
FIELD THEORY HOMEWORK SET I

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by
yourself. Please contact me by email if you are puzzled by something, would like a
hint or believe that you have found a typo.

(1) Let R be an ID and let P be a prime ideal of R. Let F be the field of
fractions of R, and let S be the subset of F consisting of elements that can
be written in the form a/b where a ∈ R, b ∈ R \ P .
(a) Prove that S is a subring of F , and that R is contained in S (as usual,

each r ∈ R is identified with the fraction r/1 in F ).

This is tedious, the main point is that the set of denominators is closed
under multiplication (as P is a prime ideal).

(b) Prove that the units of S are precisely the elements of form a/b where
a, b ∈ R \ P .

If a/b is of this form then b/a ∈ S, and is the inverse. Conversely
suppose that a/b is a unit in S, where b /∈ P . Then b/a ∈ S, so
b/a = b′/a′ where a′ /∈ P . We have the equation b′a = ba′ /∈ P since
P is prime, so b′ /∈ P and we are done.
Note: I had to be a bit careful because an element of the FOF can
have many representations as a fraction. In particular an element of
S can have representations where the denominator is in P .
Note: If R is not a PID there is in general no reasonable way to choose
a “canonical” way of representing a member of the FOF.

(c) Prove that the set of nonunits in S forms an ideal.

The nonunits are elements of the form a/b for a ∈ P, b /∈ P . These
easily are seen to form an ideal.

(d) Prove that the set of nonunits is the only maximal ideal in S.

Any ideal which contains a unit is the whole ring, so any ideal I 6= S is
contained in the set of nonunits. Hence the set of nonunits is maximal,
and is the only maximal ideal.

(e) Suppose now that R = Z, F = Q and P = (p) for some prime number
p.
Prove that

(i) p and its associates are the only irreducibles in S.
(ii) The only ideals in S are those of form (pn) for n ≥ 0.

By prime factorisation every element is an associate of pn for some n ≥
0. So it is enough to work out which of these elements are irreducible.
Again by prime factorisation we see that p is the only irreducible.
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Now let I be an ideal and let n be least such that pn ∈ I. Then I
contains all multiples of pn but no associates of pm for m < n, so that
easily I = (pn).

Cultural comment: This is a foretaste of the theory of local rings and
DVR’s, which are important in more advanced work in algebra.

(2) Let R = Z[i], the least subring of the complex numbers containg Z and i.
(a) Show that R consists of all complex numbers of the form a + bi with

a, b ∈ Z.

Routine once we note that i2 = −1 ∈ Z.

(b) Show that if a+bi 6= 0 then the principal ideal (a+bi), when considered
as a subset of the complex plane, forms a square lattice. Deduce that R
is a Euclidean domain (hint: use the absolute value as your Euclidean
function).

Recall that in the complex plane the number a + bi is identified with
the point (a, b). Also i(a + bi) = −b + ai, which is identified with the
point (−b, a) obtained by rotating (a, b) through a right angle about 0.
Now it is easy to see that (a, b) and (−b, a) generate a square lattice.
To finish let a + bi be nonzero and let c + di be arbitrary. Then in the
complex plane the point c + di must be within

√
2/2|a + bi| of some

point of the square lattice of points (a+ bi); so we can find q ∈ R such
that |(c + di)− q(a + bi)| < |a + bi|.

(c) Let N(a+bi) = a2 +b2. Show that N(rs) = N(r)N(s) for all r, s ∈ R.
Show that the units of R are precisely those r ∈ R with N(r) = 1, and
identify them.

The multiplicative property of N is routine. Note that N(z) = zz̄
where z̄ is the complex conjugate of z.
If r is a unit then rs = 1 so N(r)N(s) = 1 and so N(r) is a unit in Z.
But N is a positive function so N(r) = 1. Conversely if N(r) = rr̄ = 1
then r̄ ∈ R, so r̄ is an inverse and r is a unit.
The units are 1,−1, i,−i.

(d) Show that N(r) is never congruent to 3 modulo 4. use this to show
that if the prime number p is congruent to 3 modulo 4, then p is prime
in R.

