
Chromatic and Independence Numbers of Gn, 12

We begin by determining the independence number of Gn, 1
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This number will switch from big to small at roughly the point where n = 2a/2; i.e. a = 2 log2 n. (All
logarithms here will have base 2.) More precisely, we let a∗ be the (real) value that makes this expression
evaluate to one:

a∗ = 2 log n + 2 log log n + 2 log e − 1.

It is easy to verify that there is some z = o(1) such that when a = a∗ + z, this expected number is o(1).
This implies:

Theorem 1 Almost surely, the independence number of Gn, 1

2

is at most ba∗ + o(1)c.

Conversely, we will prove:

Theorem 2 Almost surely, the independence number of Gn, 1

2

is at least ba∗ − o(1)c.

These two theorems imply that for every n, the independence number of Gn, 1

2

is a.s. one of two specific

integers. Furthermore, unless n is such that a∗ evaluates to being within o(1) of an integer, the independence
number of Gn, 1

2

is a.s. one specific integer, namely ba∗c. Thus, we know the (a.s.) independence number
precisely for all but a vanishing proportion of values of n.

These theorems were proved independently by Bollobas and Erdos (1976) and Matula (1976).

To prove Theorem 2, we first choose some w = o(1) such that setting a = ba∗ − wc causes the expected
number to evaluate to nε for some ε > 0. (It is easy to show that such a w must exist.) We let X denote
the number of independent sets of size a in Gn, 1

2

and we focus on the second moment of X.

We consider any ordering of the
(

n
a

)

different sets of a vertices, and for each 1 ≤ i ≤ a we define Xi to be
the indicator variable which is 1 iff the ith set is an independent set.
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The third line uses the fact that, since Xi ∈ {0, 1}, we have X2
i = Xi. The fourth line uses the fact that, by

symmetry,
∑

j 6=i Pr(Xj = 1|Xi = 1) =
∑

j 6=1 Pr(Xj = 1|X1 = 1).

Chebychev’s inequality implies that if Exp(X2) ≤ (1 + λ)Exp(X)2, then Pr(X = 0) ≤ λ. Thus, our goal
will be to show that this holds with λ = o(1).

For each 0 ≤ k ≤ a we let Ik denote the total contribution made to the sum in the last line by all sets Xj

that intersect X1 in exactly k vertices. Thus, Ik =
(
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) (
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2). Using the fact that a ≈ 2 log n, it is
easy to evaluate that:
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I0 = Exp(X)(1 − o(1)); I1 = Exp(X) × O(log n/n); Ia−1 = O(log n/n); Ik = 1.

All other terms are negligible (details omitted), and so we get

Exp(X2) = Exp(X)2(1 + O(log n/n)).

This proves Theorem 2.

Next, we turn to the chromatic number of Gn, 1

2

. In any proper colouring of G, every colour class must be
an independent set. Hence, every colour class has size at most roughly 2 log2 n. Therefore, a.s.

χ(Gn, 1

2

) ≥ n

2 log2 n
(1 − o(1)).

Consider the following attempt to colour G with only n
2 log

2
n (1 + o(1)) colours. G a.s. has an independent

set A1 of size a∗(n) ≈ 2 log2 n. Set G2 = G − A1 and n2 = |G2| ≈ n − 2 log2 n. Then, treat G2 as Gn2, 1

2

and conclude that a.s. it has an independent set A2 of size a∗(n2). Repeat this process until G has been
partitioned into independent sets A1, ..., At. This forms a t-colouring of G (the vertices of Ai all receive
colour i.) Working out the appropriate recurrence relations yields that t = n

2 log
2

n (1 + o(1)).

The problem is that we cannot treat G2 as Gn2, 1

2

. When we searched for a large independent set, A1, in G,
we had to expose all the edges of G and so we can no longer assume that those edges are random.

