COMMUTATIVE ALGEBRA HANDOUT 3: FUNCTORS, NATURALITY, ADJOINTS AND LIMITS

 \mathbf{JC}

1. Functors

The notion of morphism axiomatises the notion of "structure preserving map between mathematical objects". Now we look at structure preserving maps between categories. If \mathcal{C} and \mathcal{D} are categories then a (covariant) *functor* from \mathcal{C} to \mathcal{D} is a function from $Ob(\mathcal{C}) \cup Hom(\mathcal{C})$ to $Ob(\mathcal{D}) \cup Hom(\mathcal{D})$ such that

(1) For all $a \in Ob(\mathcal{C}), F(a) \in Ob(\mathcal{D}).$

(2) For all $f: a \to b$ in $Hom(\mathcal{C}), F(f): F(a) \to F(b)$ in $Hom(\mathcal{D})$.

(3) For all $a \in Ob(\mathcal{C}), F(id_a) = id_{F(a)}.$

(4) For all $f: a \to b$ and $g: b \to c$ in $Hom(\mathcal{C}), F(g \circ f) = F(g) \circ F(f).$

This is intuitively the right thing. Categories are defined by the distinction between objects and morphisms and the operations of dom, cod, id and \circ ; functors just preserve all of this.

Example: consider the map U defined as follows. For every ring R, U(R) is the group of units of R (to be completely explicit, the underlying set of U(R) is the set of invertible elements in R and the group operation is the restriction of \times_R to this set) For every ring HM $f: R \to S$, U(f) is the restriction of f to the set of invertible elements in R. It is routine to check that this is a function from the category **Rings** of rings and ring HMs to the category **Groups** of groups and group HMs.

A contravariant functor from \mathcal{C} to \mathcal{D} is just a covariant functor from \mathcal{C}^{op} to \mathcal{D} . Explicitly it is a map F such that

(1) For all $a \in Ob(\mathcal{C}), F(a) \in Ob(\mathcal{D}).$

(2) For all $f: a \to b$ in $Hom(\mathcal{C}), F(f): F(b) \to F(a)$.

(3) For all $a \in Ob(\mathcal{C})$, $F(id_a) = id_{F(a)}$.

(4) For all $f: a \to b$ and $g: b \to c$ in $Hom(\mathcal{C}), F(g \circ f) = F(f) \circ F(g).$

Example: (from a recent HW) the functor *Spec* is a contravariant functor from **Rings** to the category **Top**

Example: let C be any category and let **Sets** be the category of sets and functions. For any object c we define a covariant functor $Hom_{\mathcal{C}}(c, -)$ from C to sets as follows: Hom(c, d) is just (as usual) the set of morphisms $f : c \to d$ in the category C and for $f : d_1 \to d_2$, Hom(c, f) is the map $g \mapsto f \circ g$ from $Hom(c, d_1)$ to $Hom(c, d_2)$. A contravariant functor Hom(-, d) is defined similarly.

2. NATURALITY

Now we consider what should be a structure preserving transformation between functors (you knew this was coming). Let F and G be covariant functors from C to \mathcal{D} . A natural transformation α from F to G is a map which assigns to each object

 $a \text{ of } \mathcal{C} \text{ a morphism } \alpha(a) : F(a) \to G(a) \text{ in } \mathcal{D}, \text{ such that for all morphisms } f : a \to b$ in \mathcal{C} we have the "naturality condition"

$$\alpha(b) \circ F(f) = G(f) \circ \alpha(a).$$

This is best pictured by the diagram

 $\mathbf{2}$

Example: Recall that if F is a field and V is an F-VS then the dual space V^* is the space of all linear maps from V to F. Given a map $\phi : V \to W$ we define $\phi^* : W^* \to V^*$ given by $\phi^* : f \mapsto f \circ \phi$. It is routine to check that this gives a contravariant functor from the category $F - \mathbf{VS}$ of F-VSs and linear maps to itself. Squaring we get a covariant functor ** which maps V to V^{**} and ϕ to ϕ^{**} . We will now define a natural transformation from the identity functor to the **-functor: for every vs V, $\alpha(V)$ is the map from V = id(V) to V^{**} which takes $v \in V$ to the "evaluation map" $f \mapsto f(v)$ from V^* to F.

Cultural remark: typically transformations defined without making arbitrary choices (here the choice of a basis) will tend to be natural.

Cultural remark: given categories C and D there is a "functor category" whose objects are covariant functors from C to D and whose morphisms are natural transformations.

