This is (a lower bound on) what I expect you to know about group theory starting this course. If you are rusty on this stuff now is a good time to brush up.

(1) A group is a nonempty set equipped with an associative binary operation, which has an identity element and inverses. The (unique) identity element is usually written as e, and the (unique) inverse of a is usually written as a^{-1} .

We can summarise the axioms equationally as eq = qe = q, $a(bc) = (ab)c, aa^{-1} = a^{-1}a = e.$ (2) $(ab)^{-1} = b^{-1}a^{-1}, a^{m}a^{n} = a^{m+n}, (a^{m})^{n} = a^{mn}.$

- (3) G is *abelian* if and only if the group operation is commutative.
- (4) If X is a set then a *permutation* of X is a bijection from X to X. The permutations of X form a group under composition, which we denote by Σ_X .
- (5) If G is a group a subgroup is a nonempty subset closed under the group operation, and itself forming a group. H is a subgroup if and only if H is nonempty and closed under the operation $(q,h) \mapsto qh^{-1}$. We write $H \leq G$ for "H is a subgroup of G".
- (6) If $H \leq G$ then the map $a \mapsto a^{-1}$ is a permutation of H.
- (7) A homomorphism (HM) from G_1 to G_2 is a map $\phi: G_1 \to G_2$ such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G_1$. Easily $\phi(e) = e$ and $\phi(a^{-1}) = \phi(a)^{-1}$. The composition of two HMs is a HM.
- (8) If ϕ is a HM from G_1 to G_2 then the *image* of ϕ is $\{\phi(g) : g \in$ G_1 . It forms a subgroup of G_2 .
- (9) An injective HM from G_1 to G_2 is called a *monomorphism* (MM). If ϕ is such a map then the *image* of ϕ is isomorphic to G_1 via ϕ .
- (10) If G is a group and $q \in G$ then the map $h \mapsto qh$ is a permutation of G. This defines an injective HM from G to Σ_G . Slogan: "every group is isomorphic to a subgroup of a permutation group".
- (11) An *isomorphism (IM)* is a bijective HM, and two groups are *isomorphic* if and only if there is an IM between them. We write $A \simeq B$ in this case. Isomorphism is an equivalence relation.
- (12) An automorphism (AM) of G is an IM from G to G. The automorphisms of G form a group under composition which we write as Aut(G).
- (13) If G is a group and $X \subseteq G$ then we write $\langle X \rangle$ for the least subgroup containing X. $\langle X \rangle$ is the set of all elements $x_1^{n_1} \dots x_i^{n_j}$ for $x_i \in X, n_i \in \mathbb{Z}$. By convention the empty product is e, and of course $\langle \emptyset \rangle = \{e\}.$

(14) Let $H \leq G$, and define a binary relation on G in which x is related to y if and only if there is $h \in H$ such that hx = y. This is an equivalence relation, and the class to which x belongs is Hx, the right coset of x. The map $h \mapsto hx$ sets up a bijection between H and Hx. The right cosets form a partition of G. Similarly for left cosets xH.

Note that Hx = Hy if and only if $y \in Hx$ and so forth.

- (15) If $H \leq G$ and $x \in G$ then the map $g \mapsto g^{-1}$ sets up a bijection between xH and Hx^{-1} , and so Hx = Hy if and only if $x^{-1}H = y^{-1}H$. This gives a bijection between the set of left cosets and the set of right cosets. The cardinality of the set of left (right) cosets is called the *index* of H in G and is written [G : H]. WARNING: DO NOT ASSUME THAT GROUPS ARE FI-NITE IN THIS COURSE! IN PARTICULAR INDICES MAY BE INFINITE.
- (16) If G is finite and $H \leq G$ then $|G| = |H| \times [G : H]$, in particular the order of H divides the order of G (Lagrange's theorem).
- (17) If G is a group and x, g then the conjugate of x by g is gxg^{-1} , which we usually write as x^g . For each g the map $x \mapsto x^g$ is an AM of G. Since $x^{gh} = (x^h)^g$ this induces a HM from G to Aut(G). When $X \subseteq G$ we often write X^g for $\{x^g : x \in X\}$.
- (18) A subgroup $N \leq G$ is *normal* if it satisfies any one of the following list of equivalent conditions:
 - (a) For all g, gN = Ng.
 - (b) For all $g, N^g = N$.
 - (c) For all $g, N^g \subseteq N$.
 - In this case we write $N \lhd G$.
- (19) Let $N \triangleleft G$. Then the product of an element of aN and an element of bN is an element of abN. We write G/N for the set of cosets and define an operation (aN)(bN) = abN. G/N forms a group under this operation and the map $g \mapsto gN$ is a HM from G to G/N.
- (20) Let $\phi : G_1 \to G_2$ be a HM. Then the kernel of ϕ is $\{g \in G_1 : \phi(g) = e\}$. ker $(\phi) \triangleleft G_1$. If $N \triangleleft G$ then the kernel of the quotient HM $g \mapsto gN$ is N.
- (21) (FIRST IM THM, MOST IMPORTANT THM IN ELEMEN-TARY GROUP THEORY!!!!) Let $\phi : G_1 \to G_2$ be a HM and let $N = \ker(\phi)$. Then the map $gN \mapsto \phi(g)$ is an IM from G/Nto $im(\phi)$.
- (22) Let $\phi : G_1 \to G_2$ be a HM, then ϕ is injective if and only if $\ker(\phi) = \{e\}.$

 $\mathbf{2}$

- (23) Let $N \lhd G$. Then there is a bijection between subgroups of G/N and subgroups of G containing N. Explicitly if $N \le M \le G$ then M corresponds to M/N, and M is the union of the cosets which comprise M/N. Moreover $M \lhd G$ if and only if $M/N \lhd G/N$, and in this case $G/M \simeq (G/N)/(M/N)$ via an IM which takes gM to (gN)M/N.
- (24) Let G be a group and $a \in G$. Then $\langle a \rangle = \{a^m : m \in \mathbb{Z}\}$ is the image of the HM $m \mapsto a^m$ from \mathbb{Z} to G. The kernel has form $n\mathbb{Z}$ for a unique $n \geq 0$, so $\langle a \rangle \simeq \mathbb{Z}/n\mathbb{Z}$. If n = 0 then we say a has *infinite order*, otherwise we say that a has order n. We write |a| for the order of a. If G is finite then |a| divides |G|.