However, there is a way to find smaller independent sets A1, ... in a way that allows us to treat G2, ... as
random graphs Gn2, 1

2

, .... We find A1 using the following greedy algorithm. We start by setting U = V (G),
the entire set of vertices. U will denote the vertices still eligible to be selected for the independent set. We
pick an arbitrary vertex v1 ∈ U . Then we expose the neighbours of v1 and remove them from U . Then
we pick an arbitrary vertex v2 ∈ U ; we expose the neighbours of v2 in U and remove them from U . We
repeat until U = ∅. Clearly this produces an independent set v1, v2, .... At each step, the size of U is roughly
cut in half, so we end up choosing an independent set A1 of size approximately log2 n. Furthermore, this
exposes no information about any edges between two vertices not in A1, so we can treat G2 as Gn2, 1

2

(where

n2 = |G2| ≈ n − log2 n) and repeat the process. This proves that a.s.

χ(Gn, 1

2

) ≤ n

log2 n
(1 + o(1)).

This was first proved by Grimmett and McDiarmid in 1975. (We saw here just an outline of the proof - it
takes a bit of work to formalize it.)

Finally in 1988, Bollobas tightened this gap by proving

Theorem 3 A.s. χ(Gn, 1

2

) ≤ n
2 log

2
n (1 + o(1)).

Independently, and shortly thereafter, Matula and Kucera proved the same result using a different (and more
complicated) argument. We will outline the Bollobas argument here. The key lemma is:

Lemma 4 A.s. Gn, 1

2

has the property that every set of at least n/ log3 n vertices contains an independent

set of size 2 log2 n − 10 log log n.

Lemma 4 implies Theorem 3 because we can repeatedly remove our independent set/colour class Ai from Gi,
until |Gi| < n/ log3 n. (By Lemma 4, we don’t need to be able to treat Gi as a random graph; all we need
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to use is the fact that it has at least n/ log3 n vertices.) This will use fewer than n/(2 log2 n− 10 log log n) =
n

2 log
2

n (1 + o(1)) colours. Then we use (fewer than) n/ log3 n = o( n
2 log

2
n ) colours to colour the remaining

vertices such that each vertex gets its own colour.

Lemma 4 follows from:

Lemma 5 The probability that Gn, 1

2

has no independent set of size a∗ − 4 is at most exp(−n1.1).

This implies Lemma 4 as follows: It is enough to show that Lemma 4 holds for all sets of exactly n/ log3 n
vertices. Set n′ = n/ log3 n and observe that a∗(n′) − 4 > 2 log2 n − 10 log log n. Therefore, the probability
that a particular set S of size n/ log3 n has no independent set of size 2 log2 n− 10 log log n is, by Lemma 5,
at most exp(−n′1.1) < exp(−n). Therefore, the expected number of such sets that violate Lemma 4 is less
than

(

n
n/ log3 n

)

e−n < 2ne−n = o(1). Therefore, a.s. there are no such violating sets.

If we attempt to prove Lemma 5 using the second moment method, we only obtain a probability bound
of 1/poly(n) which is not nearly enough. Instead Bollobas used Azuma’s Inequality. (This was one of the
first few uses of Azuma’s Inequality on random graphs.) Instead of stating Azuma’s Inequality in its fullest
power, we use the following watered down version:

Simple Concentration Bound Suppose that X is a random variable determined by m independent trials

T1, ..., Tm. Suppose also that for every set of possible outcomes of the trials, if we alter the outcome of one

trial, we change the value of X by at most c. Then for any t > 0,

Pr(|X − Exp(X)| > t) < 2e−t2/2c2m.

In this setting, we will take m =
(

n
2

)

and the m independent trials to be the choices for which of the m
potential edges are present.

One might try to apply the SCB to X, the number of independent sets of size a∗ − 4, but it is easy to see
that changing the outcome of one trial, i.e. changing the presence of one edge, might affect X by up to
(

n
a∗−6

)

which is a value of c that is way to big to be useful. So instead, Bollobas defined the variable Y to
be the size of a largest collection of independent sets S1, ..., SY such that each Si has size a∗ − 4 and no two
sets intersect in more than one vertex. Clearly, changing the presence of one edge can affect Y by at most
1. Thus, we can apply the SCB to Y with c = 1. One can compute that Exp(Y ) = Exp(X)(1− o(1)) > n3.
(We omit the details, but note that Exp(Y ) > Exp(X)−∑k≥2 Ik.) Thus the SCB, with t = Exp(Y ) yields

Pr(Y = 0) < 2e−(n3)2/2(1)2m = e−O(n2),

which is sufficent.
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