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Random regular graphs
• What are they (models)• Typical and powerful results• Handles for analysis• One or two general techniques• Some open problems
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Regular graphs
A vertex has degree d if it is incidentwith d edges.
A d-regular graph has all vertices ofdegree d.
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Random regular graphsWhat are they?
Faultily faultless, icily regular,splendidly null, dead perfection;no more.
- Lord Alfred Tennyson
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Random permutation
Choose a permutation of  {1, . . . , n}  uniformly atrandom.e.g.  (1 2 3 5) (4 6 7)

Then forget orientations

1 2
3

45
6 7

1 2
3

45
6 7
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Uniform model

But           is not known exactly.  Hard to analyse.|Gn,d |

Each has the same probability: 1

|Gn,d |

G n,d : Probability space, elements are the d-
regular graphs on n vertices.
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Algorithmic models

1 2
3

45
6

1 2
3

45
6

e.g.  Degree-restricted process:add edges to random places, keeping all vertexdegrees at most d.
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Superposition models G6,1∈

Throw it awayif a multipleedge iscreated.

H6∈RandomHamiltoncycle

H6 ⊕ G6,1∈

Take onemember fromeach of twomodels, andsuperimpose.
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a.a.s.
A property Q holds asymptotically almostsurely (a.a.s.) in a random graph model if
           P(G has Q) → 1  as  n → ∞
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Questions - uniform model
Do graphs in G n,d a.a.s. satisfy the following?
♠ connected, and moreover d-connected
♠ contain a perfect matching (for n even)
♠ hamiltonian (have cycle through all vertices)
♠ trivial automorphism group
... and how are the following distributed?
♠ subgraph counts             ♠ chromatic number
♠ eigenvalues
♠ independent & dominating set sizes
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Some answers for G n,d

Many things are known. Some examples:
hamiltonian (Bollobas, Wormald, Frieze, Robinson,
Cooper, Reed, Krivelevich, Sudakov, Vu),trivial automorphism group (B, McKay, W, K, S, V),

For  3   ≤  d  ≤  n −4 :   a.a.s. d-connected and

√For fixed d: distribution of eigenvalues (McKay),second eigenvalue a.a.s. < 2   d −1 + ε (Friedman)
Chromatic number bounds known (Achlioptas &
Moore, Shi & Wormald)
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Contiguity
contiguous if for any sequence of events An

Two sequences of models  G n  and  F n are

Notation: G n ≈ F n

An is a.a.s. true in  G n 
if and only if

An is a.a.s. true in  F n 
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Contiguity of Superposition models
G n, d − ⊕   G n,   ≈ G n, d     (n even).

Thm 1 (~Robinson & W; Janson)   For d ≥ 3   

G n,  ⊕   G n, ⊕   G n,  ≈  G n,  (n even). 
Thm 2 (Janson; Molloy, Reed, Robinson & Wormald)

G n, d − ⊕  G n,  ≈  G n, d 

Thm 3 (Robalewska)   For d ≥ 3.
i.e.     3 G n,   ≈  G n,  
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Arithmetic of contiguity
G n,    ≈ G n,  ⊕ G n,         (Thm 3)
Example with n even:

≈ G n,  ⊕ 2 G n,          (Thm 3)
≈ G n,  ⊕ G n,  ⊕ 2 G n,        (Thm 1) 

= 5 G n,  ⊕ 2 G n,  
≈ 3 G n,  ⊕ 2 G n,  ⊕ 2 G n,        (Thm 2) 
≈ G n,  ⊕ 2 G n,  ⊕ 2 G n,        (Thm 1) 
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1 + 1 is not 2
In general all such equations with G n, d  andrespecting degree sums are true (n even):

G n, d  ⊕   G n, d  ⊕  . . .  ⊕ G n, d k ≈ G n, d

provided  d  + d  + . . .  +  d k = d   ≥ 3.
There is one failure:

G n,   ⊕  G n,   ≈ G n,   
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Contiguity with H n

H n  = random Hamilton cycle on n vertices
Thm 4 (Frieze, Jerrum, Molloy, Robinson & Wormald)

G n, d − ⊕   H n ≈ G n, d        (fixed d ≥ 3). 
Thm 5 (Kim & Wormald)

H n ⊕  H n ≈  G n,   
Thus all equations involving various G n, d and H nrespecting degree sums are true, providedthe total degree is at least 3.
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Contiguity with F n

Thm 6 (Greenhill, Janson, Kim & Wormald)
F n ⊕ F n ≈  G n,    ,       G n, d − ⊕   F n ≈ G n, d    (d ≥ 3). 

F n  = graph formed from uniformly chosenrandom permutation of n vertices (with noloops or multiple edges).