3. Product categories

The product category $\mathcal{C} \times \mathcal{D}$ is defined in the obvious way. Objects are pairs (c,d) where c is an object of \mathcal{C} and d is an object of \mathcal{D} . A morphism is (f_1, f_2) : $(c_1, d_1) \to (c_2, d_2)$ where $f_1 : c_1 \to c_2$ and $f_2 : c_2 \to d_2$.

Example: we can bundle up the Hom(c, -) and Hom(-, d) functors into a single functor Hom(-, -) from $\mathcal{C}^{op} \times \mathcal{C}$ to **Sets**. The point is that given morphisms $f: c_2 \to c_1$ and $g: d_1 \to d_2$ in \mathcal{C} we may define Hom(f, g) to be the function from $Hom(c_1, d_1)$ to $Hom(c_2, d_2)$ given by $h \mapsto g \circ h \circ f$. Think of this as "a functor of two variables which is contravariant in its first argument and covariant in its second".

4. Adjoint functors

Let \mathcal{C} and \mathcal{D} be categories. A common situation in mathematics is to have covariant functors $S : \mathcal{C} \to \mathcal{D}$ and $T : \mathcal{D} \to \mathcal{C}$ which are 'adjoints' of each other. We give the definition and some examples.

An adjunction from S to T is a family of maps $\nu_{c,d}$ where $c \in Ob(\mathcal{C})$ and $d \in OB(\mathcal{D})$, such that

- (1) For all c and d, $\nu_{c,d}$ is a bijection between the sets $Hom_{\mathcal{D}}(S(c),d)$ and $Hom_{\mathcal{C}}(c,T(d))$.
- (2) The $\nu_{c,d}$ are natural.

If such an adjunction exists we say that F is a *left adjoint* of G, and G is a right adjoint of F.

The naturality takes a bit of explaining. It is routine to see that we can think of $Hom_{\mathcal{D}}(T(-), -)$ and $Hom_{\mathcal{C}}(-, S(-))$ as both being functors from $\mathcal{C}^{op} \times \mathcal{D}$ to **Sets.** We want the $\nu_{C,D}$ to be the components of a natural transformation between them.

More explicitly we want that for all $f: c_2 \to c_1$ in \mathcal{C} and all $g: d_1 \to d_2$ in \mathcal{D} the diagram

commutes.

Even more explicitly this means that for all $h: S(c_1) \to d_1$

$$\nu_{c_2,d_2}(g \circ h \circ S(f)) = T(g) \circ \nu_{c_1,d_1}(h) \circ f.$$

Example: Recall that if X is a set then the free abelian group Fr(X) on X is the set of functions $f: X \to \mathbb{Z}$ which are zero except on some finite set, with the group operation being pointwise addition. We usually identify $x \in X$ with the function which is 1 at x and 0 elsewhere, so we can write a typical element of Fr(X) as a finite sum $\sum_{i=1}^{k} n_i x_i$ for $n_i \in \mathbb{Z}, x_i \in X$.

We make Fr into a functor from **Sets** to **AbGroups** as follows: if X and Y are sets and $f: X \to Y$ is a function then $Fr(f): \sum_i n_i x_i \mapsto \sum_i n_i f(x_i)$. To go the other way we define a "forgetful functor" Un from AbGroups to Sets as follows: Un(G) is the underlying set of the abelian group G and $Un(\phi) = \phi$ for $\phi : G \to H$.

We claim that there is an adjunction from Fr to Un in which each function $f: X \to Un(G)$ corresponds to a HM from Fr(X) to G given by the equation $\sum_i n_i x_i \mapsto \sum_i n_i f(x_i)$.

5. Limits

To illustrate the usefulness of adjointness we prove that if $F: \mathcal{C} \to \mathcal{D}$ has a right adjoint then it preserves coproducts. More explicitly if

is a coproduct of c_1 and c_2 in \mathcal{C} then

4

Now every morphism $c \to G(d)$ is of the form $\nu_{c,d}(h)$ for a unique $h: F(c) \to d$. By naturality $\nu_{c_1,d}(h \circ F(f)) = \nu_{c,d}(h) \circ f$ and $\nu_{c_2,d}(h \circ F(g)) = \nu_{c,d}(h) \circ g$, so that

There's a unique morphism making the bottom diagram commute so there's a unique morphism making the top diagram commute, and so F preserves coproducts as claimed.