains at least one
cycle C, say. Let (i1, j1) ∈M be an edge of C. Then we can write β(M)β(M ′) = Bi1,j1∆
where ∆ depends only on the values of Bi,j, (i, j) 6= (i1, j1). Then, by the independence
of the Bi,j ’s,

E(β(M)β(M ′)) = E(Bi,j)E(∆) =
1

3
(1 + ω + ω2)E(∆) = 0

which confirmes (6.2). 2

The efficiency of the KKLLL estimator will depend on its variance.

Let M and M ′ be perfect matchings in G. Denote by c(M,M ′) the number of connected
components (cycles) in M ⊕M ′. Define γ(G) = E

(
2c(M,M ′)

)
to be the expected value of

2c(M,M ′) when M and M ′ are selected randomly fromM. (If G has no perfect matchings
then define γ(G) = 1.)

Theorem 6.5.2
E(Z2)

E(Z)2
= γ(G).

Proof Let

ξ(M1,M2,M3,M4) =
∏

i∈{1,3}
sgn(Mi)β(Mi)

∏

i∈{2,4}
sgn(Mi)β(Mi).
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Then
Z2 =

∑

M4

ξ(M1,M2,M3,M4).

If there exists (i1, j1) which appears an odd number of times in the product ξ then
E(ξ) = 0. Indeed, if it appears 3 times then it occurs at least once as Bi,j and at least
once as Bi,j and as Bi,jBi,j = 1 we can reduce to the case where (i1, j1) appears exactly
once and then E(ξ) = 0 as in the proof of (6.2).

So now assume that every (i, j) appears an even number of times in the product ξ. If

there exists (i1, j1) which appears twice as B2
i,j or as Bi,j

2
then E(ξ) = 0 as E(B2

i,j) =

E(Bi,j
2
) = 0. (Here we see the advantage of taking ω as a cube root of unity, as opposed

to −1 as in [?]).i?

We are left with the case where each Bi,j occurs with an accompanying Bi,j . But now we
have M1⊕M2 = M3⊕M4, for if say (i1, j1) ∈M1 ⊕M2 \M3⊕M4 then (i1, j1) appears
an odd number of times in ξ. Observe that in this case

∏4
i=1 sgn(Mi) = 1 since πM1π

−1
M2

and πM3π
−1
M4

have the same cycle structure (defined by M1⊕M2). Also Bi,jBi,j = 1 and
so ξ = 1 here.

Now given M1,M2 there are 2c(M1,M2) choices of M3,M4 which satisfy M1⊕M2 = M3⊕
M4. ThusThere is something

wrong here E(Z2) =
∑

M2

2c(M1,M2)

and the result follows from E(Z)2 = |M|2. 2

We will now restrict our attention to dense matrices. We assume that each row and
column of A has at least (1

2
+ α)n non-zeros for some constant α > 0.

Theorem 6.5.3 Suppose α > 0 is a constant, and that bipartite graph G has minimum
vertex degree δ(G) ≥ (1

2
+ α)n; then γ(G) ≤ O(n1+(2 ln 2)/α).

Proof Fix a perfect matching M0 ∈M, and for M ∈M let

ι(M) = |M ∩M0|, and

c(M) = number of cycles in M ⊕M0.

Let Mk,ℓ = {M ∈ M : ι(M) = k, c(M) = ℓ}, and Nk,ℓ = |Mk,ℓ|. We show that perfect
matchings of G are concentrated in sets Mk,ℓ with k and ℓ small.

Lemma 6.5.1 Let Nk,ℓ be as defined above. Then

(a) kαNk,ℓ ≤ Nk−2,ℓ+1 + 2Nk−1,ℓ, and
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(b) (2αℓ− 1− kℓ/n)Nk,ℓ ≤ 2(lnn)Nk,ℓ−1.

Proof We use a quantitative version of Dirac’s [3] argument for demonstrating the
existence of a Hamilton cycle in a dense graph; the same basic technique was used in
Section 3.3.3 to verify an fpras for counting Hamilton cycles in a dense graph.

