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Random graphs

G(n,p) G(n,m)
Each edge appears, independently, We add 171 edges one-by-one.
with probability p.

W.h.p.: with probability that tends to 1 as 7z — oo.
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Hamiltonian cycle

Let 75 be the moment all vertices have degree = 2

h.p. G(72, 772 = 7) has a Hamiltonian cycle

h.p. it can be found in time )(72° log 7)

[Ajtal, Komlos, Szemerédi 85] [Bollobas, Fenner, Frieze 87]

In G(72,1,/2) Hamiltonicity can be decided in O/n)

expected time.
[Gurevich, Shelah 84]
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Cliques in random graphs

The largest clique in {72, 1 /2) has size
2log, 72 — 2log, log, 7241

[Bollobas, Erdos 75] [Matula 76]

No maximal clique of size < log, 7

Can we find a clique of size (1 + ¢)log, 72 ?

What if we “hide” a clique of size 72' 2/ ~ 2




Two problems for which we know much
less.

Chromatic number of sparse random graphs
Random K-SAT




Two problems for which we know much
less.

Chromatic number of sparse random graphs
Random K-SAT

Canonical for random constraint satisfaction:
— Binary constraints over k-ary domain

— Kk-ary constraints over binary domain

Studied in: Al, Math, Optimization, Physics,...




A factor-graph representation
of k-coloring

Each vertex is a variable with Vertices

domain {1,2,...,k}. '
1

Each edge is a constraint on two V. @
variables.

All constraints are “not-equal’.

Random graph = each constraint
picks two variables at random.




SAT via factor-graphs
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SAT via factor-graphs

(3’12 74 \/3”9) /| (.2’34 V' 291 \/.2‘5) /| /| (Z‘21 V' 29 \/§13)

Variable nodes
C

Edge between x and ciff x
occurs in clause c. Ut .\

Edges are labeled +/- to indicate
whether the literal is negated.

Constraints are “at least one
literal must be satisfied”.

| d
Random k-SAT = constraints Ul Rodiss

pick k literals at random.




Diluted mean-field spin glasses

Small, discrete domains: spins ~ Variables /. :

Conflicting, fixed constraints: X @ B
quenched disorder O I

Random bipartite graph: O B
lack of geometry, mean field :

Sparse: diluted O

. L]
Hypergraph coloring, random
XOR-SAT, error-correcting
codes...

Constraints




Random graph coloring:

Background




A trivial lower bound

For any graph, the chromatic number
IS at least:
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Size of maximum independent set




A trivial lower bound

For any graph, the chromatic number
IS at least:

Number of vertices

Size of maximum independent set

For random graphs, use upper bound for
largest independent set. |

x (1 —p)(;) —0




An algorithmic upper bound

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors




An algorithmic upper bound

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

No algorithm is known to do better




The lower bound is asymptotically
tight

As d grows, (72, d/72) can be colored using
independent sets of essentially maximum size

[Bollobas 89]
[Luczak 91]




The lower bound is asymptotically
tight

As d grows, (72, d/72) can be colored using
independent sets of essentially maximum size

[Bollobas 89]
[Luczak 91]

Average degree | 10° 108" 101 10130 101000
Lower bound | 37-10°% 28.10™ 22.10% 17.10'¢ 21.10%°

Upper / Lower 1.97 1.78 1.68 1.53 1.14




Only two possible values

Theorem. For every & > 0, there exists an integer
£ = #(d) such that w.h.p. the chromatic number of

G(n, p= d/n)
1s either #or £+ 1

[Luczak 91]




"The Values”

Theorem. For every & > (), iinonomtrssbimtramrmboso

mpemmiieiamaoiers .. p. the chromatic number of
G, p= d/n)

1s either Zor #+ 1

where £ is the smallest integer s.t. & < 24log £.




Examples

If &= 7, w.h.p. the chromatic number is 4 or 9.




Examples

If &= 7, w.h.p. the chromatic number is 4 or 9.

if = 10°° w.h.p. the chromatic number is

3771455490672260758090142394938336005516126417647650681575
or

377145549067226075809014239493833600551612641764765068157 0




One value

Theorem. If (24 —1)In4 <& <24In £ then
w.h.p. the chromatic number of &7, @/7) is £+ 1.




One value

Theorem. If (24 —1)In4 <& <24In £ then
w.h.p. the chromatic number of &7, @/7) is £+ 1.

Iif 7= 101 then w.h.p. the chromatic number is




Random k-SAT:

Background




Random k-SAT

Fix a set of n variables X' = {21, 20,..., 2, }
M ﬂ'll
Among all oK P possible k-clauses select m

uniformly and independently. Typically 7z = 772 .

