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Random regular graphs

* What are they (models)

* Typical and powerful results

* Handles for analysis

* One or two general techniques
* Some open problems
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Regular graphs

A vertex has degree d if it is incident
with d edges.

A d-regular graph has all vertices of
degree d.
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Random regular graphs
What are they?

Faultily faultless, icily regular,

splendidly null, dead perfection;

no more.

- Lord Alfred Tennyson
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Random permutation

Choose a permutation of {1,...,n} uniformly at

random. La—>e?
eg. (1235)(467) 6 o 7 ]

5 4

Then forget orientations 1o o2
6 o ! 3

5 4
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Uniform model

Gnd : Probability space, elements are the d-
regular graphs on n vertices.

1
Each has the same probability: G

But |G, 4| is not known exactly. Hard to analyse.
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Algorithmic models

e.g. Degree-restricted process:
add edges to random places, keeping all vertex
degrees at most d.
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Superposition models

Random € Hy = 96,1
Hamilton
cycle
Take one .
Throw it away
member from ' |
each of two eéﬁe"% E
models, and dg
created.

superimpose.
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a.a.s.

A property Q holds asymptotically almost
surely (a.a.s.) in a random graph model if

P(Ghas Q) —1 as n—
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Questions - uniform model

Do graphs in G, a.a.s. satisfy the following?

» connected, and moreover d-connected

» contain a perfect matching (for n even)

» hamiltonian (have cycle through all vertices)
+ Trivial automorphism group

... and how are the following distributed?
» subgraph counts +» chromatic number

» eigenvalues
+» independent & dominating set sizes
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Some answers for G, 4
Many things are known. Some examples:

For 3 <d<n—4: a.as. d-connected and
hamiltonian (Bollobas, Wormald, Frieze, Robinson,
Cooper, Reed, Krivelevich, Sudakov, Vu),

trivial automorphism group (B, McKay, W, K, S, V),

For fixed d: distribution of eigenvalues (McKay),
second eigenvalue a.a.s. < 2vd —1 + ¢ (Friedman)

Chromatic number bounds known (Achlioptas &
Moore, Shi & Wormald)
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Contiguity

Two sequences of models G, and F , are

contiguous if for any sequence of events Ay,

A, isa.as. truein G,
if and only if
A, is a.as. true in F,

Notation: G, # Fp,
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Contiguity of Superposition models

Thm 1 (~Robinson & W; Janson) For d > 3
gn,d—1 D gn, , N g n, d (TL even).

Thm 2 (Janson; Molloy, Reed, Robinson & Wormald)
Gn1® Gni® Gn 1 R Gp 5 (neven).
le. 3Gn: ® Gng

Thm 3 (Robalewska) For d > 3.
gn,d—Q % gn,2 ~ g n,d
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Arithmetic of contiguity

Example with n even:

Gng RGn7D Gne (Thm 3)
R Gn,5 D2Gn-2 (Thm 3)
XG4 ®Gn1®2Gnz  (Thm 1)
G n3D2Gn1@ 2Gn2 (Thm 1)
¥ 3Gn®2Gm ®2Gn>  (Thm 2)
=950n1P 2Gno
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1+1isnot?

In general all such equations with G »« and
respecting degree sums are true (n even):

gn,dl b gn,dg@“’@ gn,dkzgn,d
provided d, +d.+ - +d,=d > 3.

There is one failure:

gn,l@ gn,1'¢gn,2
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Contiguity with H,

H. = random Hamilton cycle on n vertices
Thm 4 (Frieze, Jerrum, Molloy, Robinson & Wormald)
Gnd—=2® Hn® Gpna  (fixed d > 3).

Thm 5 (Kim & Wormald)
Hn®Hp & Gr 4

Thus all equations involving various G, 4 and H.,,
respecting degree sums are true, provided
the total degree is at least 3.
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Contiguity with F,

F n= graph formed from uniformly chosen

random permutation of n vertices (with no
loops or multiple edges).

Thm 6 (Greenhill, Janson, Kim & Wormald)
fn@fnzgn,zl, gn,d—Q@fnzgn,d (dZS)

Thus equations involving various G, 4, F nand H ,,

respecting degree sums are true, provided
the total degree is at least 3.
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Corollaries
fn@fnz gn,4zgn,d—2@ Hn

implies that F,,® F, is a.a.s. hamiltonian.
(Also proved algorithmically by Frieze.)

Ond—2® HiR G ng
implies that G, 4 is a.a.s. hamiltonian.
dGn 1% Gna (neven)
implies that G, 4 is a.a.s. decomposable into
d perfect matchings (so is d-edge-colourable).
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Other corollaries

Each model is a.a.s. decomposable into d/ 2
edge-disjoint Hamilton cycles (even d>4).