Thus equations involving various G n, d, F n and H nrespecting degree sums are true, providedthe total degree is at least 3.
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Corollaries
F n ⊕ F n ≈  G n,    ≈ G n, d − ⊕   H n 

implies that F n ⊕ F n is a.a.s. hamiltonian.(Also proved algorithmically by Frieze.)
  G n, d − ⊕   H n ≈ G n, d

implies that G n, d is a.a.s. hamiltonian.
 d G n,  ≈ G n, d    (n even)

implies that G n, d is a.a.s. decomposable into
d perfect matchings (so is d-edge-colourable).
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Other corollaries
Each model is a.a.s. decomposable into d/ 2edge-disjoint Hamilton cycles (even d ≥ 4).
Bipartite version of this is also true (Greenhill,
Kim & Wormald).  So there exist 4-regularbipartite graphs with a hamiltoniandecomposition and arbitrarily large girth(=length of shortest cycle).
This gives examples of complexes with in-coherent fundamental group (McCammond & Wise).
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Other corollaries

Anything a.a.s. true in one of the models isalso a.a.s. true in the others.
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Handles for analysis
1.  Pairing model   (esp. for small d)
2. Switchings    (esp. for moderate d)
3. Enumeration results    (esp. for large d)
For this talk: only 1 in detail.
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Pairing model - P n, d

To stand for a vertex, take d points ina “cell” or bucket.

Then take a random pairing (perfectmatching) of all the points. The pairsdetermine the edges of the graph.

vertex 1    vertex 2  ...



Jan 4,  2005 Jan 4,  2005

ATLANTA MAA ATLANTA MAASHORT COURSE ON RANDOM GRAPHS

LECTURE 5

Pairing model - P n, d

n = 6       d = 3
1

2
3

4
5

6 Reject if loops ormultiple edges
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Pairing model - P n, d

n = 6       d = 3
1

2
3

4
5

6Uniformlyrandom pairing gives
uniformly randomgraph
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Analysis of random pairings
For analysis, permit loops and multiple edges.

For this we use the method of moments as inLecture 4.  But now pairs are dependent.(c.f. G (n, p ), where edges are independent.)

Example: distribution of number of triangles.

Create an indicator variable I j for each tripleof pairs that induce a triangle in the graph.Call such a triple a triangle of the pairing.
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Expected number of triangles
If X is the total number of triangles in therandom pairing then since I j is an indicator

EX =       E I j  =       P(I j = 1 )
  ∑

j

  ∑
j

P(I j = 1 ) = M (dn  − 6) / M (dn )

where M (k ) is the number of
perfect matchings of k points.
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triangles (cont.)

Thus  EX ∼ (d −1 ) 3 / 6.

We easily get  M (k ) = (k  −1)(k  −3) . . . 1
and then  P(I j = 1 ) ∼ (dn ) − 3.  The number of
ways to choose a triangle in the pairing is
 (d(d −1 ))  3  (      ) 

n
3
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ASIDE: Easy exercise
Show that if F has more edges than verticesthen it a.a.s. does not occur as a subgraph of
G n, d .
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Distribution of cycle counts
Higher moments easily computed in a similarway.  Conclusion:
X    has asymptotically Poisson distribution withexpectation λ = (d −1 ) 3 / 6.
X r   - cycles of length r - can be done similarlyand again the distribution is asymptoticallyPoisson with expectation λ r = (d −1 ) r / 2r.
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Joint distribution
Joint moments also computed in the samefashion.  For instance

 E(X )i(X )j ∼ λ 
i λ  

j

from which we may conclude X  and X  areasymptotically jointly independent Poisson.

 P(X  = X  = 0 ) ∼ exp(− λ − λ )

                          =  e (1 − d 2)/ 4.
One implication of this is
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Simple graphs

Joint moments of X , X   and other Xr ‘sgive the asymptotic distribution of
Xr, Xs, . . . , in G n,d .

Let simple denote the event that the random
pairing produces no loops or multiple edges.Then we have found

 P(simple) ∼ e (1 − d 2)/ 4 .
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a.a.s. properties of simple graphs
Since P(simple) is bounded below, if forany event A   we show that P(A) = 1 − o(1)

This is the basis of attack for many problems.
in P n,d   then P(A) = 1 − o(1) also in G n,d .

Example: “1+1” is not “2” because theprobability of G n,  having no odd cycle of

which tends to 0 as g  goes to infinity.
of length less than 2g is asymptotically

exp(− λ − λ − ··· − λ g  − ),
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Variance and Hamilton cycles

a positive constant.  By second momentmethod this is an upper bound on P(Y = 0 ).

Now let Y  be the total number of Hamiltoncycles in (the graph of) the random pairing.Use an indicator variable I j for each possibleset of pairs inducing a Hamilton cycle to find
E(Y ) and var(Y  ). For d   ≥  3 we find in P n,d

var(Y   )/ E(Y  )2  ∼ d /(d −2 ) −   1,
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Small subgraph conditioning- for proving contiguity

Often these are X  , X  , . . . (short cycle counts).

The technique may apply when var(Y  ) is ofthe order of  E(Y  )2 and the variability
signified by the large variance is “induced” bysome variables describing local properties.

