COMMUTATIVE ALGEBRA HANDOUT 3: FUNCTORS, NATURALITY, ADJOINTS AND LIMITS

JC

1. Functors

The notion of morphism axiomatises the notion of "structure preserving map between mathematical objects". Now we look at structure preserving maps between categories. If \mathcal{C} and \mathcal{D} are categories then a (covariant) functor from \mathcal{C} to \mathcal{D} is a function from $\operatorname{Ob}(\mathcal{C}) \cup \operatorname{Hom}(\mathcal{C})$ to $\operatorname{Ob}(\mathcal{D}) \cup \operatorname{Hom}(\mathcal{D})$ such that
(1) For all $a \in \operatorname{Ob}(\mathcal{C}), F(a) \in O b(\mathcal{D})$.
(2) For all $f: a \rightarrow b$ in $\operatorname{Hom}(\mathcal{C}), F(f): F(a) \rightarrow F(b)$ in $\operatorname{Hom}(\mathcal{D})$.
(3) For all $a \in O b(\mathcal{C}), F\left(i d_{a}\right)=i d_{F(a)}$.
(4) For all $f: a \rightarrow b$ and $g: b \rightarrow c$ in $\operatorname{Hom}(\mathcal{C}), F(g \circ f)=F(g) \circ F(f)$.

This is intuitively the right thing. Categories are defined by the distinction between objects and morphisms and the operations of $d o m, \operatorname{cod}, i d$ and \circ; functors just preserve all of this.

Example: consider the map U defined as follows. For every ring $R, U(R)$ is the group of units of R (to be completely explicit, the underlying set of $U(R)$ is the set of invertible elements in R and the group operation is the restriction of \times_{R} to this set) For every ring $\operatorname{HM} f: R \rightarrow S, U(f)$ is the restriction of f to the set of invertible elements in R. It is routine to check that this is a function from the category Rings of rings and ring HMs to the category Groups of groups and group HMs.

A contravariant functor from \mathcal{C} to \mathcal{D} is just a covariant functor from $\mathcal{C}^{o p}$ to \mathcal{D}. Explicitly it is a map F such that
(1) For all $a \in \operatorname{Ob}(\mathcal{C}), F(a) \in O b(\mathcal{D})$.
(2) For all $f: a \rightarrow b$ in $\operatorname{Hom}(\mathcal{C}), F(f): F(b) \rightarrow F(a)$.
(3) For all $a \in O b(\mathcal{C}), F\left(i d_{a}\right)=i d_{F(a)}$.
(4) For all $f: a \rightarrow b$ and $g: b \rightarrow c$ in $\operatorname{Hom}(\mathcal{C}), F(g \circ f)=F(f) \circ F(g)$.

Example: (from a recent HW) the functor Spec is a contravariant functor from Rings to the category Top

Example: let \mathcal{C} be any category and let Sets be the category of sets and functions. For any object c we define a covariant functor $\operatorname{Hom}_{\mathcal{C}}(c,-)$ from \mathcal{C} to sets as follows: $\operatorname{Hom}(c, d)$ is just (as usual) the set of morphisms $f: c \rightarrow d$ in the category \mathcal{C} and for $f: d_{1} \rightarrow d_{2}, \operatorname{Hom}(c, f)$ is the map $g \mapsto f \circ g$ from $\operatorname{Hom}\left(c, d_{1}\right)$ to $\operatorname{Hom}\left(c, d_{2}\right)$. A contravariant functor $\operatorname{Hom}(-, d)$ is defined similarly.

2. Naturality

Now we consider what should be a structure preserving transformation between functors (you knew this was coming). Let F and G be covariant functors from \mathcal{C} to \mathcal{D}. A natural transformation α from F to G is a map which assigns to each object
a of \mathcal{C} a morphism $\alpha(a): F(a) \rightarrow G(a)$ in \mathcal{D}, such that for all morphisms $f: a \rightarrow b$ in \mathcal{C} we have the "naturality condition"

$$
\alpha(b) \circ F(f)=G(f) \circ \alpha(a)
$$

This is best pictured by the diagram

Example: Recall that if F is a field and V is an F-VS then the dual space V^{*} is the space of all linear maps from V to F. Given a map $\phi: V \rightarrow W$ we define $\phi^{*}: W^{*} \rightarrow V^{*}$ given by $\phi^{*}: f \mapsto f \circ \phi$. It is routine to check that this gives a contravariant functor from the category $F-\mathbf{V S}$ of F-VSs and linear maps to itself. Squaring we get a covariant functor ${ }^{*} *$ which maps V to $V^{* *}$ and ϕ to $\phi^{* *}$. We will now define a natural transformation from the identity functor to the $* *$-functor: for every vs $V, \alpha(V)$ is the map from $V=i d(V)$ to $V^{* *}$ which takes $v \in V$ to the "evaluation map" $f \mapsto f(v)$ from V^{*} to F.

Cultural remark: typically transformations defined without making arbitrary choices (here the choice of a basis) will tend to be natural.

Cultural remark: given categories \mathcal{C} and \mathcal{D} there is a "functor category" whose objects are covariant functors from \mathcal{C} to \mathcal{D} and whose morphisms are natural transformations.