Example (£ = 3):

(2’12 V' 25 \/Z’g) /| (.Z’34 V' 221 \/.Z’5) /| /| ($21 V' 29 \/3’13)




Generating hard 3-SAT instances

variables

ssssenssas 50
IO 11

[Mitchell,

Selman,

median computational cost

Levesque 92 ]

ratio of clauses to variables




Generating hard 3-SAT instances

[Mitchell,
Selman,

Levesque 92 ]

The critical point appears to be around 77 &~ 4.2




The satisfiability threshold conjecture

For every £ > 3, there is a constant 7% such that
/2
1 fr=n —¢€

lim Pr|[% (7, r7) is satisfiable] = 0 ifrer+ e
= 7k

n!1




The satisfiability threshold conjecture

For every £ > 3, there is a constant 7% such that
/2

. . : i 1 if »r= Tk — €

lim Pr|[% (7, r7) is satisfiable] = 0 itrerte

n!1

For every 4 > 3,

2k
Z < 7% <2kln2




Unit-clause propagation

Repeat
— Pick a random unset variable and set it to 1
— While there are unit-clauses satisfy them
— If a O-clause is generated fall




Unit-clause propagation

Repeat
— Pick a random unset variable and set it to 1
— While there are unit-clauses satisfy them
— If a O-clause is generated fall

UC finds a satisfying truth assignment if

2k
<_
TS

[Chao, Franco 86]




An asymptotic gap

The probability of satisfiability it at most

M 1ﬂr,n

—+ 0 for »>2KIn2




An asymptotic gap

Since mid-80s, no asymptotic progress over

2k
Z < 7% <2kln2




Getting to within a factor of 2

Theorem: For all # >3 and
r<2KiTno 1
a random A~CNF formula with 7z = 77

clauses w.h.p. has a complementary pair
of satistying truth assignments.




The trivial upper bound is the truthl

Theorem: For all £ >3, a random 4ACNF formula
with 772 = 772 clauses is w.h.p. satisfiable if

r < 2Kln2 - % —1




Some explicit bounds for
the k-SAT threshold

£ 3 4 5 7 20

21

Upper bound 4.51 10.23 21.33 87.88 726,817 1,453,635
Our lower bound 2.68 7.91 18.79 84.82 726,809 1,453,626

Algorithmic lower bound | 3.52 5.54 9.63 33.23 95,263

181,453




The second moment method

For any non-negative r.v. X,

Proof: Let '=1if X >0, and > = 0 otherwise.
By Cauchy-Schwartz,

E[Y}]? <E[X?]E[}?] = E[X?]|Pr[.Y >0] .




Ideal for sums

It Y =%+ X+ --- then




Ideal for sums

It Y =%+ X+ --- then

Example:

¢

The _X; g:orrespond to the I'Z’ potential guclig}ues in G(7,1,2)

Dominant contribution from non-ovelapping cliques




General observations

Method works well when the X are like
“‘needles in a haystack”
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General observations

Method works well when the X are like
“‘needles in a haystack”

Lack of correlations —=> rapid drop in
influence around solutions

Algorithms get no “hints”




The second moment method for random
k-SAT

Let X be the # of satisfying truth assignments
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The second moment method for random
k-SAT

Let X be the # of satisfying truth assignments

For every clause-density » > 0, there is &= &) > 0 such that

2
E[ﬂ] <-4

=

The number of satisfying truth assignments has
huge variance.

The satisfying truth assignments do not form a
“uniformly random mist” in 70,1 }"




To prove 2k In2 - k/2 - 1

Let Z(o, /) be the number of

satisfied literal occurrences in F under O
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X

X (/) Lo g o7 50
X* ¥

where » <1 satisfies (1 + )¢




To prove 2k In2 - k/2 - 1

Let /Z(o, /) be the number of

satisfied literal occurrences in F under O

Let ¥ = .¥(/#) be defined as
X

X2 = Ly OO
X'y 5
Ly 71040

% C

where » <1 satisfies (1+ 2)% (1 — ) =1.




General functions

Given any t.a. 0 and any k-clause cC let

V=V(gec e {-1,+1}

be the values of the literals in ¢ under O.




General functions

Given any t.a. 0 and any k-clause cC let

V=V(gec e {-1,+1}

be the values of the literals in ¢ under O.

We will study random variables of the form
A Y

A= SV (7 0))

Z

where /: /—1,+1 — R is an arbitrary function




for all v

ifv=(-1,-1,...

otherwise

ifv=(-1,-1,...
ifv=(+1,+1,...

otherwise

2[’)

# of satisfying
truth assignments

# of “Not All Equal”
truth assignments
(NAE)




for all v

ifv=(-1,-1,...

otherwise

ifv=(-1,-1,...
ifv=(+1,+1,...

otherwise

2/’7

# of satisfying
truth assignments

# of satisfying

truth assignments
whose complement
is also satisfying




Overlap parameter = distance

Overlap parameter is Hamming distance
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Overlap parameter = distance

Overlap parameter is Hamming distance

For any f, if o, 7agree on .z = 72/2 variables

Forany f, if o, Tagre%on Zvariables, let

G(z/m) = E Av(g ) AV(7 )