We first show part (a) of the lemma. Fix k, ℓ and consider pairs (M,M ′) with M ∈ Mk,ℓ

and M ′ ∈Mk−2,ℓ+1 ∪Mk−1,ℓ such that for some a1, a2 ∈ U and b1, b2 ∈ V ,

M \M ′ = {(a1, b1), (a2, b2)},
M ′ \M = {(a1, b2), (a2, b1)},

and
(a1, b1) ∈M ∩M0.

There are two types of pair satisfying these conditions:

(i) If (a2, b2) ∈M0, then M ′ ∈Mk−2,ℓ+1; moreover, M ′∩M0 is obtained from M∩M0 by
deleting the two edges (a1, b1) and (a2, b2), and M ′⊕M0 is obtained from M ⊕M0

by adding the 4-cycle (a1, b1, a2, b2, a1).

(ii) If (a2, b2) 6∈ M0, then M ′ ∈ Mk−1,ℓ; moreover, M ′ ∩M0 is obtained from M ∩M0

by deleting the single edge (a1, b1), and M ′ ⊕M0 is obtained from M ⊕M0 by
replacing the edge (a2, b2) of some cycle by the path (a2, b1, a1, b2) of length three.

Let Ek,ℓ denote the set of all such pairs (M,M ′). For M ∈ Mk,ℓ, let ζ(M) denote the
number of perfect matchings M ′ ∈ Mk−2,ℓ+1 ∪Mk−1,ℓ such that (M,M ′) ∈ Ek,ℓ. For
M ′ ∈ Mk−2,ℓ+1 ∪Mk−1,ℓ, let η(M ′) denote the number of perfect matchings M ∈ Mk,ℓ

such that (M,M ′) ∈ Ek,ℓ.

Fix M ∈ Mk,ℓ and (a, b) ∈ M ∩M0. There are s ≥ 2αn − 1 edges (a′, b′) of M , other
than (a, b) itself, such that both (a, b′) and (a′, b) are edges of G. Suppose s1 are such
that (a′, b′) ∈ M ∩M0, and let s2 = s − s1. Then (a, b) contributes to s1 type (i) pairs
and s2 type (ii) pairs involving M . Hence,

ζ(M) ≥
∑

(a,b)

(1
2
s1 + s2) (6.3)

≥ 1
2
kαn, (6.4)

provided n ≥ α−1. The 1
2

in inequality (6.3) comes from the fact that two edges of
M ∩M0 contribute to the same type (i) pair.

On the other hand, if M ′ ∈ Mk−2,ℓ+1 then η(M ′) is at most the number of 4-cycles in
M ′ ⊕M0, and so η(M) ≤ 1

2
n. If M ′ ∈ Mk−1,ℓ then η(M ′) is at most the number of
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paths of length three in M ′ ⊕M0 with middle edge in M0, and so η(M ′) ≤ n. Hence,

1
2
kαnNk,ℓ ≤ |Ek,ℓ| ≤ 1

2
Nk−2,ℓ+1 + nNk−1,ℓ,

and (a) follows.

We now turn to part (b) of the lemma. Let E ′
k,ℓ denote the set of pairs (M,M ′) ∈

Mk,ℓ ×Mk,ℓ−1 such that, for some a1, a2 ∈ U and b1, b2 ∈ V ,

M \M ′ = {(a1, b1), (a2, b2)},
M ′ \M = {(a1, b2), (a2, b1)},

and
(a1, b1), (a2, b2), (a2, b1), (a1, b2) 6∈M0.

Here M ′ ∩ M0 = M ∩ M0 and M ′ ⊕ M0 is obtained from M ⊕ M0 as follows: take
two disjoint cycles, C1 containing (a1, b1) and C2 containing (a2, b2). Replace the edges
(a1, b1), (a2, b2) by (a1, b2), (a2, b1) creating one large cycle out of the vertices of C1 and C2.
If Ci has 2mi vertices, for i = 1, 2, we define w(M,M ′) = m−1

1 +m−1
2 .

