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Subgraph counts

= A copy of a graph & in another graph £’ is a (weak)
subgraph G’ of F’ isomorphic to G.
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A copy of a graph & In another graph £ iIs a (weak)

subgraph G’ of F' isomorphic to G.

Given graph G with v = v vertices and e = eq
edges, let

Xe(n,p) =Xg=X
be the number of copies of G in G(n, p).
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A copy of a graph & In another graph £ iIs a (weak)
subgraph G’ of F' isomorphic to G.

Given graph G with v = v vertices and e = eq
edges, let

Xg(n,p) =Xg=X
be the number of copies of G in G(n, p).
The expectation:

. n vl
EX = N(n,G)p® = § aut(G)p
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1st moment method

By Markov’s inequality
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1st moment method

By Markov’s inequality

p <L n e = PX>0<EX—0
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1st moment method

By Markov’s inequality
D<K n—v/e —

Note that

D> n—v/e

P(X >0) <EX — 0

<~

EX — o
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1st moment method

By Markov’s inequality
p <L n e = PX>0<EX—0

Note that
D> nve & EX — oo
Isittruethat P(X > 0) — 1If EX — oo 777
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.

EX) — 6<Z>p5 0
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.

EXp = 6(Z>p5 — 0 = p = o(n~*?)
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.

EXp = 6(Z>p5 — 0 = p = o(n~*?)

Letp > n=*° Dy, ..., Dy be all copies of D in K,,,

n
4
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Example - the diamond

G = D, the diamond, thatis D = K, — Ko.

EXp = 6(Z>p5 — 0 = p = o(n~*?)

Letp >>n45 Dy, ... D6(n) be all copies of D in K,,,

I, =1if G(n,p) D D, and 0 otherwise.
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G = D, the diamond, thatis D = K, — Ko.

EXp = 6(Z>p5 — 0 = p = o(n~*?)

Letp >>n45 Dy, ... Dy be all copies of D in K,,,
I, =11fG(n,p) D D, and 0 otherwise. Write i ~ j if
E(D;) N E(D;) # 0.
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The variance

Then

var(Xp) =

MAA 2005, Atlanta — p. 5/49



The variance

Then

var(Xp) = var (Z ]7;) —
>:>:cav([i,lj)

T J~i

MAA 2005, Atlanta — p. 5/49



The variance

Then

var(Xp) = var (Z [Z-) —

7

T g~ T g~




The variance

Then

var(Xp) = var (Z [Z-) —

1

> covlni 1) < 3D E(LL) <

i i P i

O(n°p” + n’p® +n’p" 4+ n'p’® + n'p’)
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The variance

Then

var(Xp) = var (Z 1.) —
YN cov(I ;) <Y Y E(I

1 g~ T g~

np + n°p® 4+ n’p” + n*p’ +np)

M7 KR
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2nd moment method

Hence,

B var(Xp)
P(XD — 0) < (EXD 2

<
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2nd moment method

Hence,
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2nd moment method

Hence,

B var(Xp)
P(XD — O) < (EXD 2

1 1 1 1 1
O | | | | = o(1)
n2p n3p2 n3p3 n4p4 n4p5

provided p > n=%5.
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2nd moment method

Hence,
var(X
P(Xp=0) < (E)((DDQ) <
1 1 1 1 1
@, | | | | = o(1
(nQp 302 g | nph n4p5> o(1)

provided p > n~%%. Indeed, e.g.,

np = (np'?)? > (np?/1)? = oo.
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2nd moment method

Hence,
var(X
P(Xp=0) < (E)((DDQ) <
1 1 1 1 1
@, | | | | = o(1
(nQp 302 g | nph n4p5> o(1)

provided p > n~%%. Indeed, e.g.,
n’p = (np'*)* > (np”*)’ — oo.

Isittruethat P(X > 0) —» 1IfEX — o0 777
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Counterexample

“Conjecture”: py(there is a copy of GG) = n—ve/ec
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Counterexample

“Conjecture”: py(there is a copy of GG) = n—ve/ec
IS FALSE!!!
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Counterexample

“Conjecture”: py(there is a copy of GG) = n—ve/ec
IS FALSE!!!
Counterexample: H = K, the Kite,
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Counterexample

“Conjecture”: py(there is a copy of GG) = n—ve/ec
IS FALSE!!!
Counterexample: H = K, the Kite,

n% <« p=n"1 « p>
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Counterexample

“Conjecture”: py(there is a copy of GG) = n—ve/ec
IS FALSE!!!
Counterexample: H = K, the Kite,

n 0 <« p=nM <« n5
P(XK > O) < P(XD > O) — 0(1)
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Threshold - general case

In general, let

CH
dg = — and mg = maxdgy.
Vg HCH
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Threshold - general case

In general, let

CH
dg = — and mg = maxdgy.
Vg HCH

Theorem (Bollobas, 1981) For every graph GG with
eq > O,

po(thereisa copy of G) = n~ /™,
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In general, let