Implicit in work of Robinson & Wormald, dis-tilled by Janson, also Molloy,  Robalewska, R&W.
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The hypotheses

1.   X , X , . . . , Xk  are asymptoticallyindependent Poisson with expectations λ i.

Let  Y   count decompositions of a graph of aspecific type. For example, Hamilton cycle +
(d −2 ) -regular graph.
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The hypotheses (PART 2)

∑3.   E Y   2 ∼ (E Y) 2 exp          λ i δ i 
2

(                                        ) 

i= 

∞

and the sum converges.

2.    E Y (X)j (X)j  · · · (Xk)j k →

for  every finite sequence j , j , . . . , jk  ofnon-negative integers, where all δ i   >  − 1.

                  EY                        (λ i (1 + δ i ))ji

∏

i= 

k
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Small subgraph conditioning - conclusion
R n ≈ G n, d

where R n is the space of random regular graphseach with probability proportional to the num-ber of decompositions of the specified type.

G n, d − ⊕   H n ≈ G n, d

Calculations in the Hamilton cycle exampleverify the conditions for d   ≥  3, so
Superposition models relate to decompositions!
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and so on
All the contiguity results stated beforeare proved by that method.

If we have time, let’s look at thedifferential equation method.
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Greedy algorithms
Problem: what is the size of the largestindependent set in a random regulargraph? Largest dominating set?
Greedy algorithms often achieve good a.a.s.bounds.
How do we analyse them?
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Differential equation method
A randomised algorithm is applied to agraph.
When the algorithm is applied to a randomregular graph, its steps depend on somevariables that a.a.s. follow close to thesolutions of some system of differentialequations. (Justification by martingaletechniques.)
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DE method for random pairings
We will need to compute the expectedchanges in these variables, in each step.
Consider the algorithm applied to arandom pairing. In each step of thealgorithm, one may generate at random justthose pairs involving whichever points arerelevant for the next step of the algorithm.
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example: max independent set
An independent set is a set of vertices, notwo of which are adjacent.  α (G) denotes
the largest size of an independent set in G.
From expectation arguments, α (G) < β  (d)n

a.a.s., where e.g. (McKay)
β  (3) = 0.4554,
β  (4) = 0.4163.
Lower bounds come from greedy algorithms.
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Greedy alg for max independent set
Simple algorithm: select vertices consecutivelyat random to build an independent set. Uponselecting a vertex, delete it and its neighbours.
Yi(t):   number of vertices of degree i after tsteps of the algorithm. In pairing model, find(asymptotically) expected change in Yi in onestep, as function of Yj ‘s.
Writing the expected change as a derivativegives a differential equation:
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d.e. for independent set algorithm
yi    =  f (y , y , ... , y d)

′

where yi (x) approximates  Yi (t)/ n  at time t,
x  = t/ n .    (Details omitted!)
The d.e. method includes general results forshowing that a.a.s. the Yi stay close to thescaled solutions of the d.e.:

Yi (t) = nyi (t/ n) + o(n )     a.a.s.
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Conclusion of simple algorithm
Let x be the solution of        yi (x) = 0 . Thena.a.s. the process lasts for x n  + o(n )  steps.Thus α (G) > x n  + o(n ) a.a.s.

∑

We find for d   ≥  3 that
                                            x = (1 / 2)(1 − (d − 1)− 2 / (d − 2 ))

d     x3 0.37504 0.3333
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Degree greedy algorithm
Give priority to vertices with minimum degreein the ever-shrinking graph.
d     x         the upper bounds again3  0.4327       0.45544 0.3901        0.4163(Analysis requires extra bells and whistles.)
The case d=3 also obtained by Frieze andSuen (analytically as 6 log(1.5) - 2) analysingthe same algorithm another way.
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Colouring

Better algorithm: higher priority to verticeswith more colours already on their neighbours.Achlioptas and Moore showed in this way that
P(χ (G n, ) = 3) > c  + o(1 ) for some  c  > 0.

Easy exercise that   χ (G n, ) = 3 a.a.s.
(Hints: Brooks Thm, and short odd cycles.)
Greedy algorithm: assign colours randomly tovertices: a.a.s. requires d   + 1 colours.
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Colouring - even better algorithm

Analysis for upper bounds by d.e. method usingbells, whistles and flashing lights. Lower boundsproved earlier (Molloy & Reed) using expectation.

Modified better algorithm: first colour theshort odd cycles, then proceed as before.This shows above with c   = 1 (Shi & Wormald).So χ (G n, ) = 3  a.a.s.
Similarly, we get χ (G n, ) = 3 or 4  a.a.s.,

χ (G n,) = 4 a.a.s., etc.
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Unsolved Problems

Conjecture that a random d-regular graphwith an even number of vertices a.a.s. has aperfect 1-factorisation (d ≥ 3).
Does a random d-regular directed graph a.a.s.have d edge-disjoint Hamilton cycles (d ≥ 3)?
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More unsolved Problems

Is a random 5-regular graph a.a.s. 3-colourable?

Is the uniform random d-regular graphcontiguous to the algorithmically defined model(add edges at random subject to maximumdegree d)?
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