MATRIX THEORY HOMEWORK 5

(1) The rowspace of an $m \times n$ matrix A is the set of linear combinations of the rows of A. Prove that the rowspace of A is the set of row vectors of the form $y A$. Prove that if E is an invertible $m \times m$ matrix then the rowspace of A is equal to the rowspace of $E A$.

By elementary matrix arithmetic, if $Y=\left(\mu_{1} \ldots \mu_{m}\right)$ then $Y A$ is the row vector $\sum_{i} \mu_{i} R_{i}$ where R_{i} is the i row of A.

Since $Y(E A)=(Y E) A$, the rowspace of $E A$ is a subset of the rowspace of A for any E. If E is invertible then $Z A=\left(Z E^{-1}\right) E A$, so that the rowpsace of A is a subset of the rowspace of $E A$.
(2) Let A be a square matrix. Prove that if A is invertible then the transpose A^{T} is invertible.
$A A^{-1}=1$, so transposing $\left(A^{-1}\right)^{T} A^{T}=1^{T}=1$. By basic facts about inverses A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(3) Let A be an invertible square matrix. For $n>0$ we already defined A^{n} to be the product of n copies of A. We let $A^{0}=1_{n \times n}$ and for $n>0$ we define $A^{-n}=\left(A^{-1}\right)^{n}$. Prove that for all integers m, n we have $A^{m+n}=A^{m} A^{n}$ and $\left(A^{m}\right)^{n}=A^{m n}$.

Step 1: For all $n \geq 0, A^{n} A^{-n}=1$ and so $\left(A^{n}\right)^{-1}=A^{-n}$.
Proof by induction on n. Easy for $n=0 . A^{n+1} A^{-n-1}=A A^{n} A^{-n} A^{-1}=$ $A A^{-1}=1$, using that $A^{n} A^{-n}=1$ by induction.

Step 2: For all $m, A^{m+1}=A^{m} A=A A^{m}$.
There are 3 cases: $m<0, m=0$ and $m>0$. Each is immediate from the definitions.

Step 3: For all m and all $n \geq 0, A^{m} A^{n}=A^{m+n}$.
Proof: By induction on n for all m simultaneously (that is to say the induction hypothesis asserts of n that "for all m we have $A^{m} A^{n}=A^{m+n}$ "). For $n=0: A^{m} A^{0}=A^{m}=A^{m+0}$. For the induction step: $A^{m} A^{n+1}=$ $A^{m} A A^{n}=A^{m+1} A^{n}=A^{m+1+n}=A^{m+n+1}$, where we used Step 2 to see $A^{m} A=A^{m+1}$ and the induction hypothesis for $m+1$ and n to see $A^{m+1} A^{n}=A^{m+1+n}$.

Step 4: For all m and $n, A^{m+n}=A^{m} A^{n}$.
Proof: Step 3 covers it unless m, n are both negative, and in this case we have $A^{m+n}=\left(A^{-n-m}\right)^{-1}=\left(A^{-n} A^{-m}\right)^{-1}=\left(A^{-m}\right)^{-1}\left(A^{-n}\right)^{-1}=A^{m} A^{n}$ by Step 1, Step 3, the general fact that $(A B)^{-1}=B^{-1} A^{-1}$ for invertible A, B and Step 1 again.

Step 5: For all m and all $n \geq 0, A^{m n}=\left(A^{m}\right)^{n}$.
Proof: By induction on n. $n=0$ is easy. For the induction step: $\left(A^{m}\right)^{n+1}=\left(A^{m}\right)^{n} A^{m}=A^{m n} A^{m}=A^{m n+m}$, by the definition of matrix powers, the induction hypothesis and Step 4.

Step 6: For all m and $n, A^{m n}=\left(A^{m}\right)^{n}$.
Proof: we are done by Step 5 unless $n<0$. In this case $\left(A^{m}\right)^{n}=$ $\left(\left(A^{m}\right)^{-n}\right)^{-1}=\left(A^{-m n}\right)^{-1}=A^{m n}$ by Step 1, Step 5 and Step 1 again.
(4) Let A be an $m \times m$ matrix, and for $t>0$ let X_{t} be the columnspace of A^{t}. Prove that $X_{t+1} \subseteq X_{t}$ for all $t>0$. Prove that there is a number $T>0$ such that $X_{t}=X_{T}$ for all $t \geq T$.

For any column vector $Y, A^{t+1} Y=\left(A^{t} A\right) Y=A^{t}(A Y)$, so that the columnspace of A^{t+1} is a subspace of the columnspace of A^{t}.

To finish, it is useful to prove a couple of facts about spaces and dimensions.

Fact: Let X, Y be spaces of column vectors of height m, and let $X \subseteq Y$. Let $s=\operatorname{dim}(X)$ and $t=\operatorname{dim}(Y)$. Then $s \leq t$, and if $s=t$ then $X=Y$.

Proof of fact: Let B be a basis for X, so that $|B|=s$. Now $B \subseteq$ $X \subseteq Y$, so that B is an independent subset of Y. By a general fact about independent sets and bases, there is a basis C for Y such that $B \subseteq C$. So $s=|B| \leq t=|C|$, and if $s=t$ then $B=C$ and so $X=\operatorname{span}(B)=$ $\operatorname{span}(C)=Y$.

Returning to the problem, we see by the fact above that $\operatorname{dim}\left(X_{t}\right)$ is decreasing with t, so that there is some T such that $\operatorname{dim}\left(X_{t}\right)$ is constant for $t \geq T$. In particular for $t \geq T$ we have $X_{t} \subseteq X_{T}$ and $\operatorname{dim}\left(X_{t}\right)=\operatorname{dim}\left(X_{T}\right)$, so by the fact again $X_{t}=X_{T}$.

Note: With more work we can show that $T \leq m$, can you see why?