CH
dg = — and mg = maxdgy.
VH HCG

Theorem (Bollobas, 1981) For every graph G with
eq > O,

po(thereisa copy of G) = n~ /™,
that Is,

0if p <« n~l/ma

P(Xc>0) = {1 it p > n~1/mo
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Proof

Proof: Letnp™¢ — 0and let H C G be such that
dg = m¢. Then
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Proof

Proof: Letnp™¢ — 0and let H C G be such that
dg = m¢. Then

P(Xq>0) <P(Xyg>0)<EXy
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Proof

Proof: Letnp™¢ — 0and let H C G be such that
dg = m¢. Then

P(Xq>0) <P(Xyg>0)<EXy
= O(n"p) = (np™ )" = o(1).
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Proof

Proof: Letnp™¢ — 0and let H C G be such that
dg = m¢. Then

P(Xq>0) <P(Xyg>0)<EXy
= O(n"p) = (np™ )" = o(1).

Let np™¢ — o0.
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Proof: Letnp™¢ — 0and let H C G be such that
dg = mq. Then

P(Xo > 0) < P(Xy > 0) < EXp
= O(n"p) = (np™ )" = o(1).

Let np™¢ — oo. Then, for every H C G,

n”UHpeH — (nde)’UH — 00
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Proof: Letnp™¢ — 0and let H C G be such that
dg = mq. Then

P(Xo > 0) < P(Xy > 0) < EXp
= O(n"p) = (np™ )" = o(1).

Let np™¢ — oo. Then, for every H C G,

n”UHpeH — (nde)’UH — 00

B var(Xg) 1 B
P(XG — O) < (EXG; =0 (Z anpeH) _ 0(1)'

HCG
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At the threshold

p = O(n~Yms) or np™¢ — ¢ > 0.
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At the threshold

p = O(n~Yms) or np™¢ — ¢ > 0.

Theorem (Bollobas (81), Karonski, Rucinski (83)) If

GG Isstrictly balanced, that Is, for all H C G we have
dyg < d(;,
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p = O(n~Yms) or np™¢ — ¢ > 0.

Theorem (Bollobas (81), Karonski, Rucinski (83)) If

GG Isstrictly balanced, that Is, for all H C G we have
dy < dg,and np™¢ — ¢ > 0
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p = O(n~Yms) or np™¢ — ¢ > 0.

Theorem (Bollobas (81), Karonski, Rucinski (83)) If
G Is strictly balanced, that Is, for all H C G we have
dy < dg, and np™¢ — ¢ > 0 then X has
asymptotically Poisson distribution with expectation
A= c/aut(G),
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p = O(n~Yms) or np™¢ — ¢ > 0.

Theorem (Bollobas (81), Karonski, Rucinski (83)) If
G Is strictly balanced, that Is, for all H C G we have
dy < dg, and np™¢ — ¢ > 0 then X has
asymptotically Poisson distribution with expectation

A = c"/aut(G), that is, for every i > 0 we have

)\i
lim P(Xg=1) =e "=

n—00 N

MAA 2005, Atlanta — p. 10/49



The method of moments

If for every k > 1

E(X,)r=EX, (X, —1) - (X, —k+1) =\
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The method of moments

If for every k > 1
E(X,)=EX, (X, —1) (X, —k+1) =\

then X, has asymptotically Poisson distribution with
expectation .
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The method of moments

If for every k > 1
E(X,)=EX, (X, —1) (X, —k+1) =\

then X, has asymptotically Poisson distribution with
expectation .

Note: (X¢)x counts ordered k-tuples of distinct copies of
G in G(n,p).
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Proof for triangles

Set G = K3, the triangle, for convenience.
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Proof for triangles

Set G = K3, the triangle, for convenience. Let 1,15, . ..
be all triangles in K, and I, I, . .. the corresponding
Indicators.
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Proof for triangles

Set G = K3, the triangle, for convenience. Let 17,75, . ..
be all triangles in K, and I, I, . .. the corresponding
Indicators. Then
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Set G = K3, the triangle, for convenience. Let 17,75, . ..
be all triangles in K, and I, I, . .. the corresponding
Indicators. Then

and
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Set G = K3, the triangle, for convenience. Let 17,75, . ..
be all triangles in K, and I, I, . .. the corresponding
Indicators. Then

and

where the sum splits over disjoint and not disjoint
k-tuples.
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Proof for triangles — cont.

k
n 1
B = <3 3,n — 3k>p3k - <6n3p3> ~ Bk
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Proof for triangles — cont.

k
n 1
By = (3, 3 — 3k>p3k ~ <6”3p3) ~ (BX,)"

Let £ be a union of £ not all disjoint triangles. Then
erp > VUF.
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Proof for triangles — cont.

k
n 1
By = (3, 3 — 3/@)70% ~ (6”3]03) ~ (BX,)"

Let £ be a union of £ not all disjoint triangles. Then
erp > VUF.

- o[5r) o (o) o

F
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k
n 1
By = <3 3 n—3k>p3k ~ (6”3p3> ~ (BX,)"

Let /' be a union of k£ not all disjoint triangles. Then
erp > V.

