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1. Basics

A ring in this course will be a set R equipped with binary operations + and ×
and distinguished elements 0 and 1 (which may be equal) such that

(1) (R,+) is an abelian group with 0 as the identity element.
(2) × is associative and distributes over +.
(3) × is commutative and has 1 as the identity element.

WARNING: In some algebra courses rings just have to satisfy the first two
axioms. Our rings are always “commutative rings with 1”.

It is easy to see that if R = {0} and we let 0 + 0 = 0 × 0 = 0 then we have a
rather trivial ring, the zero ring. The axioms above imply that a0 = 0, so R = {0}
if and only if 1 = 0.

We write −a for the +-inverse of a (which always exists since R is a group under
+) and when it exists we write a−1 for the ×-inverse of a. Elements of R with an
inverse are called units, the set of units is denoted U(R) and forms a group under
×. If a = bu for a unit u then a is an associate of b, the relation of being associate
is an equivalence relation.

2. Homomorphisms, subrings and ideals

Let R and S be rings. A homomorphism (HM) from R to S is a function
φ : R→ S such that

φ(r + r′) = φ(r) + φ(r′), φ(r × r′) = φ(r)× φ(r′), φ(0R) = 0S , φ(1R) = 1S .

If φ is bijective then the inverse φ−1 is automatically a HM from S to R. In this
circumstance we say that φ is an isomorphism (IM).

WARNING: In some algebra courses HMs may not be required to satisfy the
last clause.

Notice that if we forget about multiplication φ is a group HM from the group
(R,+) to the group (S,+).

Let S be a ring and let R ⊆ S. R is a subring of S iff R is a subgroup of (S,+),
R is closed under × and 1S ∈ R. This is equivalent to saying that R is a ring under
the inherited operations and it has the same 0 and 1. We write R ≤ S for this.
Notice that if R is a subring of S then the inclusion map is a HM from R to S.

WARNING: In some algebra courses subrings are not required to contain the 1
of the ambient ring.

An ideal of a ring R is a set I ⊆ R such that I is a subgroup of (R,+) and for
all r ∈ R and a ∈ I, ra ∈ I. In particular 0 ∈ I for any ideal I, 1 ∈ I ⇐⇒ I = R,
and {0} and R are always ideals of R.
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If φ : R→ S is a HM then the kernel of φ is the set of r ∈ R such that φ(r) = 0.
ker(φ) is an ideal of R. The image of φ is {φ(r) : r ∈ R}. im(φ) is a subring of S.

Notice that if φ : R → S is a monomorphism (injective HM) then φ sets up an
IM between R and im(φ). We sometimes identify R with the subring im(φ) of S.

If I is an ideal of R we can form a quotient ring R/I as follows. The elements
are the additive cosets a + I of I in R, which makes sense as I is a subgroup of
(R,+). We define

0 = 0 + I, 1 = 1 + I, (a+ I) + (b+ I) = (a+ b) + I, (a+ I)(b+ I) = ab+ I.

It is routine to check that this is well-defined and makes R/I into a ring. Also
the map a 7→ a + I is an epimorphism (surjective HM) from R to R/I, this is the
quotient HM for I.

CENTRAL RESULT: The first isomorphism theorem states that if φ is a HM
and I = ker(φ) then R/I is isomorphic to im(φ), with an IM being given explicitly
by a + I 7→ φ(a). A nice way of looking at this: an arbitrary HM from R to S
factors into the surjective quotient HM from R to R/I and the injective map from
R/I to S which takes a+ I to φ(a).

CENTRAL RESULT: The ideals of R/I are in a natural 1-1 correspondence
with the ideals of R containing I. Explicitly if J is an ideal of R/I then the union
of the additive cosets of I comprising J is the corresponding ideal in R. This
correspondence respects the inclusion relation between ideals.

3. Special classes of rings and ideals

A ring R is an integral domain (ID) iff 1 6= 0 and the product of two nonzero
elements is always nonzero. It is a field iff every nonzero element is a unit. Easily
every field is an ID but not vice versa.

An ideal I is prime iff I 6= R and the product of two elements in P c is always in
P c. Easily I is prime iff R/I is an ID.

An ideal I is maximal iff I 6= R and for every ideal J ⊇ I either J = I or J = R.
I is maximal iff R/I is a field

In general if X ⊆ R then (X) is the least ideal containing X and consists of all
finite linear combinations

∑
i rixi where ri ∈ R and xi ∈ X (by convention this

includes the empty sum with value 0). Abusing notation (a) = aR is the ideal of
all multiples of a, such ideals are called principal (NOT principle).
R is a principal ideal domain (PID) iff it is an ID and every ideal is principal.

The most significant examples are of course Z and F [x] for F a field.
In an ID R we say that r is irreducible iff r is a nonzero nonunit and r = st

implies that one of s and t is a unit (so of course the other is an associate of r). r
is prime iff r is a nonzero nonunit and whenever r divides st then either r divides s
or r divides t. Easily the associates of an irreducible(resp prime) or also irreducible
(resp prime), and prime implies irreducible.
R is a unique factorisation domain (UFD) iff it is an ID and every nonzero

nonunit has a factorisation as a finite product of irreducibles, unique up to permu-
tation and associates. Every PID is a UFD but not vice versa. In a UFD irreducible
equals prime.

In any UFD we have a reasonable notion of greatest common divisor (gcd).
Namely given a nonempty set X of nonzero nonunits (to avoid trivialities) say
that a is a gcd iff a is a common divisor of X (that is divides all elements of X) and
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all common divisors divide a. In a UFD gcd’s exist and are unique up to associates.
In a PID the gcd’s of X are precisely those a such that (X) = (a).

4. Field of fractions

If R is an ID then we can construct a field which has R as a subfield. The idea is
to start with all pairs (a, b) from R with b 6= 0 and quotient out by the equivalence
relation which makes (a, b) equivalent to (c, d) iff ad = bc. Let a/b be the class of
(a, b) and define

a/b+ c/d = (ad+ bc)/bd, a/b× c/d = ac/bd, 0 = 0/1, 1 = 1/1.

If F is the set of classes with these operations then it is routine to check that F is
a field and the map a 7→ a/1 is a monomorphism from R to F . We usually identify
a with a/1 so that R is regarded as a subring of F . Moreover any monomorphism
φ : R → G where G is a field extends uniquely to a monomorphism ψ : F → G
given by ψ : a/b 7→ a× b−1.

5. Euclidean domains

If R is an ID a Euclidean function for R is a function from R to N such that if
a, b ∈ R with b 6= 0 then there exist q, r ∈ R so that a = bq + r and either r = 0 or
φ(r) < φ(b). In general q and r need not be unique.
R is a Euclidean domain iff it has a Euclidean function. Every Euclidean domain

is a PID. If F is a field then the degree function is a Euclidean function for F [x].


