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Rough outline

The basic Probabilistic method can be

described as follows:

In order to prove the existence of a com-

binatorial structure with certain proper-

ties, we construct an appropriate prob-

ability space and show that a randomly

chosen element in this space has desired

properties with positive probability.



Ramsey theory

Of three ordinary adults,

two must have the same sex.

D.J. Kleitman

Ramsey Theory refers to a large body of

deep results in mathematics with under-

lying philosophy: in large systems com-

plete disorder is impossible!

Theorem: (Ramsey 1930)

∀ k, l there exists N(k, l) such that any

two-coloring of the edges of complete

graph on N vertices contains either/or

• Red complete graph of size k

• Green complete graph of size l



Ramsey numbers

Definition:

R(k, l) is the minimal N so that every

red-green edge coloring of KN contains

• Red complete graph of size k, or

• Green complete graph of size l

Theorem: (Erdős–Szekeresh 1935)

R(k, l) ≤
(
k + l − 2

k − 1

)

In particular

R(k, k) ≤
(
2k − 2

k − 1

)
≈ 22k



Proof: part I

Induction on k+l. By definition, R(2, l)=

l and R(k,2) = k. Now suppose that

R(a, b) ≤
(
a + b− 2

a− 1

)
, ∀ a + b < k + l.

Let

N = R(k − 1, l) + R(k, l − 1)

and consider a red-green coloring of the

edges of the complete graph KN.

Fix some vertex v of KN and let A, B

be the set of vertices connected to v

by red, green edges respectively. Since

|A|+ |B| = N − 1 we have that

|A| ≥ R(k − 1, l) or |B| ≥ R(k, l − 1).



Proof: part II

If |A| ≥ R(k − 1, l), then A must contain

either a green clique of size l or a red

clique of size k − 1 that together with

v gives red clique of size k and we are

done. The case |B| ≥ R(k, l − 1) is simi-

lar.

By induction hypothesis, this implies

R(k, l) ≤ N = R(k − 1, l) + R(k, l − 1)

≤
(
k + l − 3

k − 2

)
+

(
k + l − 3

k − 1

)

=
(
k + l − 2

k − 1

)
.



Growth rate of R(k, k)

Example:

k − 1 parts

of

size k − 1

Conjecture: (P. Turán)

R(k, k) has polynomial growth in k,

moreover

R(k, k) ≤ c k2



Erdős existence argument

Theorem: (Erdős 1947)

R(k, k) ≥ 2k/2

Proof:

Color the edges of the complete graph

KN with N = 2k/2 red and green ran-

domly and independently with probabil-

ity 1/2. For any set C of k vertices the

probability that C spans a monochro-

matic clique is 2 · 2−
(

k
2

)
= 2

1−
(

k
2

)
.

Since there are
(

N
k

)
possible choices for

C, the probability that coloring contains

a monochromatic k-clique is at most(
N

k

)
2
1−

(
k
2

)
≤

Nk

k!
·
2k/2+1

2k2/2
=

2k/2+1

k!
� 1



Open problem

Determine the correct exponent in the

bound for R(k, k)

Best current estimates

k

2
≤ log2 R(k, k) ≤ 2k



Large girth and large
chromatic number

Definitions:

• The girth g(G) of a graph is the length

of the shortest cycle in G.

• The chromatic number χ(G) is the

minimal number of colors which needed

to color the vertices of G so that adja-

cent vertices get different colors.

Note:

It is easy to color graph with large girth

”locally” using only three colors.

Question:

If girth of G is large, can it be colored

by few colors?



Surprising result

Theorem: (P. Erdős 1959.)

For all k and l there exists a finite graph

G with girth at least l and chromatic

number at least k.

Remark:

Explicit constructions of such graphs

were not found until only nine years later

in 1968 by Lovász.



Bound on χ(G)

Definition:

A set of pairwise nonadjacent vertices

of a graph G is called independent. The

independence number α(G) is the size of

the largest independent set in G.

Lemma:

For every graph G on n vertices

χ(G) ≥
n

α(G)
.

Proof:

Consider the coloring of G into χ(G) col-

ors. Then one of the colors classes

has size at least n/χ(G) and its vertices

form an independent set. Thus α(G) ≥

n/χ(G), as desired.



Probabilistic tools

Lemma: (Linearity of expectation.)

Let X1, X2, . . . , Xn be random variables.

Then

E
∑

i
Xi

 =
∑
i

E[Xi].

(No conditions on random variables!)

Lemma: (Markov’s inequality.)

Let X be a non-negative random vari-

able and λ a real number. Then

P[X ≥ λ] ≤
E[X]

λ
.



Proof: part I

Fix θ < 1/l. Let n be sufficiently large

and G be a random graph G(n, p) with

p = 1/n1−θ. Let X be the number of

cycles in G of length at most l.

As θ · l < 1, by linearity of expectation,

E[X] ≤
l∑

i=3
ni · pi ≤ O

(
nθl

)
= o(n).

By Markov’s inequality

P[X ≥ n/2] ≤
E[X]

n/2
= o(1).