E;=0 (Z ””FpeF) =0 (Z(np)”FpeF”F) = O(p)

F

By monotonicity assume that p = o(1).
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k
n 1
B = <3 3. — 3k>p3k - (Engp 3> ~ (BXw)

Let /' be a union of k£ not all disjoint triangles. Then
erp > V.

E; =0 (Z ””FPGF) =0 (Z(np)”FpeF“F) = O(p)

F

By monotonicity assume that p = o(1). Then

MAA 2005, Atlanta — p. 13/49



Beyond the threshold

np''¢ — oo
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Beyond the threshold

np''¢ — oo

Question 1: Asymptotic distribution of X
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Beyond the threshold

np''¢ — oo

Question 1: Asymptotic distribution of X
Question 2: The rate of decay of P(Xg = 0)
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np''¢ — oo

Question 1: Asymptotic distribution of X
Question 2: The rate of decay of P(Xg = 0)

Theorem (Rucinski (1988)) For every graph G with
eq > O,

Xe — EXg
Vvar(Xg)

if and only if np™¢ — oo and n*(1 — p) — oo.

> N(0,1) asn — oo
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np''¢ — oo

Question 1: Asymptotic distribution of X
Question 2: The rate of decay of P(Xg = 0)

Theorem (Rucinski (1988)) For every graph G with
eq > O,

Xe — EXg
Vvar(Xg)

if and only if np™¢ — oo and n*(1 — p) — oo.
Proof: By the method of moments (details omitted).

> N(0,1) asn — oo
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FKG-Inequality

— > —
P(Xg =0) > maxP(Xp = 0)
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FKG-Inequality

— > —
P(Xg =0) > maxP(Xp = 0)
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FKG-Inequality

— > —
P(Xg =0) > maxP(Xp = 0)

Finally, with Uz = n"p°“ and p = p(n) < ¢ < 1,

EXy
— >
P(Xq=0) _Ilglgécexp{ 1—p}
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Finally, with Uz = n"p°“ and p = p(n) < ¢ < 1,

— > — _
P(Xg=0)> max exp { . —p} exp { O (glcl% \IJH> |
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Random subsets

[ - finite set, I', - a random binomial subset of I' (each
element included independently with probability p),
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Random subsets

[ - finite set, I', - a random binomial subset of I' (each

element included independently with probability p),
S - family of subsets of I,
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[' - finite set, I, - a random binomial subset of I' (each

element included independently with probability p),
S - family of subsets of I', foreach A € S, 14 Is the

Indicator of A in T,
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[' - finite set, I, - a random binomial subset of I' (each

element included independently with probability p),
S - family of subsets of I', foreach A € S, 14 Is the

Indicator of A in T,
X =Y 1

AeS
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[' - finite set, I, - a random binomial subset of I' (each

element included independently with probability p),
S - family of subsets of I', foreach A € S, 14 Is the

Indicator of A in T,
X =) Iy

AeS

By FKG, P(X =0) > exp{—EX/(1 —p)}.
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[' - finite set, I, - a random binomial subset of I' (each

element included independently with probability p),
S - family of subsets of I', foreach A € S, 14 Is the
Indicator of A in T,

X:EyA

AeS

By FKG, P(X =0) > exp{—EX/(1 —p)}.

Example. T = (), T, = G(n,p), S - all copies of G in
K. X=X

MAA 2005, Atlanta — p. 16/49



The Janson inequality

A=EX, A=) » E(ulp)

ANB#0
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The Janson inequality

A=EX, A=) » E(ulp)

ANB#0

¢(x) = (1+z)log(l +x) — =, r > —1
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The Janson inequality

A=EX, A=) » E(ulp)

ANBHA(

¢(x) = (1+z)log(l +x) — =, r > —1

Theorem (Janson,1990) Forall 0 <t < A

P(X <X—t)<exp { gb(_ZAW} < exp {-%}
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A=EX, A=) » E(ulp)

ANBHA(

¢(x) = (1 +x)log(l+x) — =z, r > —1

Theorem (Janson,1990) Forall 0 <t < A

P(X < X—t)<exp { qb(_ZAW} < exp {-%}

Proof: by Laplace transforms, FKG and Jensen
Inequalities (omitted).
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A=EX, A=) » E(ulp)

ANBHA(

¢(x) = (1 +x)log(l+x) — =z, r > —1

Theorem (Janson,1990) Forall 0 <t < A
L 2 2
P(XS)\—t)gexp{ i t_/A)A } §exp{_t_}

A 2A

Proof: by Laplace transforms, FKG and Jensen
Inequalities (omitted).

Note: for disjoint A’s, 14’s are independent and we get

the (lower tail) Chernoff bound.



