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News and Notes

Please read sections 1.2 and 1.3 of Clive.

Please read “ProofWritingExpectations”, if you
have not done so already.

HW1 is due 9/4 by 11pm through Gradescope.
Problem 6 has been reworded to ensure the
uniqueness of a.

LaTeX/Gradescope session: 1-2pm this
Saturday, 8/31, in Doherty 2315.

Proof-writing tips session: 2:15-4pm this
Saturday, 8/31, in Doherty 2315.
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Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.

Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value

-
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game

- probability and statistics are big
drivers in Science today.

3 / 13



Recalling The Previous Class

Discuss with your peers what we did last time.
Tell me what we did last time!

We discussed the syllabus.

We had a discussion of the contents of Chapter 0.

We found all x ∈ R such that
√

x − 3 = x − 5.

In general, assumptions should be stated and variables should
be quantified. We need to see logical deductions and the
explanations to justify them.

We discussed Roots, Exponents, and Absolute Value -
emphasizing quantification.

We played The Finger Game - probability and statistics are big
drivers in Science today. 3 / 13



Elements of First Order Logic

A Propositional Variable is a variable that assumes
the values True and False.

The Logical Connectives are, “not”, “and”, “or”,
“implies”, “iff”. In symbols, ¬, ∧, ∨, ⇒, ⇔.

Recall the conditions for the truth of ¬p, p ∧ q,
p ∨ q, p ⇒ q, and p ⇔ q.

A Propositional Formula is an expression that is
either a propositional variable, or is “built up” from
simpler propositional formulae using a logical
operator.

Observe that parenthesization of propositional
formulae is, in general, necessary.
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Elements of First Order Logic (continued)

∀ means “for every” and ∃ means “there exists”.

∃! means “ there exists a unique”.

A Predicate is a symbol p with variables x1, . . . , xn

coming from specified sets which evaluates to
True or False when x1, . . . , xn are all known.

A Logical Formula is a predicate with some (possibly
all) of the variables bound by quantifiers. The sets
for free variables should be displayed for the reader.

“s.t.” is shorthand for “such that”.
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Proving a Theorem

When presented with a theorem to prove, half of
the difficulty can be understanding what the
theorem says and what there is to prove, let alone
formulating a strategy for a proof.

It helps to understand all of the definitions and
quantification in the statement of the theorem.

Ask yourself if you can write down some examples
or evidence for the truth of the theorem in an effort
to gain motivation. Do you believe the theorem to
be a true statement?

If you change the quantifying sets does it become
easier to prove? Does it become false?
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Proving a Theorem (continued)

Theorem: The product of any two consecutive
positive integers is never a perfect square.

Motivation for a proof: Write out the sequence
of positive squares, and the sequence of products of
consecutive positive integers.

1, 4, 9, 16, 25, 36, 49, . . . and 2, 6, 12, 20, 30, 42, . . .

What do you observe? We observe that the
sequences are interlaced,

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49,. . .

the products fall strictly between x2 and (x+ 1)2, so
they are never squares. We need to formalize this.
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Proving a Theorem (continued)

Proof: Let x and y be positive integers.
We need to show that x(x + 1) is not y2.

Case 1) If y ≤ x, then y2 ≤ x2 < x(x + 1).

Thus, x(x + 1) is not y2.

Case 2) If y > x, then y ≥ x + 1,

so y2 ≥ (x + 1)2 > x(x + 1).

Thus, x(x + 1) is not y2. Since the two cases
exhaust all possibilities, our proof is complete.

Theorem (proved in 1974 by Erdos and Selfridge):
The product of two or more consecutive positive
integers is never a square or any other higher power.
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Proving another Theorem

Theorem: For every prime p ≥ 3, there exist
unique n, m ∈N such that

p = n2 − m2.

Motivation for a proof: Try to write some small,
odd primes as the difference of squares. We see that
3 = 22 − 12, 5 = 32 − 22 and 7 = 42 − 32.

Proof: Let p ≥ 3 be a prime number.

Existence: One can verify that n = (p + 1)/2 and
m = (p − 1)/2 are natural numbers such that
p = n2 − m2.
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Proving another Theorem (continued)

Uniqueness: Assume that n and m are natural
numbers such that p = n2 − m2.
We must deduce that n = (p + 1)/2 and
m = (p − 1)/2.

We have p = (n − m)(n + m). Since p is positive,
n − m and n + m must be positive integers.

Since p is prime, it has only 1 and p as positive
factors. Thus, n − m = 1, and n + m = p.

Solving two equations in two unknowns yields
n = (p + 1)/2 and m = (p − 1)/2, as desired.
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Is it possible that 64 = 65?

Consider the rearrangement of the 4 pieces from the
left into the 4 pieces on the right:

5 8

5

58

5
3

3

3 5

5

3
8

3

5

5 3

What is wrong with the argument given above?

11 / 13



Is it possible that 64 = 65?

Consider the rearrangement of the 4 pieces from the
left into the 4 pieces on the right:

5 8

5

58

5
3

3

3 5

5

3
8

3

5

5 3

What is wrong with the argument given above?

11 / 13



Is it possible that 64 = 65?

Consider the rearrangement of the 4 pieces from the
left into the 4 pieces on the right:

5 8

5

58

5
3

3

3 5

5

3
8

3

5

5 3

What is wrong with the argument given above?

11 / 13



Is it possible that 64 = 65?

Consider the rearrangement of the 4 pieces from the
left into the 4 pieces on the right:

5 8

5

58

5
3

3

3 5

5

3
8

3

5

5 3

What is wrong with the argument given above?

11 / 13



It is not possible that 64 = 65!

The lines labeled with “3” should be labeled with
“40

13”. When reassembled on the right, the top
rectangle is 5 by 105

13 and the bottom rectangle is 8
by 40

13 . The top and bottom rectangles don’t form a
square.
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Calculate the Area of a Square

What is the area of the inner square in the following
diagram?

1
2

1
2
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