Bipartite version of this is also true (Greenhill,
Kim & Wormald). So there exist 4-regular
bipartite graphs with a hamiltonian
decomposition and arbitrarily large girth
(=length of shortest cycle).

This gives examples of complexes with in-
coherent fundamental group (McCammond & Wise).
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Other corollaries

Anything a.a.s. frue in one of the models is
also a.a.s. true in the others.
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Handles for analysis

1. Pairing model (esp. for small d)
2. Switchings (esp. for moderate d)
3. Enumeration results (esp. for large d)

For this talk: only 1 in deftail.
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Pairing model - P,, 4

To stand for a vertex, take d points in
a "cell” or bucket.

Ce® G Coo Ceo

vertex 1 vertex?2 ..

Then take a random pairing (perfect
matching) of all the points. The pairs
determine the edges of the graph.
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Pairing model - P,, 4
o) n==~6 d=73

4

Reject if loops or
5 multiple edges
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Pairing model - P,, 4

2 n==~6 d=73

4
6

Uniformly uniformly random
random pairing gives 5 graph
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Analysis of random pairings
For analysis, permit loops and multiple edges.

Example: distribution of humber of triangles.

For this we use the method of moments as in

Lecture 4. But now pairs are dependent.
(c.f.G (n,p), where edges are independent.)

Create an indicator variable I; for each triple
of pairs that induce a triangle in the graph.
Call such a triple a triangle of the pairing.
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Expected number of triangles

If X, is the total number of triangles in the
random pairing then since [;is an indicator

EX,= » EI; = » P(l;=1)

J

P(I;,=1)=M(dn —6)/M (dn)
where M (k) is the number of

perfect matchings of k points.
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triangles (cont.)

We easily get M(k) = (K—1)(k —=3) --- 1
and then P(I;=1) ~ (dn) 3. The number of

ways to choose a triangle in the pairing is

(d(d—1))? (g) ?@

Thus EX,;~(d—1)3/6.
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ASIDE: Easy exercise

Show that if F has more edges than vertices

then it a.a.s. does not occur as a subgraph of
gmd .
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Distribution of cycle counts

Higher moments easily computed in a similar
way. Conclusion:

X, has asymptotically Poisson distribution with
expectation \; = (d —1)3/6.

X, - cycles of length r - can be done similarly

and again the distribution is asymptotically
Poisson with expectation A\, = (d —1)"/2r.
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Joint distribution

Joint moments also computed in the same
fashion. For instance

E(X,);i(X,); ~ Ai A
from which we may conclude X, and X, are
asymptotically jointly independent Poisson.
One implication of this is
P(X,=X,=0) ~exp(— M\— )

= @ (1 _dz)/4.
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Simple graphs

Let simple denote the event that the random
pairing produces no loops or multiple edges.
Then we have found

P(simple) ~ e (1 - d9/4

Joint moments of X, , X, andother X, 's

give the asymptotic distribution of
XT, Xs, c ey In gn,d-
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a.a.s. properties of simple graphs

Since P(simple) is bounded below, if for
any event A we show that P(A)=1 — o(1)
iNP .. thenP(A)=1 — o(1) alsoin G,4.

This is the basis of attack for many problems.

Example: "1+1" is not "2" because the
probability of G .. having no odd cycle of

of length less than 24 is asymptotically
eXp(— )\3— >\5_ — )\29 —1),
which tends to O as g goes to infinity.
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Variance and Hamilton cycles

Now let Y be the total number of Hamilton
cycles in (the graph of) the random pairing.
Use an indicator variable 7; for each possible

set of pairs inducing a Hamilton cycle to find
E(Y) and var(Y). For d > 3we find in P4

var(Y)/E(Y)? ~d /(d=2) — 1]

a positive constant. By second moment
method this is an upper bound on P(Y=0).
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Small subgraph conditioning
- for proving contiguity

Implicit in work of Robinson & Wormald, dis-
tilled by Janson, also Molloy, Robalewska, R&W.

The technique may apply when var(Y) is of
the order of E(Y)? and the variability
signified by the large variance is “induced" by
some variables describing local properties.

Often theseare X ., X,, ... (short cycle counts).
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The hypotheses

Let Y count decompositions of a graph of a

specific type. For example, Hamilton cycle +
(d—2)-regular graph.