The rate of decay of P(X = 0)

Corollary (Janson, £.uczak, Rucinski, 1990)
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The rate of decay of P(X = 0)

Corollary (Janson, £.uczak, Rucinski, 1990)

Proof: (Weaker version — Boppana, Spencer, 1989):
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The rate of decay of P(X = 0)

Corollary (Janson, £.uczak, Rucinski, 1990)

Proof: (Weaker version — Boppana, Spencer, 1989): let

A=23 S Blls)

A#B ANB#0)
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The rate of decay of P(X = 0)

Corollary (Janson, £.uczak, Rucinski, 1990)

Proof: (Weaker version — Boppana, Spencer, 1989): let

A=23 S Blls)

A#B ANB#0)

thus A = )\ + 2A.
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Proof of weaker version

First show: P(X =0) <exp{—X+ A}.

MAA 2005, Atlanta — p. 19/49



Proof of weaker version

First show: P(X =0) <exp{—X+ A}.

Enumerate S = {A,, ..., A}, denote
B, =4, O A;}.
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Proof of weaker version

First show: P(X =0) <exp{—X+ A}.

Enumerate S = {A,..., Ax}, denote B; = {I', D A;}.
Then

k

A=) P(B) and A= %S:S:P(BWBJ')

i=1 i~j i)
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First show: P(X =0) <exp{—XA+ A}.
Enumerate S = {A;,..., A}, denote B; ={I['), O A;}.
Then

A=) P(B) and A= > » P(B;N B))

1=1 i~y i

By the chain formula

P(X=0)=P (ﬂBi) =1[P (BZ- | HBJ)
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Probability calculus

Notation: Fori # j,7 ~ jif A; N A; # 0, that is, if B,
and B, are dependent.
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Probability calculus

Notation: Fori # j,7 ~ jif A; N A; # 0, that is, if B,
and B, are dependent.

P (BZ- ﬁ3j> > P (BmﬂBj | ﬂBj) >

i
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Probability calculus

Notation: Fori # j,7 ~ jif A; N A; # 0, that is, if B,
and B, are dependent.

P (BZ- ﬁBj) > P (BmﬂBj | ﬂBj) >

i

P (Bi | OBJ-) —P (BmUBj | ﬂBj) >

i
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Notation: Fori # j,7 ~ jif A; N A; # 0, that is, if B,
and B, are dependent.

1—1
P (BZ- | ﬂB]) >P | B;N()B; (B ] >
j=1

i

P(B (B |-P|Bnl B I()B]| >

jobi i ot
P(B;)—>» P(B.NB;)  byFKG

ji
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Putting together

P (ﬂBz') <]l (1 P+ 2 P(BmBj)) -

expi—A + A} < exp { 2(\ sz) }



Putting together

P (ﬂBZ-) <11 (1 ~P(B)+ Y P(BmBj)) <

jrisj<i

expi—A + A} < exp { 2(\ sz) }

provided \ > 2A.
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Putting together

P (ﬂBZ-) <11 (1 ~P(B)+ Y P(BmBj)) <

jrisj<i

expi—A + A} < exp { 2(\ sz) }

provided A > 2A. Otherwise ...
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Putting together

P (ﬂB@-) <11 (1 ~P(B)+ Y P(BmBj)) <

jrisj<i

expi—A + A} < exp { 2(\ sz) }

provided A > 2A. Otherwise ...

Note that above is true for any subset of indices from |k|.
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The probabilistic method

Set

1724
and R = |k,
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The probabilistic method

Set
A

q:ﬂ

and R = [k],. Let[; =1ifte Rand I; =0
otherwise.
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The probabilistic method

Set
A

qd = 9A
and R = |k|,. Let [, = 1ifi € R and I; = 0 otherwise.

et
YmP(ﬂBJ

1€R
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The probabilistic method

Set
A

qd = 9A
and R = |k|,. Let [, = 1ifi € R and I; = 0 otherwise.

et
YMP(HBJ

1€ R
and

Z:EJH&ﬂﬁéSjyp%&ﬂ%ﬂ@

i=1 i~ i
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The probabilistic method — cont.

Thus

Y > Zand EY > EZ
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The probabilistic method — cont.

Thus

)\2

V> ZadEY > EZ =M\~ Af* =

MAA 2005, Atlanta — p. 23/49



The probabilistic method — cont.

Thus

)\2

V> ZadEY > EZ =M\~ Af* =

So, there is S C |k] such that

V(S)=—InP (ﬂ Bi) > %

1€S
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The probabilistic method — cont.

Thus

)\2

V> ZadEY > EZ =M\~ Af* =

So, there is S C |k] such that

2
Y(S)=—-—InP (ﬂ Bi) > 4)\—A and

1€S
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The probabilistic method — cont.