For M ∈Mk,ℓ, let

µ(M) =
∑

M ′:(M,M ′)∈E′
k,ℓ

w(M,M ′),

and for M ′ ∈ Mk,ℓ−1, let

ν(M ′) =
∑

M :(M,M ′)∈E′
k,ℓ

w(M,M ′).

Fix M ∈ Mk,ℓ and (a, b) ∈ M \M0, and suppose the cycles of M ⊕M0 have size 2mi,
for 1 ≤ i ≤ ℓ. If (a, b) is in a cycle of size 2m then there are s ≥ 2αn −m − k edges
(a′, b′) of M \M0 such that (a, b′) and (a′, b) are edges of G, and (a′, b′) and (a, b) are in
different cycles. Putting (a1, b1) = (a, b) and (a2, b2) = (a′, b′) yields a member of E ′

k,ℓ.
Apportioning weight m−1 to (a, b):

µ(M) ≥
ℓ∑

i=1

mi(2αn−mi − k)m−1
i ≥ (2αℓ− 1)n− kℓ.

Now fix M ′ ∈Mk,ℓ−1 and suppose the cycles of M ′⊕M0 have size 2mi, for 1 ≤ i ≤ ℓ−1.
Fix a cycle C of size 2m in M ′ ⊕M0. At worst, each pair of edges of C \M0 could
contribute a pair (M,M ′) to E ′

k,ℓ. This observation gives

ν(M) ≤
ℓ−1∑

i=1

mi

(
mi−2∑

j=2

1

j
+

1

mi − j

)
≤

ℓ−1∑

i=1

2mi lnmi ≤ 2n lnn.
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Finally,

((2αℓ− 1)n− kℓ)Nk,ℓ ≤
∑

(M,M ′)∈E′
k,ℓ

w(M,M ′) ≤ 2n(lnn)Nk,ℓ−1,

and (b) follows. 2

Proof of Theorem 6.5.3
Let N = |M|, and

∆ =
n∑

k=0

n∑

ℓ=0

Nk,ℓ2
ℓ.

Our aim is to find a uniform bound on ∆/N , which will also be a bound on γ(G). Let
sk,ℓ = Nk,ℓ2

ℓ. It follows from Lemma 9(a) that

kαsk,ℓ ≤ 1
2
sk−2,ℓ+1 + 2sk−1,ℓ. (6.5)

Let Sk =
∑n

ℓ=0 sk,ℓ. Then inequality (6.5) implies kαSk ≤ 1
2
Sk−2 + 2Sk−1. It follows by

an easy induction on k that for k > k0 = ⌈4/α⌉,

Sk ≤
(

1 +
√

3

4

)k−k0

(Sk0 + Sk0−1),

and hence
n∑

k=k0

Sk = O(Sk0 + Sk0−1). (6.6)

Now assume k ≤ k0. From Lemma 9(b),

Nk,ℓ

Nk,ℓ−1

≤ 2 lnn

(2α− k/n)ℓ− 1
≤ 1

2
,

provided

ℓ ≥ ℓ0 =

⌈
4 lnn+ 1

2α− k0/n

⌉
.

Thus, for k ≤ k0,

Sk ≤ nsk,ℓ0 +

ℓ0∑

ℓ=0

sk,ℓ ≤ (n+ ℓ0)2
ℓ0N. (6.7)

Hence, from (6.6) and (6.7), ∆/N =
∑n

k=0 Sk/N = O(n1+(2 ln 2)/α). 2

It follows from Theorem 6.5.3 that Var(Z) = O(n1+(2 ln 2)/α) and so by taking the average
of t = O(ǫ−2n1+(2 ln 2)/α) independently generated values of Z we can estimate perA to
within 1 + ǫ, with probability at least 3/4 as required.
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