Contribution according to distance

E[X?] = Z H E[f(o,0)f(T,c)] Independence
— Z (E flo,e)f(T. ()]) : Identically distributed
= 2 Z (Tj) Ce(z/n)™ Fixing o
z=0 -




Entropy vs. correlation

For every function f:
xr M ﬂ
E[L¥] = 2 (t (2/n)"
z=0

yo Ml

ELY2 = 27 T G

z=0




Contribution according to distance

E[X?] = ZH E[f(o,0)f(T,c)] Independence
= Z (E flo,e)f(T. ()]) Identically distributed
= 2 Z (Tj) Ce(z/n)™ Fixing o
z=0 -
2C¢(a)” S
— max _ f(ﬂ)_ - x O(1) Laplace method
0<a<l (1 — a)t=2 o







The importance of being balanced

An analytic condition:

G(1=2)7 0 == the s.m.m. fails
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The importance of being balanced

An analytic condition:

G(1=2)7 0 == the s.m.m. fails

A geometric criterion:

X
G(12)=0 = F(VIV =0

vel—1+1 K




The importance of being balanced

X
G(12)=0 = F(V)v =0

Constant

SAT
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Want to balance vectors in “optimal” way
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Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory —=
maximize the entropy of the /{V ) subject to

N\
..,—1)=0 and

v2fi 1;+1 gk

Lagrange multipliers —=> the optimal fis
f(V) _ 7/# of +1s1n VvV

for the unique 7that satisfies the constraints




Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory —=
maximize the entropy of the /{V ) subject to

N\
..,—1)=0 and
v2fi 1;+1 gk

(-1,1,...,

1,...,-1) ,
Heroic
x (o)JoJolololo)o)e) -




Random graph coloring




Threshold formulation

Theorem. A random graph with 7 vertices
and 72 = cn edgesis w.h.p. A-colorable if

c < klog £ —log £ — 1

and wl hJpLJ non-k-colorable if

A




Main points

Non-Kk-colorability:

Pro of. The-probability that-there exists—an

k-coloring—is at"most v
Al 1 —

1
£

K-colorability:

Pro of. Apply second moment methad to the
number of balanced 4-colorings of G 72, 7).




Setup

Let X, be the indicator that the balanced
K-partition 0 is a proper K-coloring.

P
We will prove that if X' = 5, X3 then for all

c < #log £ —log £ — 1 there is a constant
D — D(#) sudh that

E[XY?] < DE[X)

This implies that G/ 7z, ¢72) is k-colorable w.h.p.




Setup

E[XZ] = sum over all o, 7of E[.T3.X].

For any pair of balanced k-partitions o, 7
let 8;n be the # of vertices having

color I in 0 and colorjin T.
0

2
Pr[o and 7 are proper] = @1 — y +




Examples

Balance == Ais doubly-stochastic.

When o, 7 are
uncorrelated, A4 is

the flat 1 /4 matrix




Examples

Balance == Ais doubly-stochastic.

When o, 7 are As o, 7 align,
uncorrelated, 4 is A tends to the

the flat 1,/4 matrix identity matrix /




A matrix-valued overlap




A matrix-valued overlap

2, 17
£ A2

1 —

which is controlled by the maximizer of

X H 9 1 X
—  aj loga@j + clog 1—2%—?

over £ X A doubly-stochastic matrices 4 = (& ) .




A matrix-valued overlap

2, 17
£ A2

1 —

which is controlled by the maximizer of

X 1 X
— aj log @j + c 72

over £ X A doubly-stochastic matrices 4 = (& ) .
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Entropy decreases away from the flat 1 /4 matrix

— For small ¢, this loss overwhelms the sum of squares gain
— But for large enough ¢

The maximizer jumps instantaneously from flat, to a
matrix where 4 entries capture majority of mass

This jump happens only after ¢ > £#log £ — log £ — 1
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Proof overview

Proof. Compare the value at the flat matrix with
upper bound for everywhere else derived by:

. Relax to singly stochastic matrices.
. Prescribe the L, norm of each row p..
. Find max-entropy, f(p,), of each row given p..

_ Prove thatf” > 0.

. Use (4) to determine the optimal distribution of
the p; given their total p.

. Optimize over p.




Random regular graphs

Theorem. For every integer & >0, w.h.p. the
chromatic number of a random 4 regular graph

is either £, £+ 1, or £+ 2

where £ is the smallest integer s.t. & < 24log £.




A vector analogue
(optimizing a single row)

Maximize

Xk
— aj log i
j=1
subject to

= p

=1
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A vector analogue
(optimizing a single row)
Maximize For # = 3 the maximizer is

Xk (z, 7, y) where 2z > y
— aj log i
i=1
subject to

= p

I For £ > 3 the maximizeris

=1
forsome 1/4 < p <1
/ (z,2,..., )




Maximum entropy image
restoration

Create a composite image of an object that:

— Minimizes “empirical error”
o Typically, least-squares error over luminance

— Maximizes “plausibility”
o Typically, maximum entropy




Maximum entropy image
restoration

Structure of maximizer helps detect stars

In astronomy




The End