Thus

)\2

V> ZadEY > EZ =M\~ Af* =

So, there is S C |k] such that

2
Y(S)=—InP (ﬂ Bi) > 4)\—A and

1€S

P (ﬁ BZ-) < exp {-%} = eXp{ 2(\ f%)}

MAA 2005, Atlanta — p. 23/49




Back to subgraphs

A _ Z Z erg—eH

HCG GiNG;=H
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Back to subgraphs

A eqG—€eHg __ (EXG)2
A_Z Z p2 _@(minH\PH)

HCG GiﬂGj:H
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Back to subgraphs

A eqG—€eHg __ (EXG)2
A_Z Z p2 _@(minH\PH)

HCG GiﬂGj:H

P(X¢ = 0) = exp {—@ (?fci% qu) }

SO

MAA 2005, Atlanta — p. 24/49



Back to subgraphs

A eqG—€eHg __ (EXG)2
A_Z Z p2 _@(minH\PH)

HCG GiﬂGjZH

P(X¢ = 0) = exp {—@ (ifnci% qu) }

(recall Wy = nv2pH)

SO
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Two milestones

m}}n Uy =Q(n) iff p =) (n_l/mg)) ,
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Two milestones

mﬁi{n Uy =Q(n) iff p =) (n_l/mg)) ,

where
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Two milestones

mﬁi{n Uy =Q(n) iff p =) (n_l/mg)) ,

where
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Two milestones
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Almost perfect G-factors

Set G = K3, m) = 3/2.
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a.a.s., all but at most en vertices of G(n, p) can be
covered by vertex-digoint triangles.

Proof: The probability of opposite event can be
bounded by
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Set G = K, m% - 3/2

Proposition Fixe > 0andletp > C.n=%/3. Then,
a.a.s., all but at most en vertices of G(n, p) can be
covered by vertex-digoint triangles.

Proof: The probability of opposite event can be
bounded by

P (there is an en-subset with no triangle) <

(n>P(G(en,p) 2 K3) < 2"P(Xkg,(en,p) = 0)

€N

VAN

2ne=0)
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Open problem

Find the threshold for the existence of a perfect
triangle-factor in G(n, p).
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Find the threshold for the existence of a perfect
triangle-factor in G(n, p).

Conjecture Thethresholdis

po = n"log'3n

Krivelevich: py < n=3/° (Q(n) copies of the diamond).
Kim: even better

Alon-Yuster, Rucinski: p, = n~%/3 is the threshold for a
perfect (K4 — K o)-factor.

MAA 2005, Atlanta — p. 27/49



Vertex-partition properties

Arrow notation: F' — (G)Y means that every r-coloring

of the vertices of F’ results in a monochromatic copy of
G.
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Arrow notation: F' — (G)Y means that every r-coloring

of the vertices of F’ results in a monochromatic copy of
G

Theorem (tuczak, Rucinski, Voigt (1992)) For every

r>2,po=n"Y ma’ isthe threshold for the property
G(n,p) — (G)L.

r

Proof: (the easy part)

P (Glnp) (@) < ()1 )P G/l 3G,

Note: this threshold Is sharp (Friedgut, Krivelevich,
1999)
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A guestion of Erdos

Pigeon-hole: K5 — (K3)5.
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Pigeon-hole: K5 — (K3)5.
Easy: K| + C? — (K3)s. Note: K1 + C2 5 K.

Erdos: Does there exist an F' such that F' K, and
F — (K3)5?

YES!!! (Erdos, Rogers (1962) and Folkman (1970)).
Set p = Cn~2/3, so that
P (G(n,p) — (K3)3) =1 —o(1).
We know: P( Xy, =0) ~ e ~ ¢y > 0
(5)

Switching to the model G'(n, M): about ¢ ((C /2)n4/3)

graphs with n vertices and M = (C/2)n*? edges are
such.



Ramsey properties

F — (G)¢ means that every r-coloring of the edges of F
results in a monochromatic copy of G.
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F — (G)¢ means that every r-coloring of the edges of F
results in a monochromatic copy of G.

Theorem (ROdI, Rucinski (1995)) For every r > 2,

po =~/ isthe threshold for the property
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F — (G)¢ means that every r-coloring of the edges of F
results in a monochromatic copy of G.

Theorem (ROdI, Rucinski (1995)) For every r > 2,

po = n~1/mé’ isthe threshold for the property
G(n,p) — (G)5.

T

Proof: see J. AMS (1995)

Theorem (Friedgut,R6dl, Rucinski, Tetali (2005)) The
property G(n,p) — (K3)$ has a sharp threshold.
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F — (G)¢ means that every r-coloring of the edges of F
results in a monochromatic copy of G.

Theorem (ROdI, Rucinski (1995)) For every r > 2,

po = n~1/mé’ isthe threshold for the property
G(n,p) — (G)5.

T

Proof: see J. AMS (1995)

Theorem (Friedgut,R6dl, Rucinski, Tetali (2005)) The
property G(n,p) — (K3)$ has a sharp threshold.
Proof: 99 pages long proof omitted.
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(@) ()

(Turan, Erdos, Stone, Simonovits 1941-1966)

If p < n=1/mé’ then ming Uy < n’p and
for some H C G, a.a.s Xg < np.
It Is then possible to destroy all copies of GG by deleting
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ex(n,G) =max{er: GZ F C K,}

(@) ()

(Turan, Erdos, Stone, Simonovits 1941-1966)

If p <K n_l/mg) then ming Uy < n2p and

for some H C G, a.a.s Xg < np.

It Is then possible to destroy all copies of GG by deleting
o(n?p) edges — the Turan property does not hold for

G (n, p) in this case.