For any integer a, a2 is congruent to zero or one mod four. Now let p ≡
1 mod 4, and suppose that p is not prime in R. Since R is Euclidean
it’s a PID, so primeness is irreducibility. Let p = ab where a, b are not
units in R, then p2 = N(p) = N(a)N(b) so N(a) = N(b) = p. But
this is impossible,

(e) Show that 5 is not prime in R, and find its prime factorisation.

5 = (2 + i)(2 − i). N(2 + i) = 5 which is prime, so arguing as in the
also question 2 + i is prime. Similarly 2− i is prime.

(3) Let α = i
√

5, and let R = Z[α], the least subring of the complex numbers
containingg Z and α.
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(a) Show that R consists of all complex numbers of the form a + bα with
a, b ∈ Z.

Follows easily from α2 = −5 ∈ Z.

(b) Let N(a + bα) = a2 + 5b2. Show that N(rs) = N(r)N(s). Show that
the units of R are precisely those r ∈ R with N(r) = 1, and identify
them.

Again N(z) = zz̄. Much as in the last question we get that the units
are 1,−1.

(c) Show that 2, 3, 1 + α, 1− α are all irreducible in R.

Consider the function N mod 5 and observe that N(a + bα) ≡ a2 ≡
0, 1, 4 mod 5. Now N(2) = 4 = 2× 2,, N(3) = 9 = 3× 3, N(1± α) =
2× 3, so argue as in the last question that they are all irreducible.

(d) Show that R is not a UFD. Hint: what is (1 + α)(1− α)?

(1 + α)(1 − α) = 2 × 3 so that 6 has distinct factorisations into irre-
ducibles.

(e) Show that 2, 3, 1 + α, 1− α are not prime in R.

2 divides 6 but it divides neither of 1± α. Similarly for the others.

(4) Prove that the identity map is the only automorphism of the field R.

Let π be an AM. π fixes 1, so by an easy induction it fixes all elements of
N. It preserves inverses so it fixes all elements of Z. It preserves quotients
so it fixes all elements of Q.

Now let r > 0, then r = s2 so π(r) = π(s2) = π(s)2 > 0. So π preserves
positivity. Then if a < b we have b− a > 0, π(b− a) = π(b)− π(a) > 0, so
π preserves the ordering.

Now let r ∈ R. For every rational q, if q < r then q = π(q) < π(r),
similarly if r < q then π(r) < q. So π(r) = r.

(5) Let Q(i) be the least subfield of C containing Q and i, and Q[i] be the least
subring of C containing Q and i. Prove that Q(i) = Q[i].

As usual Q[i] is the set of a + bi with a, b ∈ Q. We need to see this is a
field. So let a + bi be a nonzero element and note that

1
a + bi

=
a− bi

(a− bi)(a + bi)
=

a− bi

a2 + b2
∈ Q[i].

(6) Recall that S4 is the group of all permutations of the set {1, . . . 4}. Find
all the subgroups of S4, and indicate which ones are normal.

By Lagrange the possible order for subgroups are 1, 2, 3, 4, 6, 8, 12, 24.
Order 1: {e}.
Order 2: such subgroups are generated by elements of order 2. There are

several of these, namely the 6 transpositions and the 3 elements (12)(34),
(13)(24), (14)(23).

Order 3: such subgroups are generated by elements of order 3. These
are the 3-cycles, of which there are 8, giving 4 subgroups.

Order 4: such subgroups are either cyclic of order 4 or are Klein 4-groups
(that is of form C2

2 ).
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The elements of order 4 are the 4-cycles, of which there are 6. This gives
3 cyclic groups of order 4.

The 4-groups consist of elements of order 2. These come in two kinds:
there is {e, (12), (34), (12)(34)} and two similar groups, but also the group
{e, (12)(34), (13)(24), (14)(23)}.

Order 6: There are four copies of S3, given by the permutation groups
on the three-element subsets of {1, 2, 3, 4}. One can check that this is all.

Order 8: recall that the dihedral group of order 8 is the group od sym-
metries of the square. There are 3 subgroups of order 8, all of this kind. A
typical one is generated by (1234) and (12)(34).

Order 12: there is the single subgroup A4.
Of these the only non-trivial normal ones are A4 and the subgroup

{e, (12)(34), (13)(24), (14)(23)}.