Set x = 3
p logn, so that

P[α(G) ≥ x] ≤
(
n

x

)
(1− p)(

x
2)

<
(
ne−px/2

)x
= o(1)



Proof: part II

For large n both of these events have

probability less than 1/2. Thus there is a

specific graph G with less than n/2 short

cycles, i.e., cycles of length at most l,

and with

α(G) < x ≤ 3n1−θ logn.

Remove a vertex from each short cycle

of G. This gives G′ with at least n/2

vertices, girth greater than l and α(G′) ≤

α(G). Therefore

χ(G′) ≥
|G′|

α(G′)
≥

n/2

3n1−θ logn
=

nθ

6 logn
� k.



Set-pair estimate

Theorem: (Bollobás 1965.)

Let A1, . . . , Am and B1, . . . , Bm be two

families of sets such that Ai∩Bj = ∅ only

if i = j. Then

m∑
i=1

|Ai|+ |Bi|
|Ai|

−1

≤ 1.

In particular if |Ai| = a and |Bi| = b, then

m ≤
(

a+b
a

)
.

Example:

Let X be a set of size a+ b and consider

pairs (Ai, Bi = X − Ai) for all Ai ⊂ X of

size a. There are
(

a+b
a

)
such pairs, so

the above theorem is tight.



Proof: part I

Let |Ai| = ai, |Bi| = bi and let

X =
⋃
i
(Ai ∪Bi).

Consider a random order π of X and let

Xi be the event that in this order all the

elements of Ai precede all those of Bi.

To compute probability of Xi note that

there are (ai+ bi)! possible orders of ele-

ment in Ai ∪Bi and the number of such

orders in which all the elements of Ai

precede all those of Bi is exactly ai!bi!.

Therefore

P[Xi] =
ai!bi!

(ai + bi)!
=

ai + bi

ai

−1

.



Proof: part II

We claim that events Xi are pairwise

disjoint. Indeed suppose that there is

an order of X in which all the elements

of Ai precede those of Bi and all the

elements of Aj precede all those of Bj.

W.l.o.g. assume that the last element

of Ai appear before the last element of

Aj. Then all the elements of Ai precede

all those of Bj, contradicting the fact

that Ai ∩Bj 6= ∅.

Therefore events Xi are pairwise disjoint

and so we get

1 ≥
m∑

i=1
P[Xi] =

m∑
i=1

ai + bi

ai

−1

.



Sperner’s lemma

Theorem: (Sperner 1928.)

Let A1, . . . , Am be a family of subsets of

n element set X which is an antichain,

i.e., Ai 6⊆ Aj for all i 6= j. Then

m ≤
 n

bn/2c

 .

Proof:

Let Bi = X − Ai and let |Ai| = ai. Then

|Bi| = bi = n − ai, Ai ∩ Bi is empty but

Aj ∩ Bi 6= ∅ for all i 6= j. Therefore by

Bollobás’ theorem

1 ≥
m∑

i=1

ai + bi

ai

−1

=
m∑

i=1

n

ai

−1

≥
m( n

bn/2c
) .



Littlewood-Offord problem

Theorem: (Erdős 1945.)

Let x1, x2, . . . , xn be real numbers such

that all |xi| ≥ 1. For every sequence α =

(α1, . . . , αn) with αi ∈ {−1,+1} let

xα =
n∑

i=1
αixi.

Then every open interval I in the real

line of length 2 contains at most
(

n
bn/2c

)
of the numbers xα.

Remark:

Kleitman (1970) proved that this is still

true if xi are vectors in arbitrary normed

space.



Proof

Replacing xi < 0 by −xi we can assume

that all xi ≥ 1. For every α ∈ {−1,1}n let

Aα be the subset of {1, . . . , n} containing

all 1 ≤ i ≤ n with αi = −1. Note that

if Aα ⊂ Aβ then αi − βi is either 0 or 2.

Hence

xα − xβ =
∑
i
(αi − βi)xi = 2

∑
i∈Aβ−Aα

xi ≥ 2.

This implies that {Aα | xα ∈ I} form an

antichain and by Sperner’s lemma their

number is bounded by
(

n
bn/2c

)
.



Explicit constructions

Theorem: (Erdős 1947)

There is a 2-edge-coloring of complete

graph KN , N = 2k/2 with no monochro-

matic clique of size k.

Problem: (Erdős $100)

Find an ”explicit” such coloring.

Explicit def
= constructible in polynomial time

Theorem: (Frankl and Wilson 1981)

There is an explicit 2-edge-coloring of

complete graph KN , N = k
c log k
log log k with no

monochromatic clique of size k.



Bipartite Ramsey

Problem:

Find ”large” 0,1 matrix A with no k × k

homogeneous submatrices.

Submatrix def
= intersection of k rows and columns

Homogeneous def
= containing all 0 or all 1

Randomly:

There is N×N matrix A with k = 2 log2 N.

Explicitly:

There is N ×N matrix A with k = N1/2.

E.g., take [N ] = {0,1}n and define

ax,y = x · y(mod 2)



Breaking 1/2 barrier

Theorem: (Barak, Kindler, Shaltiel, S.,Wigderson)

For every constant δ > 0 there exists a

polynomial time computable N ×N ma-

trix A with 0,1 entries such that none of

its Nδ×Nδ submatrices is homogeneous.

Moreover, every Nδ ×Nδ submatrix of A

has constant proportion of 0 and of 1.