MAA 2005, Atlanta — p. 31/49



Conjecture For everyn > 0 thereisC' > 0 such that if
p>Cn~Y me’ then a.a.s. every subgraph of G(n, p) with

at least |
(=i ()

edges contains a copy of G.
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Conjecture For everyn > 0 thereisC' > 0 such that if
p>Cn~Y me’ then a.a.s. every subgraph of G(n, p) with

at least |
(=i ()

edges contains a copy of G.

True for G = K3, K4, K5, K¢ and for all cycles G = (..
(Frankl, Flredi, Gerke, Haxell, Kohayakawa, Kreuter,
k uczak, ROdl, Sabo, Schacht, Steger, Taraz, Vu, ...)

MAA 2005, Atlanta — p. 32/49
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Upper talils - early results (Vu 2001)

P(X¢ > tEX¢)
For all balanced graphs G

P(Xg > tEXg) < exp {—cexpé/(vg—l)}
For all graphs G
P(X¢ > tEX) > exp { ~Cu¢{ " log(1/p)}

where oy Is the fractional independence number of G.
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P(X¢ > tEX¢)
For all balanced graphs G

P(X; > tEXq) < exp {—CE\IJ};/(UG_D}
For all graphs G
P(X, > tEXg) > exp {—ceqf};/o% log(1 /p)} |
where oy Is the fractional independence number of G.

These bounds are far apart (they essentially match each
other only for stars K ).
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Fractional independence number

af, 1S the largest value of > °  «,, over all weightings
a, € |0,1] of V(G) satisfying:

ay + ay <1 forall vw € E(G)
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Fractional independence number

af, 1S the largest value of > °  «,, over all weightings
a, € |0,1] of V(G) satisfying:

a, + oy, <1 forall vw € E(G)

Properties (assume e > 0):
= for reqular G, aj, = vg/2
= for bipartite G, o, = ag
= for all GG,

1 e
1< Zvg < ag <vg— = <wg — 1
AVe
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Toward a general, tight upper tall

N (F,G) —the number of copies of G in F
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Toward a general, tight upper tail

N (F,G) - the number of copies of GG in F' (so,
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{max{m <(}):VHCG N(n,mH)<Uy} p>n?

1 p<n

MAA 2005, Atlanta — p. 35/49



Toward a general, tight upper tail

N (F,G) - the number of copies of GG in F' (so,

N(Kna G) — N(na G))

N(n,m,G) —the maximum of N(F,G) over all graphs
Fwithvr <nander <m.

Mg = Mg(n,p) =

{max{m < (Z) VHCG N(n,m,H)<¥y} p>n?

1 p<n

Recall
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Theorem (Janson, Oleszkiewicz, Rucinski (2004))
For every graph G and for every ¢ > 1 there exist
constants c¢(¢, G) > 0 and C'(t, G) > 0 such that for all

n>vgandp € (0,1)
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Theorem (Janson, Oleszkiewicz, Rucinski (2004))
For every graph G and for every ¢ > 1 there exist

constants c¢(¢, G) > 0 and C'(t, G) > 0 such that for all
n>vgandp € (0,1)

P(X¢ > tEX¢g) < exp{—c(t,G)Ms(n,p)},
and, provided tEXs < N(n,G),
P(Xq > tEXg) > ptt@Menp),

If tEX. > N(n,G), the probability is trivially 0.
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Theorem (Janson, Oleszkiewicz, Rucinski (2004))
For every graph G and for every ¢ > 1 there exist

constants c¢(¢, G) > 0 and C'(t, G) > 0 such that for all
n>vgandp € (0,1)

P(X¢ > tEX¢g) < exp{—c(t,G)Ms(n,p)},
and, provided tEXs < N(n,G),
P(Xq > tEXg) > ptt@Menp),

If tEX. > N(n,G), the probability is trivially 0.
If tEXc < N(n,G)thentps < 1,s0p <t/ < 1.
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N(n,m, H) explicitly

heorem For every graph A without isolated vertices,
and for all m > ey andn > vy, we have,
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heorem For every graph A without isolated vertices,
and for all m > ey andn > vy, we have,

O (mo) if m <n (Alon 1981)
N(n,m,H) = < O(mvr—up2u—rm) ifn <m < (})
O(n"") if m > (1) (trivial).