3. Product categories

The product category $\mathcal{C} \times \mathcal{D}$ is defined in the obvious way. Objects are pairs (c, d) where c is an object of \mathcal{C} and d is an object of \mathcal{D}. A morphism is $\left(f_{1}, f_{2}\right)$: $\left(c_{1}, d_{1}\right) \rightarrow\left(c_{2}, d_{2}\right)$ where $f_{1}: c_{1} \rightarrow c_{2}$ and $f_{2}: c_{2} \rightarrow d_{2}$.

Example: we can bundle up the $\operatorname{Hom}(c,-)$ and $\operatorname{Hom}(-, d)$ functors into a single functor $\operatorname{Hom}(-,-)$ from $\mathcal{C}^{o p} \times \mathcal{C}$ to Sets. The point is that given morphisms $f: c_{2} \rightarrow c_{1}$ and $g: d_{1} \rightarrow d_{2}$ in \mathcal{C} we may define $\operatorname{Hom}(f, g)$ to be the function from $\operatorname{Hom}\left(c_{1}, d_{1}\right)$ to $\operatorname{Hom}\left(c_{2}, d_{2}\right)$ given by $h \mapsto g \circ h \circ f$. Think of this as "a functor of two variables which is contravariant in its first argument and covariant in its second".

4. Adjoint functors

Let \mathcal{C} and \mathcal{D} be categories. A common situation in mathematics is to have covariant functors $S: \mathcal{C} \rightarrow \mathcal{D}$ and $T: \mathcal{D} \rightarrow \mathcal{C}$ which are 'adjoints' of each other. We give the definition and some examples.

An adjunction from S to T is a family of maps $\nu_{c, d}$ where $c \in O b(\mathcal{C})$ and $d \in$ $O B(\mathcal{D})$, such that
(1) For all c and $d, \nu_{c, d}$ is a bijection between the sets $\operatorname{Hom}_{\mathcal{D}}(S(c), d)$ and $\operatorname{Hom}_{\mathcal{C}}(c, T(d))$.
(2) The $\nu_{c, d}$ are natural.

If such an adjunction exists we say that F is a left adjoint of G, and G is a right adjoint of F.

The naturality takes a bit of explaining. It is routine to see that we can think of $\operatorname{Hom}_{\mathcal{D}}(T(-),-)$ and $\operatorname{Hom}_{\mathcal{C}}(-, S(-))$ as both being functors from $\mathcal{C}^{o p} \times \mathcal{D}$ to Sets. We want the $\nu_{C, D}$ to be the components of a natural transformation between them.

More explicitly we want that for all $f: c_{2} \rightarrow c_{1}$ in \mathcal{C} and all $g: d_{1} \rightarrow d_{2}$ in \mathcal{D} the diagram

commutes.
Even more explicitly this means that for all $h: S\left(c_{1}\right) \rightarrow d_{1}$

$$
\nu_{c_{2}, d_{2}}(g \circ h \circ S(f))=T(g) \circ \nu_{c_{1}, d_{1}}(h) \circ f .
$$

Example: Recall that if X is a set then the free abelian group $\operatorname{Fr}(X)$ on X is the set of functions $f: X \rightarrow \mathbb{Z}$ which are zero except on some finite set, with the group operation being pointwise addition. We usually identify $x \in X$ with the function which is 1 at x and 0 elsewhere, so we can write a typical element of $\operatorname{Fr}(X)$ as a finite sum $\sum_{i=1}^{k} n_{i} x_{i}$ for $n_{i} \in \mathbb{Z}, x_{i} \in X$.

We make $F r$ into a functor from Sets to AbGroups as follows: if X and Y are sets and $f: X \rightarrow Y$ is a function then $\operatorname{Fr}(f): \sum_{i} n_{i} x_{i} \mapsto \sum_{i} n_{i} f\left(x_{i}\right)$. To go the other way we define a "forgetful functor" $U n$ from AbGroups to Sets as follows: $U n(G)$ is the underlying set of the abelian group G and $U n(\phi)=\phi$ for $\phi: G \rightarrow H$.

We claim that there is an adjunction from $F r$ to $U n$ in which each function $f: X \rightarrow U n(G)$ corresponds to a HM from $\operatorname{Fr}(X)$ to G given by the equation $\sum_{i} n_{i} x_{i} \mapsto \sum_{i} n_{i} f\left(x_{i}\right)$.

5. Limits

To illustrate the usefulness of adjointness we prove that if $F: \mathcal{C} \rightarrow \mathcal{D}$ has a right adjoint then it preserves coproducts. More explicitly if

is a coproduct of c_{1} and c_{2} in \mathcal{C} then

is a coproduct of $F\left(c_{1}\right)$ and $F\left(c_{2}\right)$ in \mathcal{D}.
To see this suppose that we have

Back in \mathcal{C} we have the corresponding

Now every morphism $c \rightarrow G(d)$ is of the form $\nu_{c, d}(h)$ for a unique $h: F(c) \rightarrow d$. By naturality $\nu_{c_{1}, d}(h \circ F(f))=\nu_{c, d}(h) \circ f$ and $\nu_{c_{2}, d}(h \circ F(g))=\nu_{c, d}(h) \circ g$, so that

COMMUTATIVE ALGEBRA HANDOUT 3: FUNCTORS, NATURALITY, ADJOINTS AND LIMITS

commutes iff

There's a unique morphism making the bottom diagram commute so there's a unique morphism making the top diagram commute, and so F preserves coproducts as claimed.

