COMMUTATIVE ALGEBRA HW 4

JC

Due in class Mon 12 September.
(1) (A and M III.6) Let $A \neq\{0\}$ be a ring. let Σ be the set of all multiplicatively closed sets S with $0 \notin S$. Show that
(a) Σ has maximal elements.
(b) S is maximal in Σ iff $A \backslash S$ is a minimal prime ideal.

Clearly $\{1\}$ is in Σ and Σ is closed under union of chains. Now use ZL to see there exist maximal elements.

Suppose first that S is maximal and let $P=A \backslash S$. Let r be a ring element. If $r \in P$ then the least multiplicatively closed set containing r and S is

$$
S \cup r S \cup r^{2} S \cup \ldots
$$

which must contain 0 by maximality of S, that is for some $n>0$ and $s \in S$ we have $r^{n} s=0$. Conversely if $r^{n} s=0$ for some $n>0$ and $s \in S$ then $r \in P$ as S is multiplicatively closed and $0 \notin S$.

We claim P is an ideal. Clearly $0 \in P$. If a and b are in P find $m, n>0$ and $s, t \in S$ such that $a^{m} s=b^{n} t=0$. Then $(a+b)^{m+n-1}$ st $=0$ so that $a+b \in P$. Also for any r we have $(r a)^{m} s=0$ so that $r a \in P$. Since $1 \in S$ we see that $1 \notin P$. So P must be prime as S is multiplicatively closed, and must be a minimal prime by the maximality of S.

Finally suppose that P is a minimal prime and let $S=A \backslash P$. Certainly $S \in \Sigma$. If S is not maximal in Σ find $S \subsetneq T$ with T maximal in Σ, then by the work we just $\operatorname{did} A \backslash T$ is a prime ideal strictly contained in P, contradiction!
(2) (A and M I.12) Recall that a local ring is a ring with a unique maximal ideal, equivalently a ring where the non-units form an ideal. Recall also that e is idempotent iff $e^{2}=e$. Show that in a local ring the only idempotents are 0 and 1 .

Let A be a local ring and M be the maximal ideal of nonunits. If $E=e+M$ then $E^{2}=E$ in the field A / M, so $E=0$ or $E=1$. That is either $e \in M$ or $1-e \in M$. Now $1=$ $e+(1-e) \notin M$ so either $1-e \notin M$ or $e \notin M$, that is to say that e or $1-e$ is a unit.

Now $e(1-e)=0$ so if e is a unit then $1-e=0$, while if $1-e$ is a unit then $e=0$.
(3) True or false? If $R[x]$ is Noetherian then R is Noetherian. $R[x] /(x) \simeq R$. True.
(4) A topological space is a set X equipped with a collection \mathcal{O} of subsets of X (the "open sets") satisfying the axioms:
(a) \emptyset and X are in \mathcal{O}.
(b) The intersection of any two elements of \mathcal{O} is an element of \mathcal{O}.
(c) The union of any set of elements of \mathcal{O} is an element of \mathcal{O}. (A homely example: Let (X, d) be a metric space and \mathcal{O} be the set of open sets for this metric)

Let R be an arbitrary ring and let $\operatorname{Spec}(R)$ (the spectrum of R) be the set of prime ideals of R. For each $a \in R$ let $O_{a}=\{P \in \operatorname{Spec}(R): a \notin P\}$. Define \mathcal{O} to be the set of all subsets of $\operatorname{Spec}(R)$ which are unions of sets of the form O_{a}, or more explicitly $X \in \mathcal{O}$ iff for every $P \in X$ there is $a \in R$ so that $P \in O_{a} \subseteq X$.
Show that this choice of \mathcal{O} makes $\operatorname{Spec}(R)$ into a topological space.

Every prime ideal contains 0 and fails to contain 1 so $O_{1}=$ $\operatorname{Spec}(R)$ and $O_{0}=\emptyset$. It is immediate from the definition that \mathcal{O} is closed under unions. To finish we need to show that $O_{a} \cap O_{b}$ is a union of sets of the form O_{c} (the rest is elementary set theory).

Now for P prime we know that $a \notin P$ and $b \notin P$ implies $a b \notin P$, and for any ideal $a \in P$ or $b \in P$ implies $a b \in P$. So for P prime in fact $a b \notin P$ iff $a \notin P$ and $b \notin P$, that is $O_{a} \cap O_{b}=O_{a b}$.