1. X,, X,,...,X, are asymptotically
independent Poisson with expectations \,.
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The hypotheses (PART 2)

2. EY(X,) (X,)

J2

()

EYﬁ (A:(1 + 6,))0

for every finite sequence j,, j,, ..., j; of
non-negative integers, where all 9, > —1.

3. EY2~ (EY)2exp (Z Aﬁﬂ)

and the sum converges.
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Small subgraph conditioning - conclusion

Rn ~ gn,d

where R, is the space of random regular graphs
each with probability proportional to the num-
ber of decompositions of the specified type.

Superposition models relate to decompositions!

Calculations in the Hamilton cycle example
verify the conditions for d > 3 so

gn,d—Q S, Hn ~ gn,d
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and so on

All the contiguity results stated before
are proved by that method.

If we have time, let's look at the
differential equation method.
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Greedy algorithms

Problem: what is the size of the largest
independent set in a random regular
graph? Largest dominating set?

Greedy algorithms often achieve good a.a.s.
bounds.

How do we analyse them?
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Differential equation method

A randomised algorithm is applied to a
graph.

When the algorithm is applied to a random
regular graph, its steps depend on some
variables that a.a.s. follow close to the
solutions of some system of differential
equations. (Justification by martingale
techniques.)
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DE method for random pairings

We will need to compute the expected
changes in these variables, in each step.

Consider the algorithm applied to a

random pairing. In each step of the
algorithm, one may generate at random just
those pairs involving whichever points are
relevant for the next step of the algorithm.
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example: max independent set

An independent set is a set of vertices, ho
two of which are adjacent. o () denotes
the largest size of an independent set in G.

From expectation arguments, a(G) < 3 (d)n

a.a.s., where e.g. (McKay)
5 (3) = 0.4554,
G (4) = 0.4163.

Lower bounds come from greedy algorithms.
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Greedy alg for max independent set

Simple algorithm: select vertices consecutively
at random to build an independent set. Upon
selecting a vertex, delete it and its neighbours.

Y,(t): number of vertices of degree i aftert
steps of the algorithm. In pairing model, find
(asymptotically) expected change in Y, in one

step, as function of Y, 's.

Writing the expected change as a derivative
gives a differential equation:
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d.e. for independent set algorithm

/

Yi = f(y07y17'”7yd)

where y,(x) approximates Y, (t)/ n at time ¢,
r=1t/n. (Details omitted!)

The d.e. method includes general results for
showing that a.a.s. the Y, stay close to the
scaled solutions of the d.e.:

Y,(t) =ny;(t/n) + o(n) aas.

]
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Conclusion of simple algorithm

Let =, be the solution of Zyi(x) = 0. Then
a.a.s. the process lasts for x,n + o(n ) steps.
Thus a(G) > z,n + o(n ) a.a.s.

We find for d > 3 that

%= (1/2)(1—(d — 1)=2/11=2))
d =«
3 0.3750
4 0.3333
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Degree greedy algorithm

Give priority to vertices with minimum degree
in the ever-shrinking graph.
d =z, the upper bounds again

3 04327  0.4554
4 0.3901 0.4163
(Analysis requires extra bells and whistles.)

The case d=3 also obtained by Frieze and
Suen (analytically as 6 log(1.5) - 2) analysing
the same algorithm another way.
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Colouring
Easy exercise that x(G,3;) = 3 a.as.
(Hints: Brooks Thm, and short odd cycles.)

Greedy algorithm: assign colours randomly to
vertices: a.a.s. requires d + 1 colours.

Better algorithm: higher priority to vertices
with more colours already on their neighbours.

Achlioptas and Moore showed in this way that
P(x (Gn,) = 3) >c + o(l ) for some ¢ > 0.
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Colouring - even better algorithm

Modified better algorithm: first colour the
short odd cycles, then proceed as before.

This shows above with ¢ =1 (Shi & Wormald).
So x(Gn,) =3 aas.

Similarly, we get x(G . ;) =3 or 4 a.a.s.,
Y (G n6) = 4 a.a.s., etc.

Analysis for upper bounds by d.e. method using
bells, whistles and flashing lights. Lower bounds
proved earlier (Molloy & Reed) using expectation.
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Unsolved Problems

L

Conjecture that a random d-regular graph
with an even number of vertices a.a.s. has a
perfect 1-factorisation (d > 3).

Does a random d-regular directed graph a.a.s.
have d edge-disjoint Hamilton cycles (d > 3)?
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More unsolved Problems

Is the uniform random d-regular graph
contiguous to the algorithmically defined model
(add edges at random subject to maximum
degree d)?

Is a random 5-reqgular graph a.a.s. 3-colourable?
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