Theorem For every graph G and n > v we have
O(1) if p < n-t/me

M(*;(n,p) =<0 (mianG @gai{) |'f n_l/mG < D < n—l/AG
O (n’p-e) ifp > n-tA,
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Special cases: regular graphs, stars

Corollary If GG isa k-regular graph, then
M}, = ©(n?pF) for all p > n~t/me = n=2/k
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Special cases: regular graphs, stars

Corollary If GG isa k-regular graph, then
M}, = ©(n?pF) for all p > n~t/me = n=2/k

Corollary Let G bethe k-armed star K, with & > 1,
and assume p > n~Y/me = p~1=Vk_ Then

At @(n1+1/kp) if D < n—l/k’
¢ 10X if p>nVk
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Special cases: paths

Corollary Let P, bethe path on £ vertices and assume
p > n-Yme, — p=1-1/(k=1) Then if k > 3 isodd,

'
Mp, = < o

\

n2kL+1p2£—H) If p<nl2
n2p2) |f p>n12

NN

MAA 2005, Atlanta — p. 39/49



Corollary Let P, bethe path on k vertices and assume
p > n-Yme, — p=1-1/(k=1) Then if k > 3 isodd,

( k k—1
@ (nzkz—ﬂp2k—+1)

Mpk = 9 @(n2p2)

and, if £ > 4 iseven,
O (n?p* ) if
Mp, = 0(n*F p*v) if
@(n2p2) If

if  p<n?
If p>nl/2

)

p<n
n—l S D S ,n—l/2

D 2 n—1/2.
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Graphs with many phases

Let T be the tree obtained by taking & stars K7 ;,
v = 1,...k, and tying them up by merging one pendant
vertex from each star into one vertex.
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Let T be the tree obtained by taking & stars K7 ;,
v = 1,...k,and tying them up by merging one pendant
vertex from each star into one vertex.

Proposition For every k > 2, the graph 7" described
above has k + 1 phases for the upper tail.
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Idea of proof : lower bound

P(X; > tEXg) > pCtOM(n)
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|ldea of proof : lower bound
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P(Xq > tEXq) > p“tMelnn
By the definition of M there is H C G:

N(n,Ms+1,H) > Ug = N(n,C:Mga, H) > tU gy
For simplicity, say, / = G, and take m = C; M /. Then

AF C K,,ep <m: N(F,G) > tVg > tEXg
Finally,

P(X¢ > tEXg) > P (G(n,p) 2 F) =p" > p™.
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|ldea of proof : upper bound

By Markov’s inequality, with Ao = EX, for every
m > 1

E(XZ)
tm AT

P(Xg > thg) = P(X2 > 1"\ <
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|ldea of proof : upper bound

By Markov’s inequality, with Ao = EX, for every
m > 1
_ B(Xy)

P(Xe > tAg) = P(Xg > t"Ag) < — =0
G

For suitable choice of ¢/, with m = ¢/ M,

E(XT) < \agm/?,
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By Markov’s inequality, with Ao = E X, for every
m > 1

E(XZ)
tm AT

P(Xe > the) = P(XZ > t"\7) <

For suitable choice of ¢/, with m = /M 7%,
B(X{) < gt™?,
SO
P(Xg >thg) < $m/2 exp{—(m/2)logt} = exp{—cMs}

where ¢ = (¢'/2) log t.
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The mth moment

We will show by induction on m that

m—1
N — 1 H
BOX) < a8 14200 3 M (m = ea, H)
HCG Vi
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The mth moment

We will show by induction on m that

m—1
N — 1 H
BOX) < a8 14200 3 M (m = ea, H)
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This is trivially true for m = 1.
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The mth moment

We will show by induction on m that

m—1
N — 1 H
HCG Vi

This 1s trivially true for m = 1. Assume true for m — 1.
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We will show by induction on m that

m—1
N — 1 H
HCG Vi

This 1s trivially true for m = 1. Assume true for m — 1.

Let Gy, -, Gy be all copies of G in G(n,p) and let
I; be the indicator of presence of GG; in G(n, p).
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We will show by induction on m that

m—1
N — 1 H
HCG Vi

This 1s trivially true for m = 1. Assume true for m — 1.

Let Gy, -, Gy be all copies of G in G(n,p) and let
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Induction step

Set ' = F(i1,...,im1)=G; U---UG,

lm—1"

MAA 2005, Atlanta — p. 44/49



Induction step
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Induction step

Set ' = F(i1,...,im1) =Gy U---UG;

tm—1
p e(GiyU-UGy,) _ peG e(FNG;,,)
,z,: @1,-2{&; Z
< Zpe()( e ec_l_z Zpeaeﬂ)
U yenesbm—1 HCG G,;NF=H
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Induction step

Z.m—l
(G4, U---UG;,,) e(F) eqa—e(FNG;,,)
2 P =) ) prer
114.-4, tm 7:1 ..... im—l tm
< 2 (N(”’G)pe”Z > p)
U1geeey Tim—1 HCG G,NF=H
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Set F' = Fiy,...,im 1) =Gy U--- UG,

lm—1"

Z pe(Gin U UGin) Z pe(F)ZpeG—e(FﬂGim)

’Ll, ,Zm 1195t —1

.3 ( VoG + Y Y p)

Zla 7Zm 1 HCGG NF=H

< Z ped) ()\G + Z N(n,(m —1)eq, H)ig)

115-e9lm—1

N ~eg. H
<E(X2) -\ (1 + 206! Y (n, (mqu )ec: )) |

HCG
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Bounding the mth moment

With m = ¢/ M/,
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Bounding the mth moment

With i = ¢/ M,
N(n,(m —1)eq, H) < 'N(n, M}, H) < "Uy
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Bounding the mth moment

With m = ¢/ M/,
N(n,(m —1)eq, H) < 'N(n, M}, H) < "Uy
and for ¢’ = ¢/(G, t) small enough

(1 + 2v¢! Z _ 1)6G’ H)) < WVt

HCG
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Bounding the mth moment

With m = ¢/ M/,
N(n,(m —1)eq, H) < 'N(n, M}, H) < "Uy
and for ¢’ = ¢/(G, t) small enough

(1 + 2v¢! Z _ 1)6G’ H)) < WVt

HCG

which proves that

E(X2) < A2

MAA 2005, Atlanta — p. 45/49



Estimating N(n,m, H)

T0 prove:
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Estimating N(n, m, H)

T0 prove:

N(n,m, H) = ©(m" “up*u—1) jf n < m < (Z)
Consider LP: max ), .y o
given

0<z,<logn and VYowekFE:z,+ z, <logm.

MAA 2005, Atlanta — p. 46/49



Estimating N(n,m, H)

T0 prove:

N(n,m, H) = O(m"  “un?*n~1) jf n < m < (g)

Consider LP: max ), .y o
given

0<z,<logn and VYowekFE:z,+ z, <logm.

Let v be the value of an optimal solution (z,,).
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Computing ~

We have x, > log m — log n.
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Computing ~

We have =, > log m — log n. Write:
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Computing ~
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where 0 < o, < 1, and Yow € E:  «, + o, < 1.

MAA 2005, Atlanta — p. 47/49



Computing ~

We have =, > log m — log n. Write:

= logm — logn + (2logn — logm)a,
where 0 < o, < 1, and Yow € F: o, + «, < 1. Then

v = Z:cv— (logm—logn)vy+(2logn—logm) Zozv
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Computing ~

We have =, > log m — log n. Write:

= logm — logn + (2logn — logm)a,
where 0 < o, < 1, and Yow € F: o, + «, < 1. Then

v = va— (logm—logn)vy+(2logn—logm) Zozv

SO
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Relating v to N(n,m, H)

Proposition N(n,m,H) = 0 (e7)
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Relating v to N(n,m, H)

Proposition N(n,m,H) = 0 (e7)
Proof: (only from below) based on an optimal solution
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Proposition N(n,m,H) = 0 (e7)

Proof: (only from below) based on an optimal solution
(x,), construct F' rich in copies of H. How?

Blow up H, replacing each v by n, = e™ /vy vertices
and each vw € E by K(n,,ny).
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Proposition N(n,m,H) = 0 (e7)

Proof: (only from below) based on an optimal solution
(x,), construct F' rich in copies of H. How?

Blow up H, replacing each v by n, = e™ /vy vertices
and each vw € FE by K(n,,n,). Then

v =), Ny <N
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Proposition N(n,m,H) = 0 (e7)

Proof: (only from below) based on an optimal solution
(x,), construct F' rich in copies of H. How?

Blow up H, replacing each v by n, = e™ /vy vertices
and each vw € FE by K(n,,n,). Then

vp =), Ny < nand

ep = vanwg Zm/v%_,<m

vweFlR vweFlR
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Proposition N(n,m,H) = 0 (e7)

Proof: (only from below) based on an optimal solution
(x,), construct F' rich in copies of H. How?

Blow up H, replacing each v by n, = e™ /vy vertices
and each vw € FE by K(n,,n,). Then

vp =), Ny < nand

ep = vanwg Zm/v%_,<m

vweFlR vweFlR

But
N(F,H) > an = c"e7.
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Open problem

Determine the order of magnitude for

— 10g P(XG Z tEX(;)
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Open problem

Determine the order of magnitude for
— 10g P(XG > tEX(;)

It is between ©(M /) and © (M} log(1/p)).
For G = K, itis O(M() (Chernoff).
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Determine the order of magnitude for
— 10g P(XG > tEXg)

It is between ©(M /) and © (M} log(1/p)).
For G = K, itis O(M() (Chernoff).

For G = Kyand n2/310g"% n <« p < n~Y/27¢ there is
an upper bound

P(Xg > 2EXg) < exp {—CM(*;(n,p) logl/Qn} ,
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Determine the order of magnitude for
— 10g P(XG > tEXg)

It is between ©(M /) and © (M} log(1/p)).
For G = K, itis O(M() (Chernoff).

For G = Kyand n2/310g"% n <« p < n~Y/27¢ there is
an upper bound

P(Xg > 2EXg) < exp {—CM(*;(n,p) log1/2n} ,
by the deletion method (Janson, Rucinski (2004)).
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Determine the order of magnitude for
— 10g P(XG > tEXg)

It is between ©(M /) and © (M} log(1/p)).
For G = K, itis O(M() (Chernoff).

For G = Kyand n2/310g"% n <« p < n~Y/27¢ there is
an upper bound

P(Xg > 2EXg) < exp {—CM(*;(n,p) logl/Qn} ,

by the deletion method (Janson, Rucinski (2004)).
Thus, neither end Is sharp!

MAA 2005, Atlanta — p. 49/49
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